
CS1112 Lab Exercise 12

Do this exercise (both questions 1 and 2) by hand—pencil-and-paper—in order to get the most out of it. After-
wards you can type up your hand-written answers for a check using Matlab.

1 Insertion Sort

Implement the following function:

function x = InsertionSortInplace(x)

% Sort x in ascending order using the insertion sort algorithm.

% Sort in-place, i.e., without creating another vector.

% Perform the insert process in-line, i.e., no subfunction.

% x is a 1-d array of numbers.

For your reference, below is the InsertionSort function we discussed in lecture.

function [x,TotalC,TotalS] = InsertionSort(x)

% Sort x in ascending order using insertion sort algorithm.

% x is a 1-d array of numbers.

% TotalC is the total number of required comparisons.

% TotalS is the total number of required swaps.

n = length(x); TotalC = 0; TotalS = 0;

for k = 2:n

[x(1:k),C,S] = Insert(x(1:k));

TotalC = TotalC + C; TotalS = TotalS + S;

end

function [x,C,S] = Insert(x)

% Pre: x is an m-vector with x(1:m-1) sorted.

% Post: x is sorted in assending order by applying the insert process.

% C is the number of required comparisions.

% S is the number of required swaps.

m = length(x); S = 0;

k = m-1;

while k>=1 && x(k)>x(k+1)

t = x(k+1); x(k+1) = x(k); x(k) = t;

S = S+1;

k = k-1;

end

C = S+1

1



2 Merge Sort

The code for functions mergeSort and merge are shown below. What is the output when you run the execute
the following statements?

a= [4 1 6 3 2 9 5 7 6 0];

b= mergeSort(a);

Trace the execution carefully. Note that mergeSort is recursive, so multiple calls of mergeSort can be open at
the same time. Ask your section instructor if you have any questions!

function y = mergeSort(x)

% x is a vector.

% y is a vector consisting of the values in x sorted from smallest to largest.

n = length(x) % length of vector x is displayed

if n==1

y = x;

else

m = floor(n/2);

% Sort the left half..

yL = mergeSort(x(1:m)) % values displayed are the values returned by this call of mergeSort

% Sort the right half...

yR = mergeSort(x(m+1:n)) % values displayed are the values returned by this call of mergeSort

% Merge...

y = merge(yL,yR) % values displayed are the values returned by this call of merge

end

function z = merge(x,y)

% x and y are sorted vectors and z is their merge.

% x(1) <= x(2) <= ... <= x(nx)

% y(1) <= y(2) <= ... <= y(ny)

% z is a sorted vector with length nx+ny and comprises all the values in x and y:

% z(1) <= z(2) <= ... <= z(nx+ny)

nx = length(x); ny = length(y);

z = zeros(1, nx+ny);

ix = 1; iy = 1; iz = 1;

while ix<=nx && iy<=ny % x and y have not been exhausted

if x(ix) <= y(iy)

z(iz)= x(ix); ix=ix+1; iz=iz+1;

else

z(iz)= y(iy); iy=iy+1; iz=iz+1;

end

end

while ix<=nx % copy any remaining x-values

z(iz)= x(ix); ix=ix+1; iz=iz+1;

end

while iy<=ny % copy any remaining y-values

z(iz)= y(iy); iy=iy+1; iz=iz+1;

end

2


