
Advanced Programming Languages CS6110
Spring 2012
Lecture 1

Robert L. Constable
Cornell University

Goals of the Course This course is designed to teach the elements of a mathematically
rigorous semantics for programming languages.1 Based on this semantics it is possible to
prove that certain programming languages behave according to precise mathematical rules
if they are implemented properly. It is also possible to prove that compilers implementing
these languages are correct [13] according to their mathematical semantics. On this basis,
computer scientists can now prove that programs have predictable behavior and precise
mathematical properties. The level of these languages ranges from C to Haskell and ML,
but not all programming languages have a mathematical semantics; in this course we focus
on those that do.

Mathematical Semantics One of the main reasons that the topics covered in this course
are considered valuable in graduate computer science education is that the material is a model
for how we create software artifacts such as programming languages that are mathematical
objects as well as useful tools.2 Computer science shares with physics this property that
some elements of the subject are both useful tools for thought, such as physical theories,
and mathematical objects as well. Computer science is also in the remarkable position that
computer programs are important in exploring physical theories. This is especially true for
programs that have precise meaning. These aspects of computer science explain why it is
one of the most mathematical of all the sciences.

Proof Technology Over the past few decades, programming languages and other software
systems have become so essential in modern life and in life-critical systems that tremendous
effort has gone into making them more trustworthy and reliable. Part of that effort has
focused on proving properties of languages and programs as rigorously as possible. This

1This semantic theory is covered in Volume B of the Handbook of Theoretical Computer Science [11, 8, 17],
and is thus sometimes referred to as Theory B.

2What kind of mathematical object is a programming language? The closest approximation is probably
a formal mathematical theory fragment ; that is a theory which does not make explicit all of its axioms, just
a fragment of them. When the axioms are given, we have a programming logic. Early examples of these
were the Stanford Pascal Verifier [10], Gypsy, and Cornell’s PLCV [6]. Conversely, a formal mathematical
theory with computational semantics is a programming language.

1



effort has resulted in a new technology that I call proof technology ; it allows an unprecedented
level of precision and rigor in establishing mathematical facts, both about pure mathematical
objects and about software systems and the hardware on which they execute.

Scope of the Course In the Programming Logic Laboratory, CS6116, will examine as-
pects of proof technology as it relates to programming languages. Moreover, because this
technology is now moving into the construction of operating systems, such as seL4 [7], and
distributed systems, such as Ensemble [26, 14] and Birman’s Isis2 [3], this course will include
the semantics of asynchronous message passing computation, i.e. distributed systems. In
this relatively new subarea we will be able to point out open research questions that show
how rigorous concepts are migrating from programming languages to concurrent systems.
Eventually proof technology might move into applications such as symbolic algebra systems
and other domain specific languages as illustrated by Theorema project [4].

Formal Semantics Proof technology has been so successful in reasoning about program-
ming languages that it is now possible to formally prove many of the theorems normally
taught in advanced programming language graduate courses like this one. A formal proof is
one that can be checked in every detail. They achieve the highest levels of certainty known
using technology. They are produced by software tools called interactive theorem provers or
proof assistants, or provers for short. Using these provers it is possible to create a formal
semantics for some programming languages. Interestingly the main tools for accomplishing
this are based on constructive mathematics formalized in type theory. We will see natural
reasons for this approach as the course progresses, and we will use constructive methods
from the start so that we can more quickly reach the formal semantics.

Programming Logic Laboratory A pioneering enterprize to engage students in reading
and creating formal proofs about programming languages is described in the book Software
Foundations by Benjamin Pierce and his collaborators at the University of Pennsylvania [20]
in which they use the Coq proof assistant to formally prove several of the results taught in
this course and which appear in the basic books on programming languages recommended
for this course [19, 17, 27, 24, 25] and in some of the fundamental papers such as those of
Gordon Plotkin [21, 22, 23]. This creates a formal semantics for the concepts in a formal
theory called constructive type theory. What is especially gratifying to me and my Cornell
collaborators is that the formal theory, Calculus of Inductive Constructions (CIC) [18], used
by the Coq prover [2] to produce these results is based to a large extent on results from the
PRL group who designed Computational Type Theory (CTT) [5, 1] and implemented it in
the Nuprl [5, 12] and MetaPRL [9] theorem provers. These are constructive type theories
closely related to the ground breaking Intuitionistic Type Theory (ITT) of Per Martin-Löf
[15, 16]. CTT and Nuprl are used to produce correct by construction software, and they
could be brought to bear in this course to prove many of the theorems about semantics. You
will learn a bit about these methods in the Programming Logic Lab which meets on Fridays.

2



References

[1] Stuart Allen, Mark Bickford, Robert Constable, Richard Eaton, Christoph Kreitz, Lori
Lorigo, and Evan Moran. Innovations in computational type theory using Nuprl. Journal
of Applied Logic, 4(4):428–469, 2006.

[2] Yves Bertot and Pierre Castéran. Interactive Theorem Proving and Program Develop-
ment; Coq’Art: The Calculus of Inductive Constructions. Texts in Theoretical Com-
puter Science. Springer-Verlag, 2004.

[3] Kenneth P. Birman. Guide to Reliable Distributed Systems. Springer-Verlag, 2012.

[4] Bruno Buchberger. Theorema: Extending mathematica by automated proving (invited
talk). In D. Bosanac and D. Ungar, editors, Proceedings of the Programming System
Mathematica in Science, Technology, and Education (PrimMath 2001), pages 10–11,
Electrotechnical and Computer Science Faculty, University of Zagreb, September 2001.

[5] Robert L. Constable, Stuart F. Allen, H. M. Bromley, W. R. Cleaveland, J. F. Cre-
mer, R. W. Harper, Douglas J. Howe, T. B. Knoblock, N. P. Mendler, P. Panangaden,
James T. Sasaki, and Scott F. Smith. Implementing Mathematics with the Nuprl Proof
Development System. Prentice-Hall, NJ, 1986.

[6] Robert L. Constable and Michael J. O’Donnell. A Programming Logic. Winthrop,
Mass., 1978.

[7] Dhammika Elkaduwe, Gerwin Klein, and Kevin Elphinstone. Verified protection model
of the sel4 microkernel. In VSTTE ’08: Proceedings of the 2nd international conference
on Verified Software: Theories, Tools, Experiments, pages 99–114, Berlin, Heidelberg,
2008. Springer-Verlag.

[8] C. A. Gunter and D. S. Scott. Semantic domains. In J. van Leeuwen, editor, Handbook
of Theoretical Computer Science, pages 633–674. North-Holland, 1990.

[9] Jason Hickey, Aleksey Nogin, Robert L. Constable, Brian E. Aydemir, Eli Barzilay,
Yegor Bryukhov, Richard Eaton, Adam Granicz, Alexei Kopylov, Christoph Kreitz,
Vladimir N. Krupski, Lori Lorigo, Stephan Schmitt, Carl Witty, and Xin Yu. MetaPRL
— A modular logical environment. In David Basin and Burkhart Wolff, editors, Proceed-
ings of the 16th International Conference on Theorem Proving in Higher Order Logics
(TPHOLs 2003), volume 2758 of Lecture Notes in Computer Science, pages 287–303.
Springer-Verlag, 2003.

[10] S. Igarashi, R. London, and D. Luckham. Automatic program verification I: a logical
basis and its implementation. Acta Informatica, 4:145–82, 1975.

[11] Dexter C. Kozen and Jerzy Tiuryn. Logics of programs. In van Leeuwen, editor,
Handbook of Theoretical Computer Science, volume B, pages 789–840. North Holland,
Amsterdam, 1990.

[12] Christoph Kreitz. The Nuprl Proof Development System, version 5, Reference Manual
and User’s Guide. Cornell University, Ithaca, NY, 2002. http://www.nuprl.org/html/
02cucs-NuprlManual.pdf.

3



[13] Xavier Leroy. Manifest types, modules, and separate compilation. In Proceedings of the
21st ACM SIGPLAN-SIGACT symposium on Principles of programming languages,
pages 109–122. ACM Press, 1994.

[14] Xiaoming Liu, Christoph Kreitz, Robbert van Renesse, Jason J. Hickey, Mark Hayden,
Kenneth Birman, and Robert Constable. Building reliable, high-performance commu-
nication systems from components. In David Kotz and John Wilkes, editors, 17th ACM
Symposium on Operating Systems Principles (SOSP’99), volume 33(5) of Operating
Systems Review, pages 80–92. ACM Press, December 1999.

[15] Per Martin-Löf. Constructive mathematics and computer programming. In Proceedings
of the Sixth International Congress for Logic, Methodology, and Philosophy of Science,
pages 153–175, Amsterdam, 1982. North Holland.

[16] Per Martin-Löf. Intuitionistic Type Theory. Number 1 in Studies in Proof Theory,
Lecture Notes. Bibliopolis, Napoli, 1984.

[17] John C. Mitchell. Type systems for programming languages. In J. van Leeuwen, editor,
Handbook of Theoretical Computer Science, Volume B: Formal Models and Sematics,
chapter 8, pages 366–458. Elsevier Science Publishers, North-Holland, 1990.

[18] Christine Paulin-Mohring. Inductive definitions in the system Coq; rules and properties.
In J. F. Groote M. Bezem, editor, Typed Lambda Calculi and Applications, Lecture Notes
in Computer Science. Springer-Verlag, 1993.

[19] Benjamin C. Pierce. Types and Programming Languages. MIT Press, 2002.

[20] Benjamin C. Pierce, Chris Casinghino, Michael Greenberg, Vilhelm Sjberg, and Brent
Yorgey. Software Foundations. Electronic, 2011.

[21] Gordon Plotkin. Call-by-name, call-by-value, and the λ-calculus. Journal of Theoretical
Computer Science, pages 125–59, 1975.

[22] Gordon D. Plotkin. LCF considered as a programming language. Journal of Theoretical
Computer Science, 5:223–255, 1977.

[23] Gordon D. Plotkin. A structural approach to operational semantics. Technical Report
DAIMI-FN-19, Aarhus University, Aarhus University, Computer Science Department,
Denmark, 1981.

[24] Simon Thompson. Type Theory and Functional Programming. Addison-Wesley, 1991.

[25] R. Turner. Constructive Foundations for Functional Languages. McGraw Hill, New
York, 1991.

[26] Robbert van Renesse, Kenneth P. Birman, Mark Hayden, Alexey Vaysburg, and David
Karr. Building adaptive systems using Ensemble. Software: Practice and Experience,
28(9):963–979, July 1998.

[27] G. Winskel. Formal Semantics of Programming Languages. MIT Press, Cambridge,
1993.

4


