Bl «d51db5 xe891al
X9ce568 X32eldc
xab2356 xdd0135

x453a32 . . x63ab12

Building systems that compute on
encrypted data

Raluca Ada Popa
MIT

Security experts warn of increasing data breaches and privacy
risks

LivingSocial Hacked — More Than 50
Million Customer Names, Emails,
Birthdates and Encrypted Passwords p agents were Suggested Content

Accessed (Intertt Some Victims of Online Hacking Edge Into the Lig

Compromise of confidential data
is prevalent

WordPress firm Automattic suffers rn't Irust Fracenook witn
root-level hack mployee's Revelations
Privacy, security still top cloud concerns

Asia Cloud Forum editors | November 13, 2013
Asia Cloud Forum

An online survey of Microsoft partners has revealed that traditional concerns about '

Problem setup

, server
clients ‘

O

‘ f Secret

” I _ -

no computation computation

storage databases, web applications, mobile

applications, machine learning, etc.
¢ encryption 29
e o

Current systems strategy

server

‘ Secret \

clients

Prevent attackers from breaking into servers

Lots of existing work

Checks at the operating-system level
Language-based enforcement of a security policy
Static or dynamic analysis of application code
Checks at the network level

Trusted hardware

Data still leaks even with
these mechanisms

because

attackers eventually break in!

Attacker examples

Attacker:

hackers%

i

“\53 i

C|O{d employees

I

increasingly many companies
store data on external clouds

government ——
li|

\ S

accessed private data Qj’
according to p.

Reason they succeed:

software is complex

insiders: legitimate
server access!

e.g., physical access

My work

Systems that protect confidentiality even against
attackers with access to all server data

My approach

Servers store, process, and compute on
encrypted data in a practical way

server

e o
Strawman:
<) Secret

Result M QF
‘ Secret\

Computing on encrypted data in cryptography

[Rivest-Adleman-Dertouzos’78]
Fully homomorphic encryption (FHE) [Gentry’09]

prohibitively slow, e.g., slowdown X 1,000,000,000

My work: practical systems practlcal

large class of /S .

eal 4+ mMmeaningful

L. securit
applications Y

real-world 4
performance

My contributions @
Server under attack:

System:
Databases: CryptDB [SOSP’11][CACM’12]
mOPE, adjJOIN n
[Oakland’13] ~
Web apps: Mylar (Nspria] | ————— o
Py PP y . [] web app Db
@ multi-key search server [€* SEIVer
PrivStats [CCS'11]
VPriv [Usenix Security’09] mobile app server

Theory:
In general: Functional encryption [STOC’13] [CRYPTO’13]

Combine systems and cryptography

1. identify core operations needed

systems

3. Design and
build system

2. multiple specialized encryption schemes

New schemes:
» mOPE, adjJOIN for CryptDB
» multi-key search for Mylar

My contributions E
Server under attack:

System:

Databases: CryptDB

CryptDB

[SOSP’11: Popa-Redfield-Zeldovich-Balakrishnan]

First practical database system (DBMS) to process
most SQL queries on encrypted data

Related work

> Systems work: [Hacigumus et al/02][Damiani et al.’03][Ciriani et al’09]
» no formal confidentiality guarantees
» restricted functionality
> client-side filtering

» Theory work:

> General computation: FHE (centryo9]

» very strong security: forces slowdown - many queries
must always scan and return the whole DB
> prohibitively slow (10°x)

> SpECia | ized SChemeS [Amanatidis et al.’07][Song et al.’00][Boldyreva et al.’09]

Setup

under passive attack g

trusted client-side

DB server

Application fe

Use cases:
» Qutsource DB to the cloud (DBaaS)

» e.g. Encrypted BigQuery
> Local cluster: hide DB content from sys. admins.

Setup

under passive attack @

trusted client-side

transformed
query DB server

plain query

>l Proxy

> encrypted DB

Application [e I»
(L
decrypted = encrypted @
M

results : results
> Stores schema
and master key 1 -
> No query execution computation on

encrypted data =
regular computation

Example

Application

Randomized encryption

l (RND) - semantic
SELECT * FROM emp

tablel/emp l

l coll/rank| col2/name| col3/salary
Proxy X —
@II- SELECT * FROM tablel} «4be219 -
_

x2ea887 800

Example

Application

Randd®reteechamstigption
l encry(®iNi» (DET)

SELECT * EROM emp
CWHERE salary = 100 _>
tablel/emp

l SELECT * FROM table1 col1/rank]col2/name| col3/salary

Proxy | \WHERE col3 = x5a8c34 - - Y YORE "60
@I-_.-.. > x0240c
I=
~E 2

B

Example

Applicati
pplication uSummablen
l endpgbeiemni(HDIR) -
SELECT encegphimtidET)
FROM emp

l tablel (emp) l

Proxy | SELECT cdb_sum(col3) c¢ol1/rank]|col2/name]| col3/salary

. FROM tablel B
P > .
100
) 800
1060 :I_ 100

Techniques

1. Use SQL-aware set of efficient encryption
schemes (meta technique!)

‘\Q' - Most SQL can be implemented with
a few core operations

2. Adjust encryption of data based on gueries

3. Query rewriting algorithm

1. SQL-aware encryption schemes

Security | Scheme | Constructio Function | SQL operations:
- ~ re.g., SELECT,
1
RND AES in UFE |data movingf] UPDATE, DELETE,
~ semantic LINSERT, COUNT
security - HOM Paillier addition] e-8. SUM, +
! word | restricted ILIKE
SEARCH | Song et al.,’00 search 11
_ e.g., =, !, N,
reveals DET AES i li IGROUP BY,
in CMC | equality ‘
only repeat_ DISTINCT
pattern our new .. L
JOIN S join
| T - [e.g., >, <, ORDER BY,
reveals our new scheme ASC. DESC. MAX
9| OPE) order [J™>% PE5 VA%
only [Oakland13] MIN, GREATEST,

x <y {——» Enc(x) < Enc(y)

LEAST

How to encrypt each data item?

Goals: 1.
2.

Support queries

Use most secure encryption schemes

Challenge: may not know queries ahead of time

rank

‘CEO’

‘worker’

ALL?

,

coll-
RND

coll-

coll-
SEARCH

coll-
DET

coll- |/coll-
JOIN | OPE

HOM
__
__

Leaks order!

Onion

Onion of encryptions

security

,. ‘ |+
y functionality

Adjust encryption: strip off layer of the onion

Onions of encryptions

1 column

»

7

RND N

each DET
value JOIN
[[value ﬂ
A\ '/

Onion Equality

3 columns

»
7~ RND)

=)

—

Onion Order

re -

==

—
Onion Add
OR
»

SEARCH
[text value}

Onion Search=

Same key for all items in a column for same onion layer

Onion evolution

» Start out the database with the most secure
encryption scheme

> If needed, adjust onion level
» Proxy gives decryption key to server

» Proxy remembers onion layer for columns

Lowest onion level is never removed

Example

emp:
Logical table: rank | name | salary
‘CEQ’
‘worker’
Vs \\ N\
. // \\\ \\\\
Physical table: . o “sao
! table 1: T sl
— N S~
4 RND) coll- coll- coll- col2-
DET OnionkEq ||OnionOrder| OnionSearch| OnionEq
JOIN ~ - » » » »
| ceo’ | p p p pa
\ 2 . .
- - - -

Onion Equality

SELECT * FROM emp WHERE rank = ‘CEQO’

Example (cont’d)

table 1

-

N

RND

~

DET

JOIN

[

‘CEO’

)]

Onion Equality

—

—

coll-

OnionEq

coll-
OnionOrder

coll-
OnionSearch

col2-

—

s L

S

-

-

-

SELECT * FROM emp WHERE rank = ‘CEQ’

S

UPDATE tablel SET col1-OnionEq =

OnionEq

-

Decrypt_ RND(key, col1-OnionEq)

SELECT * FROM tablel WHERE col1-OnionEq = xda5c0407

Security threshold

Data owner can specify minimum level of security

CREATE TABLE emp (..., credit_card SENSITIVE integer, ...)

/

RND, HOM, DET for unique fields
= semantic security

Security guarantee

Columns annotated as sensitive have semantic
security (or similar).

Encryption schemes exposed for each column are
the most secure enabling queries.

equality ==) repeats sum m=) semantic [no filter ms) semantic]

common in practice

Limitations & Workarounds

Queries not supported:
» More complex operators, e.g., trigonometry
» Certain combinations of encryption schemes:

> e.g.,[salary + raise] > 100K

HOM

j\ use query splitting, query rewriting

Implementation

SQL Interface

Application

query
e>

. CryptDB
resiults Proxy

<€

unmodified
DBMS

CryptDB
SQL UDFs

(user-defined
functions)

No change to the DBMS!

Largely no change to apps!

Evaluation

1. Does it support real queries/applications?
2. What is the resulting confidentiality level?
3. What is the performance overhead?

apps with

sensitive =

columns

tens of
thousands

Real queries/applications

of apps

Application | Encrypted | # cols with queries
columns not supported
phpBB 23 0
HotCRP 22 0
grad-apply 103 0
TPC-C 92 0
sgl.mit.edu 128,840 /7 1,094

SELECT 1/log(series _no+1.2) ...
... WHERE sin(latitude + PI()) ...

Confidentiality level

Final onion state

}

Application

HotCRP

Encrypted
columns

22

Min level:
OPE

Min level:
DET/JOIN

Min level:
zsemantic

18

semantic

grad-apply 103 95
TPC-C 92 65 8
sql.mit.edu 128,840 80,053 34,212 13,131
Most Most columns at
columns at OPE were less

sensitive

Performance

DB server throughput

MySQL
Application 1 |e > .
Plain
database
Application 2 [« >
Latency
CryptDB: <
Application 1 fe— Cryfreols < S)
Proxy
Encrypted
e 5| CryptDB bB
Application 2 < >
Proxy

Hardware: 2.4 GHz Intel Xeon E5620 — 8 cores, 12 GB RAM

TPC-C performance

Latency (per query): 0.10ms MySQL vs. 0.72ms CryptDB
Throughput loss over MySQL: 26%

14000 +{ MySQL
12000 Ll CryptDB
10000 {
8000 +
6000
4000 +{
2000

0

Homomorphic
addition

Queries / sec

No cryptography at the DB server in the steady state!

Adoption

http://css.csail.mit.edu/cryptdb/

GO gle Encrypted BigQuery [http://code.google.com/p/encrypted-bigguery-client/]

“CryptDB was really eye-opening in establishing the practicality
of providing a SQL-like query interface to an encrypted database”

“CryptDB was [..] directly influential on the design and

Ulfar Erlingsson, .) .
implementation of Encrypted BigQuery.”

head of security
research, Google

w SEEED implemented on top of the SAP HANA DBMS
®

MIT

Lincoln Encrypted version of the D4M Accumulo NoSQL engine
[aboratory

sql_mit_edu Users opted-in to run Wordpress over our CryptDB
source code

Demo

Attack to all servers?

users

£ 3O

Attack to all servers?

[NSDI’14: Popa-Stark-Valdez-Helfer-Zeldovich-Kaashoek-Balakrishnan]

Mylar

web

application

» Framework for building web applications
» Protects confidentiality against attacks to all servers

Overview

browser

-C‘

ﬁ

\ r”
Q j\
web
application
/ R

Plaintext data exists only in browsers

B

2

Computation in web applications

1. Mylar is a client-side application framework

2. Non client-side computation: meta technique!

» data sharing

/Challenges I

> Active attacker
» key certification

» Multiple keys
» multi-key search
- /

> search

Applications

http://css.csall.mit.edu/mylar/

chat medical

class website forum calendar photo sharing

Few developer annotations to secure an application,
modest overhead

NEWTON-WELLESLEY
HOSPITAL

Endometriosis App

Please sign in using your email and your password

My contributions g
Server under attack:

System:

Databases: CryptDB [SOSP’11][CACM’12]

mOPE, adjJOIN . CE
[Oakland’13] B |

Mylar [NSDI'14 —DB
ya. [] web app DB |
multi-key search server [SE{Ver :

System design principles

Clients Server
‘ > Secre
)

|

Assume all server data will leak!
Store, process, and compute on encrypted data.

Technique for practicality:
1. identify core operations
2. use an efficient encryption scheme for each

Future work

Other systems computing on encrypted data:

Genomics analytics and machine learning

Future work

Other systems computing on encrypted data:

Genomics analytics and machine learning

Big data & compression

big data
g compressed
big data

encrypted big data

9 compressed
Encryple big data How to compute on it??

Future work

Other systems computing on encrypted data:

Genomics analytics and machine learning

Big data & compression

Security beyond confidentiality:

Correctness of computation

Client-side security

~

Collaborators

CryptDB: Catherine Redfield, Nickolai Zeldovich, Hari Balakrishan, Aaron Burrows

I\/IyIar' Steven Valdez, Jonas Helfer, Nickolai Zeldovich,
Frans M. Kaashoek, Hari Balakrishnan

PrivStats, VPriv: andrew Blumberg, Hari Balakrishnan, Frank H. Li

Func‘“onal encryptlon Shafi Goldwasser, Yael Kalai, Vinod
Vaikuntanathan, Nickolai Zeldovich

and others for other projects.

Future work

Other systems computing on encrypted data:

Genomics analytics and machine learning

Big data & compression

Security beyond confidentiality:

Correctness of computation

Client-side security

~

THANK
YOU!

