
Building systems that compute on
encrypted data

Raluca Ada Popa
MIT

?

xe891a1

X32e1dc

xdd0135

x63ab12

xd51db5

X9ce568

xab2356

x453a32

Compromise of confidential data
is prevalent

Problem setup

server
clients

Secret Secret
Secret

no computation computation

storage databases, web applications, mobile
applications, machine learning, etc.

encryption ??

(encrypted FS/email)

Current systems strategy

Prevent attackers from breaking into servers

server

clients

Secret
Secret

Lots of existing work

 Checks at the operating-system level

 Checks at the network level

 Language-based enforcement of a security policy

 Static or dynamic analysis of application code

 Trusted hardware

…

Data still leaks even with

these mechanisms

attackers eventually break in!

because

accessed private data
according to

hackers

cloud employees insiders: legitimate
server access!

government

increasingly many companies
store data on external clouds

Reason they succeed: Attacker:

software is complex

e.g., physical access

Attacker examples

My work

Systems that protect confidentiality even against
attackers with access to all server data

server

client

My approach

Servers store, process, and compute on
 encrypted data

??

Result

Secret
Secret

Secret
Secret

in a practical way

Strawman:
Result

Computing on encrypted data in cryptography

Fully homomorphic encryption (FHE) [Gentry’09]

 prohibitively slow, e.g., slowdown

My work: practical systems

[Rivest-Adleman-Dertouzos’78]

 X 1,000,000,000

real-world
performance

large class of
real

applications

meaningful
security

+ +

practical
systems

My contributions

CryptDB [SOSP’11][CACM’12]
DB

server

Server under attack:

web app
server

Mylar [NSDI’14]

PrivStats [CCS’11]

[Usenix Security’09] mobile app server

Functional encryption [STOC’13] [CRYPTO’13]

mOPE, adjJOIN
[Oakland’13]

multi-key search

VPriv

Functional
encryption

Databases:

Web apps:

Mobile
apps:

In general:

DB
server

System:

Theory:

one generic
scheme (FHE)

strawman:

Combine systems and cryptography

1. identify core operations needed

2. multiple specialized encryption schemes

systems crypto
3. Design and
build system

New schemes:

 mOPE, adjJOIN for CryptDB

 multi-key search for Mylar

My contributions

CryptDB
DB

server

Server under attack:

web app
server

Mylar

PrivStats
mobile app server VPriv

Functional
encryption

Databases:

Web apps:

Mobile
apps:

DB
server

System:

Functional encryption In general:

Theory:

First practical database system (DBMS) to process

most SQL queries on encrypted data

CryptDB
[SOSP’11: Popa-Redfield-Zeldovich-Balakrishnan] CDB is really awesome,

make sure you
emphasize all the cool
points

 Theory work:

 General computation: FHE
 very strong security: forces slowdown - many queries

must always scan and return the whole DB
 prohibitively slow (109x)

Related work

[Hacigumus et al.’02][Damiani et al.’03][Ciriani et al’09]

[Amanatidis et al.’07][Song et al.’00][Boldyreva et al.’09]

 Systems work:
 no formal confidentiality guarantees
 restricted functionality
 client-side filtering

[Gentry’09]

 Specialized schemes

Setup

under passive attack

Application

trusted client-side

DB server

Use cases:

 Outsource DB to the cloud (DBaaS)

 e.g. Encrypted BigQuery

 Local cluster: hide DB content from sys. admins.

Setup

transformed
query plain query

under passive attack

Application

decrypted
results

encrypted
results

 process queries to
completion on encrypted
 DB

Active later and app
Not disclaimers

DB server

encrypted DB
Proxy

Secret
Secret

computation on
encrypted data ≈

regular computation

Related work is not
achieving my purpose, plus
robert did not like the
yellow box

 Stores schema
 and master key
 No query execution

trusted client-side

col1/rank col2/name

table1/emp

SELECT * FROM emp

SELECT * FROM table1

x2ea887

col3/salary

60

100

800

100

Randomized encryption
(RND) - semantic

Example
Application

Proxy

x95c623

x4be219

x17cea7

x2ea887

x95c623

x4be219

x17cea7

col1/rank col2/name

table1/emp

SELECT * FROM emp

WHERE salary = 100

x934bc1

x5a8c34

x5a8c34

x84a21c

SELECT * FROM table1

WHERE col3 = x5a8c34

? x5a8c34

x5a8c34

? x5a8c34

x5a8c34

x4be219

x95c623

x2ea887

x17cea7

col3/salary

60

100

800

100

Randomized encryption
(RND)

Deterministic
encryption (DET)

Example
Application

Proxy

col1/rank col2/name

table1 (emp)

x934bc1

x5a8c34

x5a8c34

x84a21c

x578b34

x638e5

4
x122eb4

x9eab8

1

SELECT cdb_sum(col3)

FROM table1

x72295

a

col3/salary

60

100

800

100

Deterministic
encryption (DET) SELECT sum(salary)

FROM emp

“Summable”
encryption (HOM) -

semantic

1060

Example
Application

Proxy

1. Use SQL-aware set of efficient encryption

schemes

Techniques

2. Adjust encryption of data based on queries

3. Query rewriting algorithm

(meta technique!)

Most SQL can be implemented with
a few core operations

1. SQL-aware encryption schemes

e.g., =, !=, IN,
GROUP BY,
DISTINCT

Scheme

 RND

 HOM

 DET

 SEARCH

 JOIN

OPE

Function

data moving

addition

equality

join

word
search

order

Constructio
n

AES in UFE

AES in CMC

Paillier

our new
scheme

Song et al.,‘00

e.g., >, <, ORDER BY,
ASC, DESC, MAX,
MIN, GREATEST,
LEAST

restricted ILIKE

e.g., SUM, +

 our new scheme
[Oakland’13]

e.g., SELECT,
UPDATE, DELETE,
INSERT, COUNT

x < y Enc(x) < Enc(y)

reveals
only repeat

pattern

Security

reveals
only

order

≈ semantic
security

SQL operations:

How to encrypt each data item?

1. Support queries

2. Use most secure encryption schemes

Leaks order!

rank

ALL?

col1-
RND

col1-
HOM

col1-
SEARCH

col1-
DET

col1-
JOIN

col1-
OPE

‘CEO’

‘worker’

Goals:

Challenge: may not know queries ahead of time

Onion

 value

 OPE

DET

RND

Onion of encryptions

+
functionality

+
security

Adjust encryption: strip off layer of the onion

int value

HOM

Onion Add

Onions of encryptions

 value
 JOIN

DET
RND

Onion Equality

Onion Search

Same key for all items in a column for same onion layer

OR
each
value

 value

OPE

RND

Onion Order
text value
SEARCH

3 columns 1 column

Onion evolution

 If needed, adjust onion level

 Proxy gives decryption key to server

 Proxy remembers onion layer for columns

 Start out the database with the most secure
encryption scheme

Lowest onion level is never removed

Example

SELECT * FROM emp WHERE rank = ‘CEO’

emp:

rank name salary

‘CEO’

‘worker’

 ‘CEO’

JOIN
DET
RND

Onion Equality

col1-
OnionEq

col1-
OnionOrder

col1-
OnionSearch

col2-
OnionEq

table 1:

…

…

…

Logical table:

Physical table:

RND

Example (cont’d)

UPDATE table1 SET col1-OnionEq =

 Decrypt_RND(key, col1-OnionEq)

 ‘CEO’

JOIN
DET
RND

SELECT * FROM table1 WHERE col1-OnionEq = xda5c0407

DET

Onion Equality

SELECT * FROM emp WHERE rank = ‘CEO’

col1-
OnionEq

col1-
OnionOrder

col1-
OnionSearch

col2-
OnionEq

table 1

…

…

Security threshold

Data owner can specify minimum level of security

CREATE TABLE emp (…, credit_card SENSITIVE integer, …)

RND, HOM, DET for unique fields

≈ semantic security

Security guarantee

Columns annotated as sensitive have semantic
security (or similar).

Encryption schemes exposed for each column are
the most secure enabling queries.

equality repeats

• Never reveals plaintext

common in practice

sum semantic no filter semantic

Limitations & Workarounds

 More complex operators, e.g., trigonometry

 Certain combinations of encryption schemes:

 e.g., salary + raise > 100K

Queries not supported:

 use query splitting, query rewriting

HOM

Implementation

CryptDB
SQL UDFs

 (user-defined

functions)

unmodified
DBMS query

results

SQL Interface

No change to the DBMS!

Application
CryptDB

Proxy

Largely no change to apps!

Evaluation

1. Does it support real queries/applications?

2. What is the resulting confidentiality level?

3. What is the performance overhead?

Real queries/applications

Application Encrypted
columns

phpBB 23

HotCRP 22

grad-apply 103

TPC-C 92

sql.mit.edu 128,840

cols with queries
not supported

0

0

0

0

1,094

SELECT 1/log(series_no+1.2) …

… WHERE sin(latitude + PI()) …

apps with
sensitive
columns

tens of
thousands
of apps

Confidentiality level

Application Encrypted
columns

phpBB 23

HotCRP 22

grad-apply 103

TPC-C 92

sql.mit.edu 128,840

Min level:
≈semantic

21

18

95

65

80,053

Min level:
DET/JOIN

1

1

6

19

34,212

Min level:
OPE

1

2

2

8

13,131

Most
columns at
semantic

Most columns at
OPE were less

sensitive

Final onion state

Performance

DB server throughput

CryptDB
Proxy

Encrypted
DB

Application 1

CryptDB:

Plain
database

Application 1

MySQL
:

CryptDB
Proxy

Application 2

Application 2
Latency

Hardware: 2.4 GHz Intel Xeon E5620 – 8 cores, 12 GB RAM

TPC-C performance

Throughput loss over MySQL: 26%

Latency (per query): 0.10ms MySQL vs. 0.72ms CryptDB

 0

 2000

 4000

 6000

 8000

 10000

 12000

 14000

Equality

Join
R
ange

D
elete

Insert

U
pd. set

U
pd. inc

Sum

Q
u
er

ie
s

/
se

c

MySQL

CryptDB

No cryptography at the DB server in the steady state!

Homomorphic
addition

Adoption

Encrypted BigQuery

sql.mit.edu

Úlfar Erlingsson,
head of security
research, Google

Encrypted version of the D4M Accumulo NoSQL engine

SEEED implemented on top of the SAP HANA DBMS

Users opted-in to run Wordpress over our CryptDB
source code

[http://code.google.com/p/encrypted-bigquery-client/]

http://css.csail.mit.edu/cryptdb/

“CryptDB was really eye-opening in establishing the practicality
of providing a SQL-like query interface to an encrypted database”

“CryptDB was [..] directly influential on the design and
implementation of Encrypted BigQuery.”

Demo

application

users

CryptDB
SQL queries on
encrypted DB

CryptDB
proxy

Attack to all servers?

DB
server

Secret

application

DB
server

users

CryptDB
proxy

CryptDB
proxy

CryptDB
proxy

Attack to all servers?

Secret

Secret

Secret Secret

Secret Secret

Mylar

web
application

DB
server

users

 Framework for building web applications

 Protects confidentiality against attacks to all servers

active

[NSDI’14: Popa-Stark-Valdez-Helfer-Zeldovich-Kaashoek-Balakrishnan]

Overview

web
application

DB

server

Plaintext data exists only in browsers

Secret Secret Secret Secret

 browser

Secret Secret

Secret

Computation in web applications

1. Mylar is a client-side application framework

 data sharing

 search

 meta technique! 2. Non client-side computation:

 Active attacker

 Multiple keys

Challenges

 key certification

 multi-key search

Applications
http://css.csail.mit.edu/mylar/

chat medical class website forum calendar photo sharing

Few developer annotations to secure an application,
modest overhead

My contributions

CryptDB [SOSP’11][CACM’12]
DB

server

Server under attack:

web app
server

Mylar [NSDI’14]

PrivStats [CCS’11]

[Usenix Security’09] mobile app server

Functional encryption [STOC’13] [CRYPTO’13]

mOPE, adjJOIN
[Oakland’13]

multi-key search

VPriv

Databases:

Web apps:

Mobile
apps:

 Proof of concept for general functions

DB
server

System:

Theory:

 Solved old open problem: reusable garbled circuits

System design principles

Server Clients

Secret

Assume all server data will leak!

Store, process, and compute on encrypted data.

Technique for practicality:
1. identify core operations
2. use an efficient encryption scheme for each

Genomics analytics and machine learning

Other systems computing on encrypted data:

Future work

Big data & compression

big data

encrypted big data

compressed
big data

compressed
big data

encrypted How to compute on it??

Other systems computing on encrypted data:

Future work

Genomics analytics and machine learning

Security beyond confidentiality:

Client-side security

Correctness of computation

Other systems computing on encrypted data:

Future work

Big data & compression

systems crypto

Genomics analytics and machine learning

Collaborators

 CryptDB:

 Mylar:

 PrivStats, VPriv:

 Functional encryption:

and others for other projects.

Catherine Redfield, Nickolai Zeldovich, Hari Balakrishan, Aaron Burrows

Steven Valdez, Jonas Helfer, Nickolai Zeldovich,
Frans M. Kaashoek, Hari Balakrishnan

Andrew Blumberg, Hari Balakrishnan, Frank H. Li

Shafi Goldwasser, Yael Kalai, Vinod
Vaikuntanathan, Nickolai Zeldovich

Security beyond confidentiality:

Client-side security

Correctness of computation

Other systems computing on encrypted data:

Future work

Big data & compression

systems crypto
THANK
YOU!

Genomics analytics and machine learning

