Supervised Learning

@ Given training data {(x1,¥1),---, (Xn,Yn)}

@ N input/output pairs; x; - input, y; - output/label

(CS5350/6350) K-NN and DT August 25, 2011 2/20

Supervised Learning

@ Given training data {(x1,¥1),.--, (Xn,Yn)}
@ N input/output pairs; x; - input, y; - output/label

@ X; is a vector consisting of D features

@ Also called attributes or dimensions
9@ Features can be discrete or continuous
9@ Xjm denotes the m-th feature of x;

(CS5350/6350) K-NN and DT August 25, 2011 2/20

Supervised Learning

@ Given training data {(x1,¥1),.--, (Xn,Yn)}
@ N input/output pairs; x; - input, y; - output/label

@ X; is a vector consisting of D features

@ Also called attributes or dimensions
9@ Features can be discrete or continuous
9@ Xjm denotes the m-th feature of x;

@ Forms of the output:
o y; €{1,...,C} for classification; a discrete variable
@ y. € R for regression; a continuous (real-valued) variable

(CS5350/6350) K-NN and DT August 25, 2011 2/20

Supervised Learning

@ Given training data {(x1,¥1),.--, (Xn,Yn)}
@ N input/output pairs; x; - input, y; - output/label

@ X; is a vector consisting of D features

@ Also called attributes or dimensions
9@ Features can be discrete or continuous
9@ Xjm denotes the m-th feature of x;

@ Forms of the output:
o y; €{1,...,C} for classification; a discrete variable
@ y. € R for regression; a continuous (real-valued) variable

@ Goal: predict the output y for an unseen test example x

@ This lecture: Two intuitive methods

@ K-Nearest-Neighbors
@ Decision Trees

(CS5350/6350) K-NN and DT August 25, 2011 2/20

K-Nearest Neighbor (K-NN)

@ Given training data D = {(x1,¥1),---,(Xn,¥Yy)} and a test point

@ Prediction Rule: Look at the K most similar training examples

A

v

(CS5350,/6350) K-NN and DT August 25, 2011 3/ 20

K-Nearest Neighbor (K-NN)

@ Given training data D = {(x1,¥1),---,(Xn,¥Yy)} and a test point

@ Prediction Rule: Look at the K most similar training examples

A

v

o For classification: assign the majority class label (majority voting)
o For regression: assign the average response

(CS5350,/6350) K-NN and DT August 25, 2011 3/ 20

K-Nearest Neighbor (K-NN)

@ Given training data D = {(x1,¥1),---,(Xn,¥Yy)} and a test point

@ Prediction Rule: Look at the K most similar training examples

A

s, " A
e 00 I/: \
.n....":";n o
o.. ot \\a Ak
&

v

o For classification: assign the majority class label (majority voting)
o For regression: assign the average response

@ The algorithm requires:

@ Parameter K: number of nearest neighbors to look for

@ Distance function: To compute the similarities between examples

(CS5350,/6350) K-NN and DT August 25, 2011 3/ 20

K-Nearest Neighbor (K-NN)

@ Given training data D = {(x1,¥1),---,(Xn,¥Yy)} and a test point

@ Prediction Rule: Look at the K most similar training examples

A

v

o For classification: assign the majority class label (majority voting)
o For regression: assign the average response

@ The algorithm requires:

@ Parameter K: number of nearest neighbors to look for
@ Distance function: To compute the similarities between examples

@ Special Case: 1-Nearest Neighbor

(CS5350,/6350) K-NN and DT August 25, 2011 3/ 20

K-Nearest Neighbors Algorithm

@ Compute the test point’s distance from each training point

(CS5350/6350) K-NN and DT August 25, 2011 4 /20

K-Nearest Neighbors Algorithm

@ Compute the test point’s distance from each training point

@ Sort the distances in ascending (or descending) order

(CS5350/6350) K-NN and DT August 25, 2011 4 /20

K-Nearest Neighbors Algorithm

@ Compute the test point’s distance from each training point
@ Sort the distances in ascending (or descending) order

@ Use the sorted distances to select the K nearest neighbors

(CS5350/6350) K-NN and DT August 25, 2011 4 /20

K-Nearest Neighbors Algorithm

@ Compute the test point’s distance from each training point
@ Sort the distances in ascending (or descending) order
@ Use the sorted distances to select the K nearest neighbors

@ Use majority rule (for classification) or averaging (for regression)

(CS5350/6350) K-NN and DT August 25, 2011 4 /20

K-Nearest Neighbors Algorithm

@ Compute the test point’s distance from each training point
@ Sort the distances in ascending (or descending) order
@ Use the sorted distances to select the K nearest neighbors

@ Use majority rule (for classification) or averaging (for regression)
Note: K-Nearest Neighbors is called a non-parametric method

@ Unlike other supervised learning algorithms, K-Nearest Neighbors doesn’t
learn an explicit mapping f from the training data

(CS5350/6350) K-NN and DT August 25, 2011 4 /20

K-Nearest Neighbors Algorithm

@ Compute the test point’s distance from each training point
@ Sort the distances in ascending (or descending) order
@ Use the sorted distances to select the K nearest neighbors

@ Use majority rule (for classification) or averaging (for regression)

Note: K-Nearest Neighbors is called a non-parametric method

@ Unlike other supervised learning algorithms, K-Nearest Neighbors doesn’t
learn an explicit mapping f from the training data

@ It simply uses the training data at the test time to make predictions

(CS5350/6350) K-NN and DT August 25, 2011 4 /20

K-NN: Computing the distances

@ The K-NN algorithm requires computing distances of the test example from
each of the training examples

(CS5350,/6350) K-NN and DT August 25, 2011 5/ 20

K-NN: Computing the distances

@ The K-NN algorithm requires computing distances of the test example from
each of the training examples

@ Several ways to compute distances

@ The choice depends on the type of the features in the data

(CS5350,/6350) K-NN and DT August 25, 2011 5/ 20

K-NN: Computing the distances

@ The K-NN algorithm requires computing distances of the test example from
each of the training examples

@ Several ways to compute distances
@ The choice depends on the type of the features in the data

@ Real-valued features (x; € RP): Euclidean distance is commonly used

D
i) = | S (tim = xm)2 = \/Ixll2 + [l 2 = 2xT %,
m=1

(CS5350,/6350) K-NN and DT August 25, 2011 5/ 20

K-NN: Computing the distances

@ The K-NN algorithm requires computing distances of the test example from
each of the training examples

@ Several ways to compute distances
@ The choice depends on the type of the features in the data

@ Real-valued features (x; € RP): Euclidean distance is commonly used

D
i) = | S Gt — xm)? = /Il 2+ [l 2 — 2x7 %,

m=1

@ Generalization of the distance between points in 2 dimensions

(CS5350,/6350) K-NN and DT August 25, 2011 5/ 20

K-NN: Computing the distances

@ The K-NN algorithm requires computing distances of the test example from
each of the training examples

@ Several ways to compute distances
@ The choice depends on the type of the features in the data

@ Real-valued features (x; € RP): Euclidean distance is commonly used

D
1) = | S Gt — 2m)? = /10l 2 + 1112 — 2x7 %,

m=1
@ Generalization of the distance between points in 2 dimensions

@ ||x;|| = \/Zgzl x2 is called the norm of x;

@ Norm of a vector x is also its length

(CS5350,/6350) K-NN and DT August 25, 2011 5/ 20

K-NN: Computing the distances

@ The K-NN algorithm requires computing distances of the test example from
each of the training examples

@ Several ways to compute distances
@ The choice depends on the type of the features in the data

@ Real-valued features (x; € RP): Euclidean distance is commonly used

D
1) = | S Gt — 2m)? = /10l 2 + 1112 — 2x7 %,

m=1
@ Generalization of the distance between points in 2 dimensions

@ ||x;|| = \/Zgzl x2 is called the norm of x;

@ Norm of a vector x is also its length

Ty. _ \D - .
@ X; Xj = > 1 XimXjm is called the dot (or inner) product of x; and x;
@ Dot product measures the similarity between two vectors (orthogonal vectors

have dot product=0, parallel vectors have high dot product)

(CS5350,/6350) K-NN and DT August 25, 2011 5/ 20

K-NN: Feature Normalization

@ Note: Features should be on the same scale

@ Example: if one feature has its values in millimeters and another has in
centimeters, we would need to normalize

(CS5350,/6350) K-NN and DT August 25, 2011 6 / 20

K-NN: Feature Normalization

@ Note: Features should be on the same scale

@ Example: if one feature has its values in millimeters and another has in
centimeters, we would need to normalize

@ One way is:
o Replace xim by zim = (X’mo_;x’“) (make them zero mean, unit variance)

m

(CS5350,/6350) K-NN and DT August 25, 2011 6 / 20

K-NN: Feature Normalization

@ Note: Features should be on the same scale

@ Example: if one feature has its values in millimeters and another has in
centimeters, we would need to normalize

@ One way is:
o Replace xim by zim = (X’mo_;x’“) (make them zero mean, unit variance)

- N ..
@ Xm = %Zi:l Xim: empirical mean of m™ feature

N - . . .
@ 02 = %2/21()% — Xm)?: empirical variance of m®" feature

(CS5350,/6350) K-NN and DT August 25, 2011 6 / 20

K-NN: Some other distance measures

@ Binary-valued features
@ Use Hamming distance: d(x;, xj) = 22:1 I(Xim # Xjm)

@ Hamming distance counts the number of features where the two examples
disagree

@ Mixed feature types (some real-valued and some binary-valued)?

@ Can use mixed distance measures

o E.g., Euclidean for the real part, Hamming for the binary part

@ Can also assign weights to features: d(x;, ;) = 22:1 Wi d(Xim, Xjm)

(CS5350,/6350) K-NN and DT August 25, 2011 7/ 20

Choice of K - Neighborhood Size

K =1 K=3 K =31

' 4 - 2 . ° L4 e ° o o e o L]
e goe gg%. g o S g0 gg%. g o S oo ggte, g o
H H H

@ Small K

@ Creates many small regions for each class
@ May lead to non-smooth) decision boundaries and overfit

(CS5350/6350) K-NN and DT

August 25, 2011

8 /20

Choice of K - Neighborhood Size

K =1 K=3 K =31

° L] L]
-' |.-| ."- .l -. H :-- ."- '| -' H ;-- .,'- '. -'
H . H

@ Small K

@ Creates many small regions for each class
@ May lead to non-smooth) decision boundaries and overfit

@ Large K

o Creates fewer larger regions
@ Usually leads to smoother decision boundaries (caution: too smooth decision
boundary can underfit)

(CS5350,/6350) K-NN and DT August 25, 2011 8 / 20

Choice of K - Neighborhood Size

K =1 K=3 K =31

@ Small K

@ Creates many small regions for each class
@ May lead to non-smooth) decision boundaries and overfit

@ Large K

o Creates fewer larger regions
@ Usually leads to smoother decision boundaries (caution: too smooth decision
boundary can underfit)

@ Choosing K

@ Often data dependent and heuristic based
@ Or using cross-validation (using some held-out data)
@ In general, a K too small or too big is bad!

(CS5350,/6350) K-NN and DT August 25, 2011 8 / 20

K-Nearest Neighbor: Properties

@ What's nice

o Simple and intuitive; easily implementable

(CS5350,/6350) K-NN and DT August 25, 2011 9 / 20

K-Nearest Neighbor: Properties

@ What's nice

o Simple and intuitive; easily implementable

@ Asymptotically consistent (a theoretical property)

@ With infinite training data and large enough K, K-NN approaches the best
possible classifier (Bayes optimal)

(CS5350,/6350) K-NN and DT August 25, 2011 9 / 20

K-Nearest Neighbor: Properties

@ What's nice

o Simple and intuitive; easily implementable

@ Asymptotically consistent (a theoretical property)

@ With infinite training data and large enough K, K-NN approaches the best
possible classifier (Bayes optimal)

@ What's not so nice..
@ Store all the training data in memory even at test time

@ Can be memory intensive for large training datasets
@ An example of non-parametric, or memory/instance-based methods
@ Different from parametric, model-based learning models

(CS5350,/6350) K-NN and DT August 25, 2011 9 / 20

K-Nearest Neighbor: Properties

@ What's nice
o Simple and intuitive; easily implementable

@ Asymptotically consistent (a theoretical property)

@ With infinite training data and large enough K, K-NN approaches the best
possible classifier (Bayes optimal)

@ What's not so nice..
@ Store all the training data in memory even at test time

@ Can be memory intensive for large training datasets
@ An example of non-parametric, or memory/instance-based methods
@ Different from parametric, model-based learning models

o Expensive at test time: O(ND) computations for each test point

@ Have to search through all training data to find nearest neighbors
@ Distance computations with N training points (D features each)

(CS5350,/6350) K-NN and DT August 25, 2011 9 / 20

K-Nearest Neighbor: Properties

@ What's nice

o Simple and intuitive; easily implementable

@ Asymptotically consistent (a theoretical property)

@ With infinite training data and large enough K, K-NN approaches the best
possible classifier (Bayes optimal)

@ What's not so nice..
@ Store all the training data in memory even at test time

@ Can be memory intensive for large training datasets
@ An example of non-parametric, or memory/instance-based methods
@ Different from parametric, model-based learning models

o Expensive at test time: O(ND) computations for each test point

@ Have to search through all training data to find nearest neighbors
@ Distance computations with N training points (D features each)

@ Sensitive to noisy features

(CS5350,/6350) K-NN and DT August 25, 2011 9 / 20

K-Nearest Neighbor: Properties

@ What's nice

o Simple and intuitive; easily implementable

@ Asymptotically consistent (a theoretical property)

9@ With infinite training data and large enough K, K-NN approaches the best
possible classifier (Bayes optimal)

@ What's not so nice..
@ Store all the training data in memory even at test time

@ Can be memory intensive for large training datasets
@ An example of non-parametric, or memory/instance-based methods
@ Different from parametric, model-based learning models

o Expensive at test time: O(ND) computations for each test point

@ Have to search through all training data to find nearest neighbors
@ Distance computations with N training points (D features each)

@ Sensitive to noisy features

@ May perform badly in high dimensions (curse of dimensionality)

@ In high dimensions, distance notions can be counter-intuitive!

(CS5350,/6350) K-NN and DT August 25, 2011 9 / 20

Not Covered (Further Readings)

@ Computational speed-ups (don't want to spend O(ND) time)
@ Improved data structures for fast nearest neighbor search

o Even if approximately nearest neighbors, yet may be good enough

@ Efficient Storage (don't want to store all the training data)
@ E.g., subsampling the training data to retain “prototypes”

@ Leads to computational speed-ups too!

@ Metric Learning: Learning the “right” distance metric for a given dataset

(CS5350,/6350) K-NN and DT August 25, 2011 10 /20

