CS4670/5670 Lectures, Spring 2015

Many of the following slides are modified from the excellent class notes of similar courses offered in other schools by Prof Yung-Yu Chuang, Fredo Durand, Alexei Efros, William Freeman, James Hays, Svetlana Lazebnik, Andrej Karpathy, Fei-Fei Li, Srinivasa Narasimhan, Silvio Savarese, Steve Seitz, Noah Snavely, Richard Szeliski, and Li Zhang. The instructor is extremely thankful to the researchers for making their notes available online. Please feel free to use and modify any of the slides, but acknowledge the original sources where appropriate.

The following syllabus is tentative, and subject to change.

This schedule is tentative. All dates for lectures and unreleased assignments are provisional.

Class Date Topic/notes Readings Assignments, etc.
0 Jan 21 Introduction and Overview [ppt|pdf]
Szeliski 1  
1 23 No class    
2 26 Image filtering [ppt|pdf]
Szeliski 3.1, 3.2  
3 28 Image filtering [ppt|pdf]
Szeliski 3.1, 3.2  
4 30 Edge detection and Image Resampling [ppt|pdf]
Szeliski 4.2  
5 Feb 2 Image Resampling and PA 1 (Intelligent Scissors) [ppt|pdf]
Szeliski 2.3.1 and 3.5 PA1 out
6 4 Image Interpolation [ppt|pdf]
Szeliski 2.3.1 and 3.5  
7 6 Feature detection [ppt|pdf]
Szeliski 4.1  
8 9 Harris corner detection [ppt|pdf]
Szeliski 4.1 HW1 out
9 11 Invariance, blob detection, and MOPS [ppt|pdf]
Szeliski 4.1  
10 13 Feature descriptors [ppt|pdf]
Szeliski 4.1 PA1 due 2/12 (9:00am)
Feb 16 Winter Break
11 18 Feature matching and transformations [ppt|pdf]
Szeliski 6.1  
12 20 Image transformations [ppt|pdf]
Szeliski 3.2  
13 23 Image alignment and PA 2 [ppt|pdf]
Szeliski A.2, 6.1 PA2 out
14 25 RANSAC and Hough Transforms [ppt|pdf]
Szeliski 6.1  
15 27 Mid-term review   HW1 due 2/26
16 Mar 2 Cameras [ppt|pdf]
Szeliski 2.1.3-2.1.6  
17 4 Projection I [ppt|pdf]
Szeliski 2.1.3-2.1.6  
18 6 Post-Prelim    
Mar 5 (Thu) Prelim: 7:30 pm, Location: Call Auditorium, Kennedy Hall
19 9 Projection II [ppt|pdf]
Szeliski 9 PA2 due
20 11 Panoramas [ppt|pdf]
Szeliski 9 PA3 out
21 13 Single-view modeling I [ppt|pdf]
Szeliski 9  
22 16 Single-view modeling II [ppt|pdf]
Szeliski 9  
23 18 Two-view stereo I [ppt|pdf]
Szeliski 7.2  
24 20 Two-view stereo II [ppt|pdf]
Szeliski 7.2  
25 23 Two-view stereo III [ppt|pdf]
Szeliski 7.1-7.4  
26 25 Photometric stereo [ppt|pdf]
Szeliski 12.1.1 PA3 due
27 27 Dragon Day (No class. Support the Dragon!)    
Mar 30 Spring Break
Apr 1 Spring Break
Apr 3 Spring Break
28 6 Multi-view stereo [ppt|pdf]
Szeliski 11.6 HW2 out
29 8 Structure from Motion [ppt|pdf]
Szeliski 7.1-7.4 PA4 out
30 10 Intro to Recognition [ppt|pdf]
Szeliski 14  
31 13 Recognition Basics [ppt|pdf]
Karpathy Notes: classification  
32 15 Recognition Basics 2 [ppt|pdf]
Karpathy Notes: linear classification  
33 17 Backprop [ppt|pdf]
Karpathy Notes: optimization, optimization 2  
34 20 CNNs 1 [pdf]
Karpathy Notes: Neural Nets 1, 2  
35 22 CNNs 2 [pdf]
Karpathy Notes: Neural Nets 3, CNNs PA4 due, PA5 out
36 24 CNNs 3 [pdf]
Karpathy Notes: CNNs  
37 27 Charter Day (no class)    
38 29 CNNs 4 (slides posted together with previous lecture)   HW2 due
39 May 1 Large-scale Datasets [pdf]
   
40 4 Recognition Wrapup [pdf]
  PA5 due
41 6 Conclusions    
May 14 Final Exam: 9am, OLH155: Olin Hall 155


Page maintained by Kavita Bala (kb@cs.cornell.edu)