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Abstract
Programming concurrent, distributed systems is hard—es-
pecially when these systems mutate shared, persistent state
replicated at geographic scale. To enable high availability
and scalability, a new class of weakly consistent data stores
has become popular. However, some data needs strong con-
sistency. To manipulate both weakly and strongly consistent
data in a single transaction, we introduce a new abstraction:
mixed-consistency transactions, embodied in a new embed-
ded language, MixT. Programmers explicitly associate consis-
tency models with remote storage sites; each atomic, isolated
transaction can access a mixture of data with different con-
sistency models. Compile-time information-flow checking,
applied to consistency models, ensures that these models are
mixed safely and enables the compiler to automatically par-
tition transactions. New run-time mechanisms ensure that
consistency models can also be mixed safely, even when the
data used by a transaction resides on separate, mutually un-
aware stores. Performance measurements show that despite
their stronger guarantees, mixed-consistency transactions
retain much of the speed of weak consistency, significantly
outperforming traditional serializable transactions.

CCS Concepts • Information systems → Distributed
database transactions; • Software and its engineering
→ Consistency; Domain specific languages;
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1 Introduction
Programmers often face the task of writing concurrent, dis-
tributed systems that share mutable, persistent state across
geographic distances. Traditional tools, such as strictly seri-
alizable atomic database transactions and distributed locking,
do not scale across continents; the speed of light simply isn’t
fast enough for the cross-continental round trips needed by
traditional transactions.

New tools have evolved to fill the gap, relying on weaker
consistency to enable lower latencies and higher availability.
Evidence from both industry [8, 20, 31, 35, 46] and academia
[13, 27, 51] suggests that weak consistency is viable, espe-
cially when accompanied by familiar transactional abstrac-
tions, clear consistency guarantees, and efficient operations
over persistent data.
But problems remain. While weaker consistency models

suffice for certain application data, other data needs stronger
consistency—single applications might need multiple levels
of consistency. Running with a single consistency level, as
seen in prior systems [7, 15, 29, 56, 58, 59]), can be slow
[5]; all operations within a transaction must be upgraded to
the consistency required by the most sensitive among them,
introducing unnecessary delay and contention for objects
that only require weak consistency. This is a fundamental
problem: we need a general way to construct transactions
that access data at multiple consistency levels, without com-
promising strong consistency where it is needed.

These concerns lead us to a key observation: consistency
is a property of information itself and not only of opera-
tions that use this information. Further, the consistency with
which we manipulate information should always match or
exceed the consistency at which we store it. Based on this
observation, we introduce mixed-consistency transactions.
Each mixed-consistency transaction can operate over any
and all data, even if this data is stored with varying con-
sistency guarantees. Despite this expressivity, we maintain
the consistency guarantees required by each data object
by preventing less-consistent information from influencing
more-consistent data. Mixed-consistency transactions are
atomic: no operations inside a transaction become visible
outside the transaction until all operations do.
In implementing mixed-consistency transactions, we un-

cover a further complication: engineers at major companies
frequently find themselves writing distributed programs that
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mix accesses to data from multiple existing storage systems,
each with distinct consistency guarantees [6]. It is unrealistic
to assume that data can be freely migrated into ever-newer
and more capable storage systems, or that all applications
can be written against a single unified system; we therefore
want to operate against multiple backing stores within the
same mixed-consistency transaction.

Combining these challenges, we present MixT, a domain-
specific language for mixed-consistency transactions. In
MixT, persistent data and operations at various stores can be
accessed with strong guarantees (§3). To ensure the seman-
tic guarantees of mixed-consistency transactions, weaker-
consistency information should avoid influencing stronger-
consistency information. To prevent this influence, we view
consistency as a property of data, treating consistency as
a form of data integrity [4] expressed as labels on types in
the language. Static analysis of information flow [47] then
ensures that consistency guarantees cannot be violated by
exposure to objects with weaker consistency.

The MixT language implements mixed-consistency trans-
actions using three novel mechanisms (§4–5):

• Compile-time information flow control ensures that
the consistency of data is never weaker than the level
described by its storage location.

• Using information flow analysis, the code of each trans-
action is automatically split into sub-transactions for
each consistency level, while preserving atomicity.

• A lightweight run-time mechanism ensures transac-
tional atomicity, even between sub-transactions exe-
cuting on multiple mutually unaware backing stores.

MixT works on top of stores’ existing transactional mech-
anisms, without changing the representation of existing data,
allowing existing applications to operate unmodified along-
side MixT applications. And MixT can be easily adapted to
a new store, by inserting the store’s consistency level into
MixT’s consistency lattice and providing bindings to custom
data operations specific to that store.

As we show experimentally (§8), mixed-consistency trans-
actions performwell. MixT enables significant speedup vs. se-
rializable transactions by exploiting weak consistency, with-
out losing the guarantees sacrificed by current systems when
consistency levels mix.

2 Motivation
2.1 A Running Example
Suppose we are building a scalable group messaging ser-
vice called Message Groups. This service allows users to join
groups and to post messages to all members of any group
they have joined. For low-latency communication, applica-
tion servers are deployed across the world, with data repli-
cated across these servers.

Communication latency between these servers makes it
difficult to keep the replicated data fully consistent with-
out degrading user experience. Fortunately, there is no need
to enforce a global, total order on displayed messages. It is
only necessary to respect potential causality, so that mes-
sages precede their responses. We therefore geo-replicate
user inboxes at a weaker consistency level, causal+ consis-
tency, which respects causality but does not guarantee a total
order [39].

However, other data in this application requires stronger
consistency. The membership of users in various groups
should be consistent worldwide so that all servers agree on
who is supposed to receive which messages. Therefore, the
set of members of each group is placed at a store supporting
linearizable transactions, which ensure serializability and
external consistency [12, 25, 45]. Latency to this single store
is necessarily much higher for many users than latency to
their own inboxes.

2.2 The Need For Mixed-Consistency Transactions
To see the pitfalls inherent to this naive mixing of consis-
tency levels, consider howMessage Groups might implement
logged message delivery, using the code in Figure 1. There
is a linearizable list of members named users to whom a
message post should be sent. Each member in users has
a causally consistent inbox. For maintenance purposes, the
sending of messages is logged (via log.append). The log
does not even require causal consistency; instead, we might
replicate it at eventual consistency [55], which requires only
that reads converge after a sufficiently long quiescence. All
mutations, including append and insert, are replicated across
continents.
However, the simple loop in Figure 1 does not address

concurrent modification to the data. Suppose that a thread
concurrently modifies users while another thread is exe-
cuting Figure 1. Without care, this concurrent modification
might invalidate Figure 1’s iterator; at best, it is unclear
whether the new member will receive a message. As written,
there is no reason to expect the result of this execution to be
atomic, isolated, or even complete.

Clearly, some form of concurrency control is needed. We
might change over to a recent system such as Quelea [51]
or Salt [56], which provide both fully atomic transactions
and multiple consistency levels. But these systems can only
execute a given transaction at a single consistency level. In
these systems, all data in theMessage Groups example would
effectively be upgraded to linearizability. There would be
no performance benefit from having a weakly consistent
inbox and log; message delivery performance would likely
be unacceptable.
Alternatively, we could partition our data onto three dis-

tinct systems, each optimized for the appropriate consistency
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var iterator = users,

while (iterator.isValid()) {

log.append(iterator->v.inbox.insert(post)),

iterator = iterator->next

}

Figure 1. Naive code for sending messages. Corrected MixT
code is found in Figure 4.

if (a.inbox.size() >= 1000000 &&

b.inbox.size() < 1000000) { // weak condition
a.declare_winner() // strong effect

} else

if (a.inbox.size() < 1000000 &&

b.inbox.size() >= 1000000) {

b.declare_winner()

}

Figure 2. Contest logic inside the mail delivery transaction.
Corrected MixT code is found in Figure 13.

level. If we had a causal store such as TaRDiS [13] that sup-
ports interactive atomic transactions, we could start a sep-
arate simultaneous transaction at each system. This would
achieve the desired performance, but the implicit interactions
between these transactions could create bugs. For example,
if another process updated the membership list while mail
was being sent, the linearizable transaction might abort and
roll back, restarting the loop. Without code to explicitly roll
back the other concurrent transactions—which may not even
always be possible—some users could then receive the same
message a second time.
Thus, this transaction cannot be naturally implemented

using each underlying store’s mechanisms in isolation. It
requires a new form of mixed-consistency, mixed-location
transaction not supported by any existing system, with new
run-time mechanisms for atomicity across different consis-
tency levels.

2.3 Mixing Consistency Breaks Strong Consistency
There is a reason that existing systems choose a single con-
sistency level for each transaction. Causal consistency and
linearizability offer well-defined consistency guarantees, but
trying to mix these levels in the same application can break
the guarantees that both levels claim to offer, even if all the
issues in the previous section were solved. Some transactions
simply are not safe to run under mixed consistency. To see
why, consider the following example.

Suppose we run a contest to advertise Message Groups.
Users are divided into two teams; team A sends messages
to mailbox a, and team B sends messages to mailbox b. The
first team to send 1,000,000 messages is declared the winner.

To implement this contest, we extend the existing trans-
action for delivering mail with a few lines of code shown
in Figure 2. After running the contest, we may be surprised
to discover that the code has not declared a unique winner;
both teams A and B are simultaneously declared the winner!
This code has a fundamental problem. To avoid slow-

ing down the core functionality of message delivery, the
guard condition uses data (the inbox sizes) stored with
only causal consistency. Since the guard is evaluated with
causal consistency, nothing guarantees that the function
declare_winner() is invoked only once. But the function
declare_winner() manipulates only data with linearizable
consistency; it is not designed to deal with the potential for
multiple re-executions. During a partial network partition,
every single message receipt to either team could cause the
winner to switch, as the causal replica receiving messages
for a may not be able to propagate events to the replica re-
ceiving messages for b (and vice-versa). This causes each
team to believe their inbox alone has reached the target size.
The essence of this mistake is that more-consistent data

(the declared winner) is influenced by less-consistent data
(the inbox size). This inappropriate influence means the de-
velopers of declare_winner() would have to add complex
code to ensure its assumptions hold under weak consistency
guarantees, even though declare_winner() does not access
weakly consistent data itself.

The issue of weakly consistent data influencing strongly
consistent computations is fundamental to the semantics
of consistency. Even within a linearizable transaction, the
influence of weakly consistent data on program control flow
can effectively weaken the isolation level of the entire trans-
action. MixT uses information flow analysis to flag such
influences at compile time, disallowing this example code.
As discussed in Section 6, MixT also allows intentional weak-
ening of this restriction.

3 MixT Transaction Language
We solve the problems introduced in the previous section
with MixT, a new domain-specific language (DSL). To sup-
port a variety of underlying stores in a uniform way, in-
cluding key–value stores, databases, and file systems, MixT
offers a high-level embedded transaction language that is
straightforward to adapt to new stores.

3.1 MixT Language Syntax
Figure 3 gives the surface syntax of the MixT language. Be-
cause MixT is embedded in C++, its syntax and semantics,
though different from those of its host language, are designed
to be unsurprising to C++ programmers.
MixT is relatively expressive; for example, it has control

structures like conditionals and loops. Despite supporting
real control structures, MixT transactions are fully atomic
when the underlying stores support atomic transactions. In
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x ∈ Var f ∈ Operation
⊕ ∈ Binop ⊖ ∈ Unop

(Location)m ::= x | ∗ e | e .x | e ->x

(Expr) e ::=m | e1 ⊕ e2 | ⊖ e | e0. f (e1, . . . , en)

(Stmt) s ::= var x = e |m = e | return e

| while (e) s | if (e) s1 else s2 | {s1, . . . , sn}

Figure 3.MixT surface syntax. Certain built-in operations
are omitted for clarity of exposition.

particular, all transaction effects become visible at once, and
transactions operate against stable snapshots at each store.
Like C++, the MixT language has mutable locations, which
can be either local variables or fields of objects.

Though they are not shown explicitly in Figure 3, handles
are a key abstraction of MixT. Handles behave like pointers
to remotely stored persistent data; they can be dereferenced
to access the underlying data (with the operators * and ->),
and they can be aliased by assignment.
Handles also support the invocation of operations on

data. Given a handle e0 to a receiver object, the expression
e0. f (e1, . . . , en) invokes a custom operation named f, pro-
vided by the underlying store of the receiver.1 Exactly which
operations are supported depends on the store. For example,
many stores provide specialized operations for manipulating
sets, but even SQL queries can be exposed as operations.

3.2 A MixT Example Program
As an example of MixT code used within a larger program,
the message delivery transaction of Section 2.2 is shown
in Figure 4. To distinguish MixT code from surrounding C++
code, MixT code is colored green, whereas C++ code is blue.
Most of this code should look familiar to a C++ pro-

grammer; outside the transaction, it merely defines classes
that contain library types, such as the MixT library type
RemoteList, as fields.
At the heart of MixT are transaction blocks, signified by

the mixt_method declaration. For example, at lines 8–14
is the now-familiar transaction for message delivery, ex-
pressed as a method add_post() of the C++ class group.
This method can be invoked from any context without the
need to explicitly start a transaction; its parameter post is
automatically inferred to be a string.

1 The store may specify whether its parameters should be treated as opaque
handles, arbitrary values, or dereferenced handles to other objects on this
store. The arguments e1, ..., en are passed as values by default, except
when the store requests otherwise, at which point they will be dereferenced
(resulting in a runtime error if these arguments refer to handles on the
wrong store).

1 class user {

2 Handle<set<string>, causal, supports<insert>> inbox;

3 };

5 class group {

6 RemoteList<Handle<user, causal>, linearizable> users;

7 Handle<Log, eventual, supports<append>> log;

8 mixt_method(add_post) (post) mixt_captures(users,log) (

9 var iterator = users,

10 while (iterator.isValid()) {

11 log.append(iterator->v.inbox.insert(post)),

12 iterator = iterator->next

13 }

14 )

15 };

Figure 4. MixT message delivery implementation (§4.2).
MixT code (lines 8–14) is colored green; C++ code is blue.

In this transaction, the expressions iterator, inbox,
users, and log are all handles for state on remote stores.
The type Handle<T, L, ...> is the C++ representation of
a MixT handle for data of type T, stored at consistency L. An
object of this class acts as an opaque representation of a per-
sistent resource. Any supported custom operations appear
in the third and following argument positions. For example,
inbox (line 2) is a set of strings, stored at causal consistency,
with a custom operation insert for adding new items to the
set. It is the job of the causal store to ensure that insert
operations from different clients are merged with causal
consistency.
MixT offers some useful data structures as library types.

For example, the type RemoteList, used at line 6, is a persis-
tent linked list that stores its spine at a specified consistency
level (here, linearizable).

3.3 MixT API
As much as possible, MixT operates as a shim above existing
stores, reusing their existing mechanisms for replication and
data consistency. It is straightforward to add support for a
new store, as long as it offers the necessary functionality;
one simply implements three interfaces, Handle, DataStore,
and TransactionContext, shown in Figure 5.
The Handle interface consists of a simple get/put/check

API for accessing underlying data, a set of routines for sup-
porting marshaling, and a set of routines for accessing and
using the store from which the Handle originated. Much
of this functionality can be automatically generated by the
MixT libraries at compile time; Figure 5 only includes rou-
tines the programmer must implement.
A DataStore serves as an entry point to the underly-

ing storage system; it is always associated with a specific
consistency label (level) and a specific implementation of
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class Handle<Type, Label, Operations...> {

Type get(TransactionContext);

void put(TransactionContext, Type);

bool isValid(TransactionContext);

Type clone(TransactionContext);

};

class DataStore<Label> {

TransactionContext beginTransaction();

};

class TransactionContext {

bool commit();

DataStore store();

};

Figure 5. Handle and DataStore interfaces.

class CausalStore : public DataStore<causal> {

template<typename T>

class CausalObj : CausalHandle<T> {...};

template<typename T>

mixt_operation(insert) (CausalObj<set<T>>&, T&) {...}

...

};

Figure 6. Implementing a causal store in a host C++ pro-
gram.

Handle. The only requirement from the DataStore API is
the method beginTransaction(), which must create a new
transaction represented by a TransactionContext object.
The TransactionContext can be used to commit or abort
the transaction interactively, and can be extended to supply
store-specific transaction interactions options. A DataStore
may also implement any number of custom operations, rang-
ing in complexity from creating new remote objects to pro-
cessing SQL statements.
Figure 6 illustrates how a causal store with a custom op-

eration insert can be implemented. Custom operations are
declared within classes implementing DataStore by using
the mixt_operation keyword. In this example, the opera-
tion insert is declared to take a remote set and a local T,
matching the types on which it was invoked in add_post
(Figure 4). Unlike mixt_method, mixt_operation does not
declare a C++ method, and can only be called from within a
MixT transaction. Within a transaction, operations dynami-
cally dispatch to the appropriate Handle and DataStore; to
facilitate this dispatch, every Handle’s type also includes a
static list of operations which its implementation supports.

MixT custom operations provide a method-like syntax for
invoking operations directly on handles to remote data, as
with insert in Figure 4. It would be a mistake, however, to

imagine that they are limited only to “method-like” invoca-
tions directly on remote data; they are flexible enough to ex-
pose arbitrary database functionality directly to aMixT trans-
action. For example, one could create a Handle<DB>, with
matching mixt_operations for interfacing directly with the
underlying database’s raw API. If the database exposed more
stateful functionality, such as locks, a Handle<DBLock> could
be used to manage each individual lock.

4 Mixed-Consistency Transactions
Section 2 shows that even seemingly trivial code can require
the implementer to reason very carefully about the interac-
tions between different consistency levels in the presence
of possible transaction aborts. The complexity of this rea-
soning can easily become overwhelming. MixT tames this
complexity by providing semantics for mixed-consistency
transactions (§4.1). MixT’s transaction support can provide
atomic execution for Section 2.1’s message delivery transac-
tion (§4.5), and its type system will detect the fundamental
errors of Section 2.3’s contest (§4.3). A more detailed look at
MixT’s transactions comes in Section 5.

4.1 Defining Mixed Consistency
Wenow address a fundamental question: what are the desired
semantics of mixed consistency? We choose the standard
approach used for shared-memory consistency [25], in which
a consistency model is characterized as a trace property: that
is, as the (possibly infinite) set of execution traces that do
not violate the consistency model’s guarantees. In principle,
we can then verify whether a program execution satisfies a
given model by checking whether its trace is in the set.
In mixed-consistency transactions, objects labeled with

some consistency model should enjoy at least the guarantees
of that model. For example, in a system with both eventual
consistency and linearizability, traces involving any subset
of objects should adhere at least to eventual consistency, and
traces involving only its linearizable objects should respect
linearizability. Put another way, an observer who accesses
only linearizable objects should be unable to determine that
there are any eventually consistent operations in the system.

The strength of consistencymodels can be characterized in
terms of the possible behaviors of programs. The behaviors
of the programs form a set of admitted tracesT . The meaning
of a consistency level ℓ is given by its consistency model, a
set of traces Tℓ ⊆ T . A model Tℓ is stronger than a model
Tℓ′ when Tℓ ⊆ Tℓ′ ; Tℓ provides more guarantees than Tℓ′ .
All consistency models must include the empty trace. We
assume there is a lattice of consistency levels L ordered by
strength. If a consistency level ℓ is stronger than or equal
to another, ℓ′, we write ℓ ⊑ ℓ′. Consistency models are
ordered by inclusion consistently with the ordering on L:
ℓ ⊑ ℓ′ ⇐⇒ Tℓ ⊆ Tℓ′ , Tℓ⊔ℓ′ = Tℓ ∪Tℓ′ , and Tℓ⊓ℓ′ = Tℓ ∩Tℓ′ .
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Each trace t ∈ T is a sequence of events e . An event e is a
5-tuple (a,o, ℓ,v, S) containing a, the action corresponding to
this event; o, the exact memory location or object referenced
by this event; ℓ, the consistency level of the store for this
event’s location; v , a tuple of any values processed by this
event; and S , the client session in which this event occurred.
Given such an event, we define consistency((a,o, ℓ,v, S)) =
ℓ. For example, the program x = 4; x = x + 1, wherein
x resides on a store with consistency ℓ, admits the trace
“(write, x , ℓ,(4), S); (read, x , ℓ, (4), S); (write, x , ℓ, (5), S)” when
executed in session S .

Given a trace t , the events relevant to a given consistency
level ℓ are those whose consistency level is at least as strong.
We write t ⇂ ℓ to denote the trace containing such events:

Definition 4.1 (Trace projection).
t ⇂ ℓ = [e | e ∈ t ∧ consistency(e) ⊑ ℓ]

Definition 4.2 (Mixed consistency). A trace t exhibits
mixed consistency if it satisfies every consistency model Tℓ
when projected onto that consistency level:

∀ℓ, t ⇂ ℓ ∈ Tℓ

This definition is sensible even when working with incom-
parable consistency models; because consistency models
form a lattice [51], there is always some minimum consis-
tency model onto which all events can be projected.

Definition 4.2 can also be adapted to transaction isolation
levels [3] by considering traces containing explicit events
that begin and end transactions. A full formalization is found
in the technical report [44].

4.2 Noninterference for Mixed Consistency
In Section 4.1, we proposed a definition formixed consistency
based on the approach used for shared-memory consistency.
But this approach can hide influence: common consistency
models, expressed in terms of reads and writes to shared
registers, are not strong enough to capture why each read or
write occurs. To capture this influence directly, we look to
noninterference, a semantic property common in the security
and privacy literature. Noninterference describes programs
as secure if, when given a policy lattice of security labels,
program behavior at one point in the policy lattice cannot
influence behavior at levels that are lower in the lattice or
incomparable [21, 47]. In particular, when using noninter-
ference to enforce privacy or confidentiality, two runs of a
program that differ only in secret inputs should have iden-
tical publicly observable behavior. Noninterference is the
correcntess condition normally associated with information
flow (Section 4.3).
We start by taking this traditional approach, replacing

secret with “weakly consistent” and public with “strongly
consistent;” in other words, we determine if any “weakly
consistent” data can influence any “strongly consistent” data

by comparing the possible runs of transactions. We cannot
simply compare pairs of runs, however, because systems built
using MixT are inherently concurrent and nondeterministic;
two runs may differ simply as a result of acceptable nondeter-
minism. We instead consider sets of possible runs generated
by keeping the deterministic program inputs fixed, but vary-
ing the nondeterministic choices made by the program. We
say that weakly consistent data has an improper influence
in this program if varying weakly consistent data introduces
new strongly consistent data into the set. Put another way,
varying weakly consistent data should only affect strongly
consistent values in ways already permitted by the inherent
nondeterminism of the system. This possibilistic notion of
information flow is called generalized noninterference [41].
Possibilistic security has been shown to be problematic

in its original setting of confidentiality, because information
can be leaked via refinement [52, 60]. In the context of con-
sistency and other integrity-like properties, it does not seem
to be a major concern [38].

4.3 Consistency as Information Flow
To enforce generalized noninterference, we treat consis-
tency as a form of information-flow integrity [4] and use an
information-flow type system [47] to outlaw bad programs.
Previous work [52] has shown that generalized noninterfer-
ence is soundly enforceable using this style of security type
system. In such a type system, values are associated with a
label drawn from a lattice, which in this case is a lattice of
consistency levels. The strongest possible consistency is the
lowest point in the lattice, denoted ⊥, and the weakest con-
sistency is⊤. To enforce consistency, information should not
be influenced by other information whose consistency is not
at least as strong. Therefore, as in other work on information
flow, legal information flow is upward in the lattice.
In the case of the buggy contest in Section 2.3, the trans-

action creates a banned information flow from the inbox
size (weak) to the declare_winner() operation (strong). In
information-flow terms, this is an implicit flow [47]. The type
system of MixT (Section 5.2) statically catches invalid flows,
whether implicit or explicit, and rejects unsafe transactions.

4.4 Transaction Splitting
We now turn to the difficult task of implementing noninter-
fering transactions against multiple backing databases. Con-
sider again themessage delivery code in Figure 4. This code is
noninterferent and is therefore safe in principle, but because
it involves three different consistency levels, it is nonetheless
quite difficult to implement, as discussed in Section 2.2.

MixT implements mixed-consistency transactions like this
one by automatically splitting their code into a single sub-
transaction per involved store. A key insight is that safe
splitting is always possible because information flow restric-
tions prevent weakly consistent data from affecting strongly
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consistent data either directly or indirectly within a transac-
tion. Hence, transactions can be split so that their stronger-
consistency parts are executed earlier. This allows each sub-
transaction to be safely re-executed in the case of a trans-
action abort, avoiding the pitfalls inherent to partitioning
data across systems outlined in Section 2.2. This splitting
does not automatically preserve atomicity, the subject of
Section 4.5.

In general, a split transaction consists of a sequence of syn-
tactically separate transaction phases. For each consistency
level in the transaction, there is a single phase for all oper-
ations with that consistency level. MixT determines which
data are communicated between phases, preserving only the
information necessary to execute subsequent phases.

For example, the message delivery transaction is split into
linearizable, causal, and eventual phases (in order of decreas-
ing strength of consistency guarantees), corresponding to
the consistency levels used by the transaction.

The most challenging aspect of transaction splitting is the
treatment of loops, whichmakes splitting quite different than
in previous work on automatic transaction splitting [10, 61].
Like all expressions, each loop’s condition must be evalu-
ated within a single phase, but the body of the loop might
contain statements that execute in different phases. A loop
spanning multiple consistency levels, such as in the message
delivery transaction, must therefore be re-executed for each
consistency level.
The information-flow type system ensures that all state-

ments that affect the loop’s condition occur at the first and
strongest phase in which the loop appears. In this first phase,
MixT explicitly records the results of each conditional test
for the loop, replaying them during the loop execution in
subsequent phases. For more detail about this process and a
worked example, see Section 5.3.

4.5 Whole-Transaction Atomicity
Static transaction splitting produces a single sub-transaction
per underlying store, allowing us to inherit the guarantees
of isolation and atomicity provided for all operations on that
store. Splitting does not, however, guarantee atomicity for
the entire transaction, since commits to stronger stores hap-
pen before commits to weaker ones. To ensure atomicity,
MixT programs must be prevented from observing the ef-
fects of partially committed transactions. When atomicity
is guaranteed by at most one of the stores to which a trans-
action writes, no extra machinery is needed. However, for
the rare transaction that writes to multiple atomic stores, we
introduce witnesses, which lock affected objects.
During each phase’s execution, MixT creates a special

write witness object for each mutation, indicating that a lock
has been acquired on the object being mutated. At the end of
each phase, MixT creates a single commit witness, a special
object which indicates that all locks acquired during this
transaction have been released. Only onewitness is produced

(Location)m ::= x |m.x

(Expr) e ::=m | x1 ⊕ x2 | ⊖ x | x0. f (x1, . . . ,xn )

(Stmt) s ::= var x = e in s | remote x = e in s

|m = x | return x | while (x) s

| if (x) s1 else s2 | {s1, . . . , sn}

Figure 7. MixT flattened syntax.

per transaction, but a copy of it is sent to every store onwhich
writes were performed. If a MixT transaction encounters a
write witness, it must suspend execution until it encounters
the corresponding commit witness.

The witness mechanism ties together phases of split trans-
actions across mutually unaware systems. By creating an
explicit object during each transaction and blocking future
progress until it has appeared, we guarantee atomicity; the
full transaction will be visible to all future transactions.
The witness mechanism should impose relatively little

overhead because its use should be rare. Further, several
optimizations (Section 7.1) can reduce its overhead. The per-
formance evaluation (Section 8) shows that a complex MixT
program can achieve reasonable throughput even when
witnesses are used. We revisit witnesses in more detail in
Section 5.4; formal arguments regarding the correctness of
witnesses can be found in the technical report [44].

5 Formalizing the MixT Language
5.1 Desugared Language
To facilitate transaction splitting, MixT’s surface syntax is
translated to a “flattened” language whose syntax appears in
Figure 7. There are a few notable changes from the surface
language. All expressions are flattened by the compiler using
standard techniques [48]. The pointer-like syntax *e and
e->x is replaced by the ability to declare remote variables
bound to handles. Semantically, remote variables directly
correspond to the referenced location on an underlying store.
Updates to these variables are reflected at the store, and uses
of these variables query the store directly for their value. Un-
like in the surface language, both var and remote introduce
explicit scopes for their bindings.

5.2 Statically Checking Consistency Labels
Consistency is enforced in MixT by statically checking infor-
mation flow using a largely standard type system for static
information flow [47].
Figure 8 gives selected consistency typing rules for the

language. Ordinary rules for typing judgments Γ ⊢ e : τ are
not presented because they directly use the C++ type system;
the presented rules are only for consistency judgments ∆ |

Γ | pc ⊢ e : ℓ. Environments ∆ and Γ keep track of the
labels and types of variables, respectively, with local and
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∆ | Γ | pc ⊢ e : ℓ1 Γ ⊢ e : τ
∆,xV : ℓ | Γ,xV :τ | pc ⊢ s : ℓ2 ℓ1 ⊑ ℓ x < Γ x < ∆

∆ | Γ | pc ⊢ var x = e in s : ℓ

Γ ⊢ e : Handle⟨τ , ℓ1⟩
∆ | Γ | pc ⊢ e : ℓ2 ∆,xR :ℓ | Γ,xR :τ | pc ⊢ s : ℓ′

ℓ1 ⊔ ℓ2 ⊑ ℓ x < Γ x < ∆

∆ | Γ | pc ⊢ remote x = e in s : ℓ

remote-read
pc ⊑ ℓ

∆,xR :ℓ | Γ | pc ⊢ x : ℓ
∆,xV :ℓ | Γ | pc ⊢ x : ℓ

∆ | Γ | pc ⊢ e : ℓ ∆ | Γ | pc ⊔ ℓ ⊢ s : ℓ′

∆ | Γ | pc ⊢ while (e) s : ℓ

Figure 8. Selected consistency typing rules for MixT. The
labeled remote-read rule is unusual.

remote variables distinguished lexically by subscripts V and
R. The label pc (for program counter) bounds the consistency
of control flow.
The rules assign each statement and expression a consis-

tency label ℓ that reflects the weakest consistency of any
information used to compute it. The label on statements,
used during transaction splitting, is derived directly from
subexpressions and is unaffected by substatements. During
static checking, consistency originates from the consistency
labels on handles, which derive from their stores. Variables
captured from the environment outside of the transaction are
labeled with the strongest (⊥) consistency; all other labels
are automatically inferred from the transaction code.

One non-standard aspect of the rules is that all accesses to
remote-bound variables are treated as effectful, requiring the
same pc consistency to read a remote location as to write
it (remote-read). This restriction is imposed for correct
transaction splitting, to enforce the necessary condition that
all remote operations at a single consistency level execute
before any remote operations at a weaker level.
Omitted from Figure 8 are rules governing assignment,

operations (treated identically to assignments), and implicit
flows; these follow standard conventions for static informa-
tion flow [47] and can be found in the technical report [44].
Also omitted is the rule governing endorsement, discussed
in Section 6.

5.3 Transaction Splitting
Figure 9 gives selected rules for splitting transactions into
phases based on consistency labels. The translation [[·]]ℓ
generates the code for the transaction phase at consistency
level ℓ.

(Expr) e ::= . . . | rand() | peek(x)

(Stmt) s ::= . . . | release_all(n)
| acquire(x ,n, ℓ1, . . . , ℓn)

| advance(x) | advance remote(x)

[[remote x = e in s : ℓ]]ℓ ≜ remote x = e in [[s]]ℓ

ℓ ̸⊑ ℓ′

[[remote x = e in s : ℓ]]ℓ′ ≜ [[s]]ℓ′

ℓ ⊑ ℓ′

[[remote x = e in s : ℓ]]ℓ′ ≜ {advance binding(x), [[s]]ℓ′}

[[while (e) stmt : ℓ]]ℓ ≜ while (e) [[stmt]]ℓ

ℓ ̸⊑ ℓ′

[[while (e) stmt : ℓ]]ℓ′ ≜ {}

ℓ , ℓ′ ℓ ⊑ ℓ′

[[x = e : ℓ]]ℓ′ ≜ advance(x)

ℓ , ℓ′ ℓ ⊑ ℓ′

[[x : ℓ]]ℓ′ ≜ peek(x)
[[x : ℓ]]ℓ ≜ x

Figure 9. Selected transaction splitting rules.

var iterator = users, // Phase: strict serializability
var loopindex = iterator.isValid(),

while (loopindex) {

loopindex = iterator.isValid(),

var temporary0 = iterator->v,

iterator = iterator->next

}

advance(loopindex), // Phase : causal consistency
while (loopindex) {

advance(loopindex),

advance(temporary0),

var temporary1 = peek(temporary0).inbox.insert(post)

}

advance(loopindex), // Phase: eventual consistency
while (loopindex) {

advance(loopindex),

advance(temporary1),

logger.log(peek(temporary1))

}

Figure 10. The message delivery transaction after splitting,
lifted back to the surface syntax.

Recall that each statement in the flattened language is
associated with exactly one consistency level. Intuitively,
transaction splitting preserves a statement in phase ℓ when
the statement’s label matches ℓ and otherwise omits it from
the phase. However, statements associated with a nested
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class DataStore<Label> {

...

bool exists(Name name);

Handle<...> existingObject(Name name);

Handle<...> newObject(Name name);

};

Figure 11. Enhanced DataStore interface for witnesses.

scope, such as while and var, may execute their contained
statements in a different phase.
Once some variable x is introduced in a phase, it may

be used—but not assigned—in any later phase. During the
phase in which x is introduced, every binding and assign-
ment to x is stored in an implicit iterator. During subsequent
phases, this iterator is used to replay x ’s previous values. In
these subsequent phases, uses of x are replaced with peek(x)
expressions, which return the current value of x ’s implicit it-
erator. Mutations to x are replaced with advance(x), which
advances x ’s implicit iterator. Remote-bound variables re-
quire the additional advance binding(x) construct. Recall
that the remote x = e construct binds x as an alias to the
remote state described by e . If this binding appears in a loop,
then the value of e may shift, causing x to be bound to a
series of remote locations. The advance binding(x) state-
ment cycles through these, while the advance(x) statement
cycles through assignments to the remote object itself. These
and other syntactic extensions required by transaction split-
ting are shown in Figure 9.

For example, the split transaction generated from the mes-
sage delivery transaction contains three non-local phases,
one for each distinct consistency level used, as shown in
Figure 10 (for clarity, the code is presented in the surface syn-
tax). Updates to the freshly generated variables loopindex,
temporary1, and temporary0 are logged; the expression
peek(x) accesses an iterator over the previous values of
x , and the expression advance(x) advances this iterator.
Neither of the original variables iterator and users is nec-
essary for any subsequent phase, so they are discarded upon
successful commit of the first phase.

5.4 Atomicity for Split Transactions
A user may choose to request full atomicity for transac-
tions that write to multiple stores. In order to ensure these
writes are fully atomic, MixT employs the witness mecha-
nism described in Section 4.5. Write witnesses correspond to
lock-acquire events, while commit witnesses correspond to
lock-release events. Both are represented by objects written
directly to underlying storage. Write witnesses contain the
locations of all corresponding commit witnesses and a list
of all consistency levels involved in the transaction. Commit
witnesses are empty objects. We extend the requirements
on underlying storage to include a key–value API through

which witnesses can be named (Figure 11). These APIs take
the form of type constraints; the return and parameter types
must support certain operations, but do not need to be a
precise MixT-specified type.
After transaction splitting, the MixT compiler augments

the split transaction with code to create witnesses. First, the
transaction generates a new variable wit, which we will use
as the name of our commit witness. To avoid collisions, this
name is selected randomly from a reserved 63-bit namespace.
Next, it inserts the statement acquire(x,wit,phases) be-
fore all mutative operations. This statement creates a write
witness, writing it alongside x . At the end of the phase,
the compiler appends release_all(wit), which writes the
commit witness itself.

The reasoning behind this transformation is simple: each
call to acquire(x, wit, . . . ) acquires a logical lock on x ,
which is released by the corresponding call to
release_all(wit). Any transaction which observes the
“lock acquire” event (acquire) must now wait for the cor-
responding “lock release” event (release_all) before pro-
ceeding at each participating phase.
At run time, whenever MixT attempts to read a remote-

bound value, it also reads that value’s potential witness loca-
tion, checking for a write witness to some transaction which
wrote this value. If it finds one, it adds the discovered commit
witness’s location to a witness worklist for each phase listed
in the write witness.
Before MixT begins executing a phase p, it first iterates

through p’s witness worklist. For each commit witness in
the worklist, MixT polls p’s store until the commit witness
becomes available, and then removes it from the worklist.
As described in Section 7.2, this polling loop occurs on the
remote store itself.
Once the commit witness has appeared on all replicas, it

may be safely removed from the store; the specifics of this
process are found in Section 7.1.
Note that using witnesses does not cause the resulting

transaction to become fully serializable; if a weak consis-
tency level allows stale reads, then stale reads can still occur
during the weak phase of a mixed-consistency transaction.
A mixed transaction might fail to read values committed by
a previous fully-weak transaction. Even with witnesses, the
code in Figure 2 remains incorrect. Also, atomicity is only
guaranteed when the underlying store provides it; consis-
tency levels which do not have a useful notion of atomicity—
for example, eventual consistency—therefore do not employ
write or commit witnesses.

5.5 Satisfying Mixed Consistency
Now that we have reviewed the mechanisms of MixT in de-
tail, we return to the question ofmixed consistency itself; how
do we know that MixT transactions satisfy definition 4.2?
If the consistency model, as is traditional, includes only

information about independent reads and writes made to
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if ((a.inbox.strong_read().size() >= 1000000 &&

b.inbox.strong_read().size() < 1000000)

.endorse(strong)) {

a.declare_winner()

} else

if ((a.inbox.strong_read().size() < 1000000 &&

b.inbox.strong_read().size() >= 1000000)

.endorse(strong)) {

b.declare_winner()

}

Figure 12. Strongly consistent contest logic with endorse-
ment.

individual memory locations then it is easy to see that MixT
satisfies mixed consistency. Because MixT associates each
data object or memory location with a single consistency
model, all reads of some value from a memory location at
some consistency level ℓ must be paired with a write to that
location at level ℓ. Thus, for all reads in a trace, the projection
operator (⇂) also preserves all matching writes in that trace.
In this sort of consistency model, the projection operator
simply selects sets of memory locations.

6 Upgrading Consistency
6.1 Semantics and Motivation
As described up to this point, MixT transactions maintain a
strict separation between consistency levels; it is impossible
to use a weakly consistent value to influence a strongly
consistent operation. This rigid separation provides strong
semantic guarantees, but can be limiting.
As an example, consider the mail-delivery example from

Figure 2. During the contest, mail is delivered with causal
consistency; users who view their inboxes may see a slightly
stale view of the mail they’ve received—an acceptable seman-
tics given the already variable latency of mail delivery itself.
The system, however, needs to perform a strongly consistent
read to determine a winner once the contest has finished.
Let’s imagine that the store supports such an operation, and
exposes it to MixT via the name strong_read.
In MixT, the result of any expression can be declared

to have an arbitrary consistency via the built-in operation
endorse(label). It behaves as a type-cast; the MixT com-
piler makes no effort to ensure that endorsements are used
appropriately, as their validity often depends on complex
system properties not visible to the compiler. Like all of weak
consistency, endorsements must be used with care.

Using our hypothetical strong_read operation andMixT’s
endorse keyword, we can fix our transaction (Figure 12).
This code is correct, but runs all operations at a strong con-
sistency level—exactly what we were trying to avoid. To
improve performance, we can guard each strongly consis-
tent read with a preliminary weakly consistent test, restoring

if (((a.inbox.size() >= 1000000 &&

b.inbox.size() < 1000000)

&& (a.inbox.strong_read().size() >= 1000000 &&

b.inbox.strong_read().size() < 1000000))

.endorse(strong)) {

a.declare_winner()

} else

if (((a.inbox.size() < 1000000 &&

b.inbox.size() >= 1000000)

&& (a.inbox.strong_read().size() < 1000000 &&

b.inbox.strong_read().size() >= 1000000))

.endorse(strong)){

b.declare_winner()

}

Figure 13. Efficient contest logic with endorsement. The
programmer has introduced an additional check involving a
rare strong read for when the contest is believed to be over.
We also must endorse the enclosing conditional, as it still
creates an indirect flow to declare_winner.

. . . Strongest store 
(only reads)

Weakest store 
(only reads)

Strongest store 
(writes OK)

Weakest store 
(writes OK)

. . . 

Figure 14. Transaction phases with endorsement.

causal execution for most transactions while ensuring the
declaration of a winner is still guarded by a strongly con-
sistent condition (Figure 13). The resulting consistency of
the strong declare_winner() operation is no longer sepa-
rable from the causally consistent read; we have accepted
the possibility that our winner may be declared late.

6.2 Compiling Endorsements
Because of transaction splitting, endorsement is not straight-
forward. It fundamentally involves running weaker com-
mands before stronger ones — and thus requires more than
one phase per underlying store. But naively adding addi-
tional phases will not provide acceptable semantics; having
one phase per underlying store is key to MixT’s isolation
guarantees.
We address these concerns with two mechanisms: read-

only phases and read witnesses. As in other information-flow
languages, endorsement is indicated by annotating the en-
dorsed expression. The compiler separates the transaction
into two parts: the pre-endorse part and the post-endorse
part. To ensure atomicity, the pre-endorse part of the trans-
action is checked to ensure that it contains no writes. The
code is then split into phases in the usual way, except that an
artificial “pre-endorse label” is first joined with all labels in
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the pre-endorse code so that pre-endorse code appears to the
compiler to have stronger consistency than all post-endorse
code. This process is depicted in Figure 14. If full isolation is
required, read witnesses may be employed. Read witnesses
are dual to write witnesses; the creation of a read witness
accompanies every read, and checking for read witnesses
occurs before every write. More details on read witnesses
can be found in the technical report [44]. An optimization
which uses read validation in place of read witnesses (as in
optimistic concurrency control) is also possible [34].

7 Implementation
MixT has been implemented as four separate C++17 com-
ponents, numbering almost 30,000 lines in total: the trans-
actions language compiler (10k), the core library (2.8k), the
trackingmechanism (1k), the Postgres implementation (1.4k),
and support utilities (14k). The current implementation sup-
ports an unbounded number of backing stores in a single
application.

To evaluate MixT, we also developed several sample back-
ing stores, operating either in-memory or based on Post-
greSQL 9.4. These interfaces expose a selected set of prepared
statements as custom operations and are designed to provide
linearizability (with strict serializability), causal consistency
(with snapshot isolation), and eventual consistency (with
read-uncommitted isolation.)

7.1 Efficiency Optimizations
Recall that mixed-consistency transactions use witnesses to
ensure atomicity, wherein an extra read operation accompa-
nies each stated read, and an extra write operation accompa-
nies each transaction. As described so far, this mechanism
would frequently encounter stale values, harming perfor-
mance for no gain in safety. Additionally, commit witnesses
would slowly accumulate on the store, wasting storage. Ide-
ally, we would be able to determine whether a value was
stable across an entire store, and therefore did not require
such defensive tracking behavior. To accomplish this we
observe that, in order to maintain its own guarantees re-
garding operation order, our non-compositional store likely
has some notion of a timestamp or version number already
available for internal use. This assumption proves true in
practice: systems such as COPS, Eiger, 2-master PostgreSQL,
Bolt-on, TARDIS, HBase, and Mongo (via Vermongo) all ei-
ther use these vector clocks directly or are easily modified
to employ them [2, 13, 39, 40, 46]. We enhanced our Handle
API to allow client stores to expose this notion of time to
MixT through an optional timestamp method . We augment
read and write witnesses to include the “current time” of
transaction commit, and provide a lightweight TCP protocol
through which backing stores can notify MixT clients of the
most recent version number which is guaranteed to have
reached the entire store. If the ability to access an accurate

transaction commit time from within a transaction does not
exist, commit witnesses can be augmented to include the
addresses of all read and write witnesses created during the
transaction. Leveraging this additional information, MixT
avoids generating witnesses when the objects involved are
already widely available, and can safely remove stale commit
witnesses.

7.2 Remote Execution in MixT
With MixT’s ability to split transactions into phases comes
the opportunity to distribute the transaction code itself. By
deploying a lightweight worker process alongside existing
backing stores, MixT application programmers can run trans-
action phases directly at stores, incurring only a single round
trip to establish each phase and collect its results – and al-
lowing all witness checks to be carried out locally. In fact,
this decision—to ship transaction code directly to the stor-
age system—has become increasingly popular among high-
performance data storage systems and is central to some
modern databases [17, 18, 30, 53]. MixT’s approach to re-
mote execution is straightforward. We assume that each
application manages its own lightweight worker at the stor-
age location; we leave the task of ensuring code is up-to-date
to the MixT application programmer.

7.3 MixT Compiler Implementation
We implemented MixT as a domain-specific language embed-
ded into modern C++. MixT is written in pure C++17, and
can be compiled using any C++17-compliant compiler2. Our
entire compiler is written in constexpr C++ [43], allowing it
to run during the “template expansion” step of compilation
of the surrounding C++ code. Specifically, mixt_⟨keyword⟩
macros convert their arguments into a compile-time string,
which is then parsed and compiled by our compiler. In order
to link names within the transactions language to native C++
objects, the macros capture both the type of their arguments
and their string representations, using these during the trans-
action compilation. All compilation, including transaction
splitting, is accomplished alongside C++ compilation; none
is deferred until runtime. Transactions are compiled to a set
of inlined, statically bound functions which are invoked from
a single point in code, allowing the C++ compiler to optimize
away all function-call overhead, producing machine code
quite close to the syntax specified by the transaction. This ap-
proach allows MixT to support arbitrary syntax, semantics,
and type systems, without requiring an external compiler
or preprocessor, and without adding unnecessary run-time
overhead. We are not bound to the syntax, semantics or key-
words of C++; MixT’s similarity to C++ is a conscious design
choice. We follow the language-as-a-library paradigm: as

2TheMixT compiler is tested under ≥clang-3.9 and ≥g++-7.1; certain syntax
extensions require -fconcepts
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MixT effectively adds extra phases to existing C++ compila-
tion, to use MixT in existing C++ projects all one must do is
#include the MixT header files.

8 Evaluation
We use the MixT implementation to model an intended appli-
cation domain: user-facing application servers that share one
linearizable and one causally consistent underlying storage
system, where application servers are geographically close to
only the causal replica they are using. We believe this closely
mirrors reality. Weakly consistent storage servers can be
relatively close to application servers because they are able
to withstand high latencies during replication and can there-
fore be separated geographically; linearizable data stores are
typically housed within a single data center because laten-
cies encountered during replication have an outsized impact
on overall performance.

In this setting, we explore several key questions regarding
the performance of MixT:

• Do mixed-consistency transactions, as promised, of-
fer better performance than running similarly atomic
transactions with strong consistency?

• What overhead is added by the witness mechanism
used to preserve consistency guarantees when non-
compositional consistency levels are combined?

• On what workloads does this mechanism work well?
What is the performance impact of different mixtures
of mixed and pure transactions?

8.1 Experimental Setup
To measure the performance of MixT, we simulate a geo-
replicated application. In our setup, logically separate appli-
cation servers each maintain connections to causally con-
sistent and serializable databases. Connections to the serial-
izable database experience a round-trip latency of 85ms ±
10ms; connections to causally consistent databases experi-
ence a round-trip latency of 1ms. Latency to the causal sys-
tem was set by measuring ping times between an Internet2-
connected university and its nearest data center; latency to
the linearizable system was set by measuring ping times
between Internet2-connected universities on the east and
west coasts of the United States. All latency simulations are
provided by the netem kernel module on Linux 3.17. We
employ three separate physical machines: one hosting all
clients, one hosting the causal store, and one hosting the
linearizable store.

For driving load to application servers, we adopted a semi-
open world model, with delay between events following an
exponential distribution. We increase load by increasing the
number of MixT clients, not by increasing the rate of events
issued by each client. Our causal and linearizable stores are
both backed by PostgreSQL. To implement causal consis-
tency, we created four replicas of data within the database,

each associated with a four-entry vector clock version num-
ber. More details on the experimental setup are available in
the technical report [44].

8.2 Benchmarks
We could find no existing benchmarks for mixed-consistency
transactional systems. Instead, we developed two new bench-
marks intended to represent the emergingmixed-consistency
landscape. The first is a simple microbenchmark based on
incrementing integral counters. It features read-only trans-
actions that fetch the value at a counter, and read-write
transactions which increment that value. Objects referenced
during read operations are selected from a Zipf distribution
over 400,000 names; objects referenced during write opera-
tions are selected from a uniform distribution over the same
names. These objects are duplicated on both a linearizable
and casual store. In this benchmark, clients randomly move
between causal mode, where all transactions are causally-
consistent, and a linearizable mode, where all transactions
are linearizable, with a fixed probability. We extend this
benchmark to involve mixed-consistency transactions in the
next section.
The second benchmark is the Message Groups example

discussed in Section 2.2. This benchmark features four more-
complex transactions: message delivery (Figure 4), user cre-
ation, inbox checking, and group joining. User creation and
inbox checking are causally consistent, while message post-
ing and group joining are mixed-consistency transactions.
Each client is assigned a range of inboxes and groups from
which it selects uniformly at random.

8.3 Counter Results
The counters benchmark offers several tuning parameters for
exploring the space of workloads. As copies of our complete
set of objects exist on both a causal and linearizable store,
we can fine-tune both the mixture of causal and linearizable
operations and the combination of reads and writes in our
tests.

Speedup Relative to Linearizability The most impor-
tant question for MixT performance is whether mixed-
consistency transactions offer a speedup compared to the
simple alternative of running transactions entirely with lin-
earizability. Figure 15 shows that, indeed, mixing causal
and serializable operations considerably increases maximum
throughput.

Because of the high latencies incurred by serializable trans-
actions, increasing the causal percentage of overall opera-
tions yields significant performance improvements. These
benefits level off at about 80% causal in our tests; at this point,
the causal storage system becomes overloaded, limiting the
benefits of lower latency.

Overhead of Witnesses One concern about MixT might
be the overhead introduced by witnesses. We modify our
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Figure 15.Maximum throughput as a function of lineariz-
able mix for a 70% read workload. The blue (top circle) series
shows maximum achievable throughput in transactions per
second (tps) without witnesses; the remaining series shows
full witness tracking with progressive artificial latency. The
solid black line marks 0% causal without tracking (also the
leftmost blue point), which serves as a baseline.
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Figure 16. CDF plots for operation latency. C: Causal, L:
Linearizable, T: Tracked, U: Untracked. Dashed lines: reads,
solid lines: writes. All linearizable lines appear atop each
other on the right.

simple counter increment test to explicitly include both lin-
earizable and causal phases in transactions which follow a
consistency mode switch, and to force witness generation in
these transactions even if they would not normally require it.
The rationale for this is based on the non-compositionality of
causal consistency, discussed in our technical report [44]. We
additionally modify our experimental setup to simulate la-
tency of replication, first forcing approximately 1% of causal
witness verifications to delay for 30ms, then explicitly delay-
ing all causal witness verification requests by 30ms. As seen
in Figure 15, the witness mechanism has a noticeable impact
mostly above 60% causal, with a maximum slowdown of ap-
proximately 10%: well above the performance possible were
the entire transaction mix to remain linearizable. Further
demonstrating that round-trip time is paramount, read-only

Transaction Throughput (tps) R W C L
Check inbox 10,626 ± 15 6 0 ✓ ×

Join group 5,430 ± 30 2 1 ✓ ✓
Deliver message 3,313 ± 4 6 3 ✓ ✓
Create user 972 ± 19 5 2 ✓ ✓

Figure 17.Maximum throughputs for Message Groups, with
standard error. The rightmost four columns give the num-
ber of reads (R) and writes (W) and indicate whether the
transaction involves a causal (C) or linearizable (L) phase.

transactions achieved only 20% higher maximum throughput
than read-write transactions.

Latency Witnesses do affect latency, especially because of
design decisions made for backward compatibility. Figure 16
shows this effect. Latencies are presented as a CDF collected
from the system running at 60% of maximum throughput,
in a configuration in which 75% of all operations are reads
and 75% of all operations use the causal store. To see the
worst-case impact of witnesses, we ran this test twice: once
with witnesses enabled and a forced 30ms delay (“tracked”),
and once without (“untracked”). The red (leftmost) and or-
ange (rightmost) lines on this graph measure performance
without witnesses; the green (also rightmost) and blue (mid-
dle) lines represent performance with witnesses. The forced
30ms delay on witnesses is quite clear for causal operations,
but there is almost no other overhead. On the other hand, the
impact of witnesses on linearizable operations is negligible;
as witnesses incur no replication delay in the linearizable
store, they never delay linearizable phases.

8.4 Message Groups Results
To evaluate the running Message Groups example, we use a
configuration with 40,000 groups, each of which contains a
single distinct user. Each of these 40,000 users has a single
message in their inbox. We disable message logging, elim-
inating all eventually-consistent phases and leaving only
causal and linearizable phases. We first run each Message
Groups transaction in isolation against this initial configu-
ration, establishing an average maximum throughput over
at least 3 runs (Figure 17). This table lists the average max-
imum throughput for each transaction in isolation, along
with the number of read and write operations executed dur-
ing these transactions. For all transactions, we report the
number of operations executed when in our initial config-
uration; message delivery and inbox downloading require
more operations as the group and inbox sizes grow. The
purely causal inbox download transaction benefits from the
speed of causal consistency, while the mixed-consistency
transactions all achieve reasonable performance despite the
overhead of contacting a distant linearizable store.
We also evaluate performance on a mix of transactions:

56% inbox checking, 20%message posting, 18% group joining,
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and 6% user creation. We evaluate the system for 3 minutes,
slowly increasing the client request rate from 2,000 tps to
5,000 tps. Average maximum throughput over 4 trials was
4,237± 10.5 tps with an abort rate between .0161% and .0187%.
This represents a speedup of 3.5 over a baseline in which
all operations execute against the linearizable store (average
maximum throughput: 1,228 ± 15 tps). As expected, mixed-
consistency transactions yield significant speedup.

9 Related Work
Quelea [51] and Disciplined Inconsistency [26] are the work
closest to MixT in spirit. Both use user-provided data an-
notations to infer appropriate consistency levels for oper-
ations within a single program. The system then automat-
ically chooses an appropriate consistency model for each
operation. The Quelea approach, using Cassandra to store
compressed logs of all system events, differs markedly from
MixT’s approach of transaction partitioning based on static
information flow analysis. Disciplined Inconsistency also
uses information flow to enforce separation between consis-
tency labels but does not offer any transactional mechanism.

Choosing Consistency Levels Choosing appropriate con-
sistency models for data is a problem orthogonal to our work.
Prior work [22, 24, 26, 27, 36, 37, 51] provide languages of
constraints to describe data invariants, in turn providing
the weakest consistency possible while still satisfying those
constraints. Other work [7, 22, 29] aims for formal methods
for users to reason about their choice of consistency level
and to prove that desired code invariants are satisfied.

Transactions in Weak Geo-Replicated Systems Exist-
ing work in the shared memory [15] and distributed systems
[1, 16, 28, 40, 42, 50] communities has attempted to provide
single-store transactions in the presence of weak consistency
guarantees. This prior work focuses on definitions and mech-
anisms for weak transactions at a single consistency level,
and indeed, we rely on the guarantees they provide.

Mixed-Consistency Systems Many existing data stores
provide operations with a variety of consistency guaran-
tees [11, 14, 35, 37, 46], but without providing any semantic
guarantees across operations. Others provide tools to tune
consistency based primarily on performance considerations
[9, 54, 58]. Guerraoui et al. [23] define a unique programming
model by which programs are first presented with weakly
consistent data and may choose to wait for strong data in-
stead. These systems provide neither general transaction
mechanisms nor strong semantic guarantees.

Mixed-Consistency Systems with Transactions Previ-
ous work [19, 32, 33, 37, 58] focuses on progressively weaken-
ing transaction isolation based on a combination of run-time
and static analysis, with the aim of enforcing strong consis-
tency. Several papers providemechanisms for users to choose

transaction isolation levels [7, 29, 56], but do not handle the
semantic anomalies involved. A few systems [15, 58] pro-
vide distributed transactions at multiple consistency levels,
but allow unsafe mixing of consistency levels. Microsoft’s
new database Cosmos DB is a recent example, providing
transactions with a choice of four well-defined consistency
levels [20]. Some prior systems do enable programmers to
mix transactions of different consistency with strong guar-
antees [37, 49, 57]. However, this line of work relies on a
closed-transaction model wherein the system is aware of all
possible transactions any client will run; performance is brit-
tle because changing a single transaction somewhere in the
system can significantly affect the performance of unrelated
transactions. This work cannot mix consistency within a sin-
gle transaction, and it focuses on a single store. Nevertheless,
these systems could be used by MixT as backing stores.

Enhancing Consistency of Existing Systems Beyond
SQL, some existing work has focused on mechanisms that
upgrade the consistency guarantees of weakly consistent
underlying stores [2, 28, 50]. Indeed, several projects [40, 51]
use this approach internally, adding consistency layers atop
existing distributed systems like Cassandra.

10 Conclusion
We have introduced a new domain-specific programming
language for writingmodern geodistributed applications that
need to trade off performance and consistency. The mixed-
consistency transactions offered by MixT make it possible
for programmers to safely combine data from multiple con-
sistency levels in the same transaction, with confidence that
weaker data does not corrupt the guarantees of stronger data.
Appealingly, this model can be implemented in a backward-
compatible way on top of existing stores that offer their own
distinct consistency guarantees, without disrupting legacy
applications on those stores. The performance results sug-
gest that for geodistributed applications, mixed-consistency
transactions enable higher performance by using weaker
consistency models selectively and safely.
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