
User-specified Adaptive Scheduling in a Streaming Media
Network∗

Michael Hicks, Robbert van Renesse,
Mark Bickford, Robert Constable, Christoph Kreitz, and Lori Lorigo

Department of Computer Science
Cornell University, Ithaca, NY 14853

{mhicks,rvr,markb,rc,kreitz,lolorigo}@cs.cornell.edu

Abstract

In disaster and combat situations, mobile cameras
and other types of sensors transmit real-time data,
used by many operators and/or analysis tools. Un-
fortunately, in the face of limited, unreliable re-
sources, and varying demands, not all users may
be able to get the fidelity they prefer. This pa-
per describes MediaNet, a distributed multi-media
processing system designed with the above scenar-
ios in mind. MediaNet makes three contributions.
First, unlike past approaches, MediaNet’s users can
specify how the system should adapt to scarce re-
sources, based on their needs; MediaNet uses in-
tuitive specifications called Continuous Media Net-
works for this. Second, MediaNet uses both local
and on-line global resource scheduling to improve
user performance and network utilization. Third,
MediaNet is completely adaptive, requiring no un-
derlying support for resource reservations. Perfor-
mance experiments show that our scheduling algo-
rithm is reasonably fast, and that user performance
and network utilization can both be significantly im-
proved.

1 Introduction

Consider a dangerous setting, such as collapsed
buildings caused by an earthquake or terrorist at-
tack. Novel recording devices, such as cameras car-
ried by Uninhabited Aerial Vehicles (UAVs) or by
robots that crawl through rubble, may be deployed
to explore the area. The output of these devices
can be of interest to many operators. Operators
may include rescue workers working in the rubble
itself, people overseeing the work in a station some-

∗The first author was supported by the AFRL-IFGA In-
formation Assurance Institute under grant AFOSR F49620-
01-1-0312.

where, the press, or software that creates, say, a
3-dimensional model of the scene.

Different operators may require different views
of the area, and may have different fidelity require-
ments or user priorities. Although the operators
may work independently of one another, they share
many resources, such as the recording devices them-
selves, compute servers, and networks. These re-
sources have limited capacity, and thus it is neces-
sary to allocate them carefully. Without resource
reservation, adaptivity is essential in such systems.

A number of projects have explored how to pro-
vide improved quality of service (QoS) for stream-
ing media in resource-limited conditions. These
systems place computations in the network, ei-
ther within routers themselves (e.g., [4, 7, 22]),
or at the application-level using an overlay net-
work (e.g., [2, 20]). These systems rely on system-
determined, local adaptations, such as priority-
based video frame dropping. While such adapta-
tions impose little overhead, they can be inefficient
because they do not take into account global in-
formation. Also, existing schemes typically do not
consider user preferences and/or priorities in mak-
ing QoS decisions.

To study whether these problems can be over-
come, we have been developing a system called
MediaNet that takes a comprehensive view of
streaming media delivery. Like past approaches, we
use an overlay network that schedules local adap-
tations. However, MediaNet differs from past ap-
proaches in three key ways:

1. Rather than make QoS adaptation user-
agnostic, we allow users to specify how to adapt
under overload conditions. Each user con-
tributes a list of alternative specifications, and
associates a utility value with each specifica-
tion. To some users, color depth may be more
important than frame rate, while for other users

1



the preference may be the other way around.
The primary goal of MediaNet is to maximize
each user’s utility.

2. In addition to using local scheduling, Media-
Net employs a global scheduler to divide tasks
among network components. Different from
other projects that use global schedulers (e.g.,
[7, 10]), MediaNet’s scheduler is continuously
looking for improvements based on monitor-
ing input.

3. MediaNet is fundamentally adaptive: it does
not rely on hardware or software support for
capacity reservations, whether for network-
ing or computation. MediaNet runs on stan-
dard COTS components, each of which may
have background loads not under the control
of MediaNet.

4. MediaNet intends to exploit formal methods
and tools to check the properties of generated
configurations, and the correctness of configu-
ration switching protocols (as in [18]). In the
near future, we would also like to use formal
tools to generate highly optimized configura-
tions directly, for example, such as done in [17].

While there is more work to be done, our proto-
type and experimental measurements are promis-
ing, showing that user-based quality-of-service and
improved network utilization can be achieved. On
the other hand, while overheads appear low for the
small networks we have considered, our system does
exact a higher cost for its global adaptations. We
consider our work as a step to exploring the synergy
between global and local adaptation.

In this paper we present the design and imple-
mentation of MediaNet, a framework for exper-
imenting with user-directed, QoS adaptation for
streaming media. We begin by describing the
MediaNet architecture (Section 2), its global re-
source allocation scheme (Section 3), and our proto-
type implementation (Section 4). We then present
some experimental evidence that analyzes Media-
Net’s benefits (Section 5), and finish up with re-
lated work (Section 6) and conclusions and future
work (Section 7).

2 MediaNet

MediaNet distinguishes three types of components
(see Figure 1):

1. Compute nodes: these include cameras, sen-
sors, workstations, and compute servers. Com-

Global Scheduler

Compute Servers

Cameras and Sensors

Workstations

Figure 1: MediaNet architecture.

pute nodes are highly heterogeneous, in that
they have different computational power, avail-
able memory, hardware support for video oper-
ations, etc. We use the terms “compute node”
and “host” interchangeably.

2. Network links: these include both the net-
work that makes up the wired infrastructure,
and wireless links that connect robotic cameras
and sensors to the wired infrastructure. These
links are also highly heterogeneous. Moreover,
the underlying network topology may change
at run-time as components physically move
around or new parts of the infrastructure are
deployed.

3. Global scheduler: this receives all user spec-
ifications, network topology information, and
various monitoring data, and assigns tasks to
individual host nodes. The scheduler operates
on-line, adapting in real time.

An important role in MediaNet’s architecture is
played by the concept of a Continuous Media Net-
work (CMN). A CMN is a specification of a set of
operations on a set of data sources. Users communi-
cate their requirements by submitting CMNs to the
global scheduler, while the global scheduler sends
commands to the hosts in the form of CMNs. We
are designing various tools that operate on CMNs,
including a graphical tool for the construction and
display of CMNs, and formal tools that can help
verify various properties of CMNs, such as real-
time constraints. In this section we will first take
a closer look at these CMNs, and will then describe
the scheduling approach.

2.1 Continuous Media Networks

A Continuous Media Network is a directed acyclic
graph (DAG). Each node represents an operation on



a set of frames (packets of data such as video frames,
audio clips, etc.) that produces zero or more output
frames. Ignoring the details of timing, an operation
is therefore like a function that maps input frames of
one type to output frames of another (possibly the
same) type. Connecting operations together in the
DAG is tantamount to composing functions, where
the range of one function must match the domain
of the one(s) it’s connecting to. In this sense, oper-
ations must be well-typed.

Examples of operations include video frame crop-
ping, frame dropping, changing the resolution or
color depth, ”picture-in-picture” effects, compres-
sion, encryption, and audio volume control. Certain
operations receive input and send output external
to the DAG, to perform I/O with devices like video
cameras and players. Operations can maintain in-
ternal state. Many complex stream-processing com-
putations can be expressed as CMNs.

We describe CMNs using XML. In particular, a
user-specification is a list of CMNs, each tagged by
their utility value. A utility value is a number be-
tween 0 and 1, where 1 means most desirable. Using
the utility value, a user can specify his or her rela-
tive preferences for the various specifications in the
list. An example is shown in Figure 2. Each CMN
is specified as a single alt element, with each CMN
node given by a uniquely named XML comp element.
Sub-elements describe the associated operation (op)
and inputs of the node (inputs), as well as hints and
constraints for the global scheduler, such as the ex-
pected inter-frame arrival interval (interval), and
the operation’s required location (location). The
size attributes indicate the output frame size.

This example specifies two CMNs, one with util-
ity value 1.0 and the other with value 0.5. In both
cases, the CMN indicates a video stream is received
on port 5001 at location pc1 at an effective rate of
30 fps and will ultimately be streamed to the user’s
player on pc2 port 5000. In the second CMN, the
frame rate is reduced when B frames are dropped by
the intervening dropF node (in this case, B frames
constitute two-thirds of all frames). Note that since
this node has operation cmd="MPEG drop" the global
scheduler can deduce that its inputs and outputs
must both be MPEG streams. The size attributes
indicate the average frame size; before B frames are
dropped, this is 4833 bytes, but afterwards it is 8800
bytes, since B frames are much smaller than other
frame types.1

We do not expect users will author these XML
documents directly. Graphical interactive tools may

1Both MPEG and this particular specification are ex-
plained in more detail in Section 5.1.

<spec>
<alt utility=”1.0”/>

<comp name=”recv1”>
<op cmd=”recv” port=”5001”

size=”4833”/>
<location>pc1</location>
<interval>.0333</interval>

</comp>

<comp name=”send1”>
<op cmd=”send” host=”pc2”

port=”5000”/>
<location>pc2</location>
<interval>.0333</interval>
<inputs>

<input name=”recv1”/>
</inputs>

</comp>
</alt>

<alt utility=”0.5”/>
<comp name=”recv1”>

<op cmd=”recv” port=”5001”
size=”4833”/>

<location>pc1</location>
<interval>.0333</interval>

</comp>

<comp name=”dropF”>
<op cmd=”MPEG drop”

frametypes=”B” size=”8800”/>
<interval>.01</interval>
<inputs>

<input name=”recv1”/>
</inputs>

</comp>

<comp name=”send1”>
<op cmd=”send” host=”pc2”

port=”5000”/>
<location>pc2</location>
<interval>.01</interval>
<inputs>

<input name=”dropF”/>
</inputs>

</comp>
</alt>

</spec>

Figure 2: Example CMN



dropF

recv1

pc1 send2

send1

pc2

pc4pc3

Figure 3: A global configuration

be developed that allow users to describe what they
want to do in a user-friendly fashion, while they out-
put XML documents that can be used as input to
MediaNet. Furthermore, the example in Figure 2
includes scheduling details that may not (and need
not) be available to the user, such as the rate and
size of frames. These all depend on the particu-
lar stream being subscribed to, so we expect them
ultimately to be merged into the user’s initial spec-
ification.

2.2 MediaNet Scheduling

Once a user provides a specification, it must be
scheduled on the network. MediaNet uses a two-
level scheduling approach. A global scheduler (GS)
combines the CMNs of individual users into a sin-
gle CMN, and assigns each operation to a host.
On each MediaNet host runs a local scheduler (LS)
that implements the schedule provided by the GS.
The GS will insert additional operations into the
combined CMN, for example to transport frames
between nodes, and to monitor resource availabil-
ity. The GS works in real-time: it is regularly up-
dated with the availability and capacities of the var-
ious hosts and resources, and new versions of the
user specifications. On each update, the GS runs a
scheduling algorithm (see Section 3), and then sends
a job description, in the form of a CMN described
by XML, to each MediaNet host.

As an example, say the system is using a Y-
shaped network, where the base of the Y is host pc1,
and the ends of its two arms are pc2 and pc4, with
its center at pc3. Let the CMN shown in Figure 2
specify the preference of user rvr, while user mwh has
the same CMN, but with send1 replaced by send2
at location pc4. Figure 3 shows how these config-
urations might be scheduled so that user rvr gets
utility 1.0 while mwh gets utility 0.5. This schedul-
ing could arise if the link to pc4 is congested but
the other links are not.

Two things are noteworthy here. First, the GS
has inserted a number of components to simply for-
ward the data, so-called send and receive opera-
tions, depicted by right-pointing and left-pointing
triangles, respectively. These are implemented by
send and recv operations, like those shown in Fig-
ure 2. Second, the GS has exploited the common-
ality of the two specifications, creating a multicast-
like effect, but generalized to CMNs. In particu-
lar, rather than run the two configurations in paral-
lel, the scheduler collapsed the common part of the
configuration to be shared by both users. In this
way, the scheduler is able to better utilize the sys-
tem’s resources. Note that the dropF component in
this example is functioning as a sort of RTP-style
mixer [24]: it provides a local resource adaptation
on a shared stream.

It is fairly straightforward for the LS to imple-
ment the provided CMN. It first creates data struc-
tures that represent the CMN nodes, and sorts them
topologically based on their data-flow. Next, it uses
deadlines to ensure that operations are run as soon
as possible after the prescribed interval, following
the topological ordering. To avoid timing and queu-
ing overhead, when operations are data-driven the
LS simply runs the operations when frames arrive,
while ensuring that the frame rate approximates the
prescribed interval.

3 Global Resource Allocation

At the heart of MediaNet is the algorithm used by
the GS to assign operations to hosts. The algorithm
works by generating possible assignments of user
operations to network hosts, along with the neces-
sary intervening send and receive operations, and
assigning to each assignment a score, based on how
effectively the user specifications are met and how
efficiently the network is utilized. The assignment
chosen is the one with the maximal score. While our
algorithm is not guaranteed to generate an optimal
solution, it is fast and should be considered a proof
of concept; the performance analysis in Section 5 is
based on this algorithm. We first discuss the scor-
ing algorithm, and then indicate how assignments
are chosen.

3.1 Calculating the Score

To calculate the score, the scheduler maintains a
model of the network and its available resources, as
well as costs for user operations. The model tracks
each host h and network link l, assigning it a ca-
pacity C(h) for hosts in terms of instructions per



second, and C(l) for links in terms of bytes per sec-
ond. In addition, network links are given a latency
(in seconds), and are associated with the set of hosts
that are connected by the links. With each opera-
tion o are associated cost functions f(o) and s(o)
that return approximately the number of instruc-
tions the operation takes, and the average size of
the output frame, respectively. In our implemen-
tation, cost functions are parameterized by frame
inputs, architecture type, etc. Using this informa-
tion, we can approximate how long it takes for any
operation to compute on any host, and how long it
takes to propagate the output over any network.2

The total score is the minimum of three separate
scores: the host score, the network score, and the
operation score. These scores measure, resp., the
leftover ratio of computational capacity, the leftover
network capacity, and the leftover ratio of accept-
able delay; we make these notions precise below.
The larger the scores, the less loaded the system is,
and thus the more preferable the assignment.

Each score is calculated as follows. We first cal-
culate a local score ls(x) for each of n entities x; for
example, in the host score, we calculate the compu-
tational load l(h) (the local score) on each host h
(the entity). We then determine the scaled leftover
capacity slc(x) by subtracting the local score from,
and dividing it by, the local capacity c(x):

slc(x) =
c(x)− ls(x)

c(x)

When the load exceeds the capacity, slc(x) will
be negative; otherwise it will be between 0 and 1
(higher is better). Finally, we aggregate the scaled
leftover capacities into a single value. To favor as-
signments that avoid overloading a single entity,
we use the harmonic mean, which strongly weights
lower values, when all slc(x) non-negative. If any
slc(x) is ≤ 0, we use the smallest individual value:

l =





∀x. slc(x) > 0: 1∑

all x

1
n× slc(x)

otherwise: ∀x. min(slc(x))

(1)

Using this technique, we calculate the three scores
as follows. For the host score, the entities x are the
hosts h, the local score is the computational load on
the host L(h), and the capacity is the host’s total
capacity C(h). The computational load is, for every
operation o on host h, the cost of the operation f(o)

2In the future we intend to use more detailed monitoring
so that the GS can improve the approximations over time.

divided by its specified minimum interval i(o):

L(h) =
∑

o∈ops(h)

f(o)
i(o)

For the network score, the entities are the network
links l, the local score is the required bandwidth on
the link B(l), and the capacity is the link’s total
capacity C(l). The bandwidth B(l) is calculated
by summing the relevant output frame sizes s(o)
divided by their intervals.

Finally, for the operation score, the entities are
the operations, the local score is the operational de-
lay D(o), and the capacity is the user’s maximum
acceptable delay mad(o). The operational delay
D(o) is intuitively the maximum time the operation
must wait from the time the CMN first receives a
frame to the time the operation in question can op-
erate on it. To calculate this, we first determine the
maximum delay on each host md(h) as the sum of
the costs of all operations that run on that host:

md(h) =
∑

o∈ops(h)

f(o)

The idea is that md(h) is the maximum time an
operation could be delayed due to other operations
running on the same host; we assume no operation
o gets to run twice once an operation p becomes
runnable. We then determine the maximum delay
on each network in a similar manner, but account for
the network’s latency. Finally, we calculate the de-
lay D(o) as the sum of maximum delay on the local
host and all of the delays of o’s upstream neighbors
and the intervening network links (if any):

D(o) = md(h) +
∑

p∈inputs(o)

D(p) + net(p, o)

Here, net(p, o) is the delay of the network connect-
ing operations p and o (which will be zero if o is not
a receive operation), and h is the host on which o is
scheduled. When operations take inputs from mul-
tiple operations we also add the minimum interval,
as the operation may have to wait that long to be
scheduled. When aggregating D(o), we only con-
sider operations o for which the user has specified a
maximum acceptable delay mad(o).

3.2 Creating an Assignment

To pick an assignment that maximizes user utility,
we must consider user specifications at various lev-
els of utility, pick possible assignments, score them,



and choose the best one. Even when ignoring mul-
tiple utility levels, and the need for placing inter-
vening send and receive operations, it is easy to see
that for a particular network and CMN, there are
nm possible assignments, where m is the number
of operations, and n is the number of nodes. This
means a brute force enumeration of assignments is
infeasible.3 Therefore, to construct a tractable al-
gorithm requires a way to prune the assignment
space. We present an algorithm here that is roughly
O(mn log 1

ε + n3), where ε relates to the util-
ity space (defined below). Though it can be im-
proved, it shows that a reasonable algorithm exists
that works well in the scenarios we have considered.

We create an assignment of nodes to hosts in two
nested phases. In the outermost phase, the sched-
uler does a binary search on the utility space, trying
to find the best utility assignment. When evaluat-
ing utility u, the scheduler picks for each user the
CMN that has utility u or the closest one below u.
It then merges the CMNs and executes the inner
phase, described next, to find best-scoring assign-
ment. If the score of the assignment is nonnegative,
the scheduler tries a higher utility value; otherwise
a lower one. This process continues until the re-
maining utility space becomes smaller than some
pre-chosen ε. The utility chosen is the lower bound
of this space. If 0, the algorithm could not find an
assignment that works.

As an optimization, after we have arrived at a
lower bound, we try to improve the utility of some
(but not all) users, by increasing the utility of each
individual user one at a time. When at some point
this fails because not enough resources are available,
the algorithm finishes.

The inner phase tries to find a reasonable as-
signment for a given global CMN (as opposed to
a user-specified CMN). To do this, it first assigns
all operations to default locations (either their as-
signed location, or on one particular node). Next,
it inserts send and receive operations in the CMN
to connect operations adjacent in the CMN but as-
signed to different hosts. Before beginning the outer
phase, we calculate the all-pairs “shortest” paths of
the network, using maximum bottleneck bandwidth
(also referred to as the path bandwidth) as the metric
of optimality; this takes time O(n3). From this we
choose the most bandwidth-plentiful links to create
a tree of paths originating from each operation to
its immediate downstream neighbors in the CMN.
At each intermediate node in this tree, the sched-

3It is likely that this scheduling problem is NP-complete,
though we have not yet proven as much.

uler inserts receive and send operations to forward
the data. It can then calculate the score.

At this point, it tries to improve the score by
relocating each (movable) operation to each possible
host, remembering the location that improves the
score most. This process continues until no more
operations can be moved.

If MediaNet users have different priorities with
respect to resource usage, the scheduler may use
the following simple strategy (not yet implemented).
First, the scheduler runs a binary search on the
CMN lists of the highest priority users. Then it adds
the CMN lists of the next highest priority users, and
runs the binary search again, but using the chosen
CMNs for the first group of users. The scheduler
continues this until all users have been dealt with, or
the algorithm fails. In the latter case, the scheduler
notifies the leftover users, indicating that it is avail-
able to service them. Other prioritization schemes
are also possible.

3.3 Discussion

Here we discuss some aspects of the algorithm we
have presented, including a rough characterization
of its running time, as well as shortcomings and po-
tential enhancements.

Running Time As mentioned, our algorithm
runs in roughly O(mn log 1

ε + n3) time. The n3

component comes from the all-pairs, shortest paths
computation which precedes the outer phase. The
mn component comes from the fact that for each
of the m operations, we greedily choose the best of
all available nodes. Finally, the calculation occurs
log 1

ε times due to the use of binary search. This
characterization does not include the optimization
of improving single users’ utilities.

As a sanity check, we set up a simple experiment
to measure the algorithm’s performance in practice
(see Section 5 for our experimental setup). Using
the BRITE topology generator [6], we created a 50
node, 150 link network and fed it into the algorithm,
along with specifications from ten users, each using
roughly the specification from Figure 2 (see Sec-
tion 5.1 for an exact description) subscribing to one
of five data sources. This setup is an attempt to
model our motivating scenarios, e.g. a disaster sce-
nario explored by camera-carrying robots. In this
case, the algorithm was able to complete in roughly
20ms. As expected, the majority of the time was
spent in the shortest path computation, comprising
about 18ms. We plan to perform more detailed sim-



ulations and analyses, but we are encouraged that
it handles reasonable scenarios.

Shortcomings While fast and useful in our expe-
rience, our algorithm has some shortcomings when
considering multiple users. One serious shortcom-
ing is that it considers the utility values that users
provide as globally absolute, rather than relative to
each user. Users may exploit this by choosing low
utility values for operations that use extensive re-
sources. To fix this, we need to scale a CMN’s util-
ity value by the resources the CMN requires. At
the moment, we rely on users to choose their utility
values fairly based not only on preference but also
on resource usage.

Another problem is that when generating paths
between CMN nodes in the actual network, we do
not consider interference from competing users. In
particular, when inserting send and receive opera-
tions between any two nodes in the network, the
algorithm will always choose the same path (based
on the shortest path computation). This means that
if multiple users have non-collapsable computations
on the same two nodes, both data streams will be
sent along the same path, even if redundant paths
are available. One simple way to fix this would be
to allow moving of inserted send and receive com-
putations after they are chosen, much in the way we
move user operations, and take the best performing
location.

Potential Enhancements Though we do not
currently take advantage of it, our system allows
each score (i.e. host score, network score, and/or op-
eration score) to be weighted when combining them
into the single score by taking each to a particular
power. (For a negative score s and power x, use
−(−s)x.) After doing so, each score will still be
negative for exceeding a capacity, 0 for reaching it
exactly, and 1 for being completely unloaded. This
way, we can put more emphasis on one facet of sys-
tem resource use versus another. This weighting
could even be performed for particular local scores
that combine to make up any of the three scores.

Another possible enhancement would be to con-
sider splitting (or ‘striping’) data across multiple
paths between a single source and destination. Do-
ing so would require that the split data be prop-
erly resequenced upon reaching the destination, un-
less the receiving operation could tolerate out-of-
order arrival. While striping would allow greater
efficiency, it may prove intractable to implement al-
gorithmically.

4 Implementation

We have implemented a MediaNet prototype. The
LSs are written in a type-safe systems language
called Cyclone [15], comprising roughly 13,000 lines
of code. Cyclone is simply C at its core, but with re-
strictions to ensure type-safety (e.g. no unsafe casts,
arbitrary pointer arithmetic, etc.) and enhance-
ments for greater flexibility (e.g. exceptions, tagged
unions, garbage collection, a variety of safe pointer
types, etc.). The GS is written in C, consisting of
about 10,000 lines of code, of which roughly 2,800
lines implements the scheduling algorithm. For the
remainder of this section we present the relevant
details on how we implement local scheduling, mon-
itoring, and reconfigurations.

4.1 Local Scheduling

Each LS is implemented around a single-threaded
event loop in conjunction with select on non-
blocking sockets. For each operation in a CMN,
the local scheduler allocates a structure that has
callbacks for ‘received packet’ events and ‘deadline
expiry’ events, used as described in Section 2.2. To
forward data, an operation invokes the callback(s)
of its downstream nodes, following an upcall-style
approach.

By default, we implement send and receive oper-
ations using TCP. For example, in Figure 2, oper-
ation send1 is specified to connect to host pc2 on
TCP port 5000. The main benefit of TCP for us
is that it readily communicates network congestion
to the application. In particular, when the TCP
send buffer fills due to congestion, the application
receives an EWOULDBLOCK error. We use this in our
implementation to “block” the socket and queue the
packets in the application until the congestion sub-
sides (i.e., when select indicates the socket is once
again writable). Once the application queue is filled
(currently size 10), packets are dropped based on
priority. User-supplied operations are used to set
the priority, which is high by default. The chief dis-
advantages of TCP are greater overhead and loss
of control, and that it performs poorly over lossy
links. For our study, TCP was an expedient choice,
and we could imagine using something more appro-
priate, such as RTP [24] over UDP.

4.2 Monitoring

Each send operation is associated with a network
link by the GS, and packet throughput is collected
for each link, including both packets sent and pack-



ets dropped. On regular intervals (currently every
second), this information is aggregated and reported
to the GS. For simplicity, we current use XML mes-
sages embedded in HTTP POSTs.

In the worst case, the number of monitoring mes-
sages grows with the number of nodes, since all link
reports are placed in one message, and the num-
ber of links per node is typically small. While in
the experiments we present in Section 5 monitoring
overhead is low, due to having only a few nodes, the
global scheduler will start becoming taxed as the
network size increases. One way to deal with this is
to reduce the monitoring frequency, and/or to per-
form hierarchical aggregation or gossiping An easy
modification would be to avoid sending messages in
non-overload conditions (i.e., unless frames are be-
ing dropped), where the GS assumes that things are
as it expects.

For each link, the GS maintains an estimate of
the link’s available bandwidth. This variable is
maintained as follows:

1. If the reported available bandwidth exceeds the
estimate, or if the measurement is less than the
estimate and packets are being dropped (indi-
cating the link is at peak capacity), then the
estimate is changed to the reported value. Note
for broadcast links, reports from different LSs
must be combined.

2. At regular intervals (currently every second),
the GS “creeps” its bandwidth estimates, as-
suming that additional bandwidth might now
be available; this is in the spirit of TCP’s ad-
ditive increase. While more experimentation is
needed, we currently increase the estimate by
a constant w = 3% each second. The higher
the value of w the more frequently the GS will
attempt to reconfigure due to greater perceived
resources, making it more adaptive. The trade-
off is that when it is wrong, the reconfiguration
will quickly fail, resulting in a potential disrup-
tion. A dynamic determination of w (perhaps
based on round-trip times) would help.

We have experimented with using other means to es-
timate available bandwidth on underutilized links,
but none has so far proven to be more robust than
bandwidth creeping. In particular, we have im-
plemented an estimator using packet-pair measure-
ments [8], but found that its estimates can be wildly
inaccurate, more closely approaching the link band-
width than the available bandwidth resulting in pre-
mature reconfigurations. Available bandwidth de-
tection is an ongoing area of research with no clear

solutions as yet [8], though some recently proposed
work may be promising [13].

4.3 Reconfiguration

Each time new user specifications, network topol-
ogy updates, or monitoring information arrives at
the GS, the GS runs the scheduling algorithm. If
the algorithm generates a configuration that is dif-
ferent from the old configuration, MediaNet initiates
a reconfiguration phase.

To initiate a global reconfiguration, the GS sends
new CMNs to the LSs via HTTP POST. Because
different LSs may receive these messages at differ-
ent times, we require a form of synchronization to
ensure that data associated with an old version is
not incorrectly forwarded to a new version, which
would be disastrous if that data changed type. To
prevent this, the global scheduler assigns different
TCP port numbers to its inserted send and receive
operations on each reconfiguration.

Naively, the LS could close all existing connec-
tions when notified of a reconfiguration, and wait
for its neighbors to connect on the new ports. How-
ever, this results in lost data, both from the ap-
plication queues and the socket send and receive
buffers. To prevent this, we execute the following
simple synchronization protocol that piggybacks on
normal dataflow.

When a reconfiguration message is received, the
LS sets a flag and caches the message. Next, the LS
closes any receive operations whose input does not
originate from MediaNet itself (i.e., video stream
sources) immediately after grabbing any data from
the socket receive buffer. This data is processed,
and then the LS sends a ‘flush’ packet to the down-
stream operations. When the packet arrives at a
MediaNet receive operation, the receiver closes the
connection, which closes its upstream send as well.
When the flush packet arrives at a non-MediaNet
send operation (i.e., for the user’s video player), the
connection is closed and the flush packet is dropped.
Once all of the send connections are closed on a
given LS, the reconfiguration takes place.

An example is shown in Figure 4. Here, node
A receives a reconfiguration message, so it sends a
flush packet downstream from its recv operation,
since its source is from outside MediaNet (i.e. the
camera). This is forwarded on to node B, where the
MediaNet recv connection notices the packet, and
so closes its connection, thereby closing node A’s
send connection as well. Note that the flush packet
is queued behind any packets in the A’s send queue,
so it will not be received at B until all of these pack-



recv send recv send

1. send
flush

2. forward
flush

3. receive
flush, close
conn

4. receive
flush, close
conn

A B

from
camera to player

Figure 4: An example reconfiguration

ets are processed. Finally, the flush packet reaches
node B’s send operation, so the connection is closed
and the packet is dropped.

This protocol does not eliminate dropped pack-
ets entirely because some or all of the data grabbed
from the receive buffer may constitute only a partial
frame, and will thus be dropped, and because data
can arrive just before the connection is closed. We
can eliminate all unprocessed data by not closing in-
put stream connections, but rather associating them
with the appropriate operations in the new config-
uration; we would probably need to perform some
buffering during the reconfiguration. This should be
straightforward to implement.

5 Experiments

In this section, we present experiments that mea-
sure MediaNet while delivering an MPEG video
stream under various topologies and load condi-
tions. We compare MediaNet’s performance to two
baseline configurations: one in which no adapta-
tion takes place, and one in which adaptation takes
place purely locally, without benefit of global coor-
dination. Both approaches are implemented using
MediaNet’s LSs without the global scheduler.

These experiments were conducted on a 1 GHz
Pentium III with 250 MB of RAM running Linux
kernel 2.4.7-10 as part of RedHat Linux 7.2. We
simulated the presented network topologies by run-
ning the GS and multiple LSs on the same ma-
chine. Within the LSs, a shim layer below the ap-
plication simulates the effect of dropped packets; if
sending the packet would exceed the (dynamically
alterable) bandwidth quota, the shim layer returns
an EWOULDBLOCK. The main disadvantage here is
that this approach does not accurately model TCP’s
backoff behavior, and it ignores some of the cost for
transmitting the data over a network. For the exper-
iments, each simulated CPU has capacity 107 and
each network link has capacity 300 KB/s, simulat-
ing a wireless link. In the near future, we plan to
run the same experiments on Emulab [9].

5.1 Configuration

For the source video, we loop a MPEG video stream
with the following frame distribution:

Frame Type Size (B) Frequency (Hz)
I 13500 2
P 7625 8
B 2850 20

Recall that I frames are essentially JPEG pic-
tures, while P frames and B frames exploit temporal
locality, including “deltas” from adjacent frames. P
frames rely on the most temporally-recent P or I
frame, and B frames rely on the prior I or P frame,
and the next appearing I or P frame. Therefore,
I frames are the most important, and next the P
frames, while B frames are the least important.

For configuring MediaNet, we used the user
CMN depicted in Figure 2, with two differences.
First, each alt configuration includes an additional
MPEG prio operation for setting the drop priority
of MPEG frames. Second, we duplicate the utility
0.5 configuration at utility 0.1 but dropping both
P and B frames (the MPEG drop operation has at-
tributes frametypes="PB" and size="13500", and
interval 0.5).

The size and interval annotations on the user
specification arise from the particular video we are
considering. In the configuration with utility 1.0,
the recv computation notes the arrival interval be-
tween frames as 0.0333; this comes from the fact
that the movie is 30 fps, and thus the inter-frame in-
terval is 1 30 = 0.0333. The size annotation is sim-
ply the average framesize of the movie: 4833 bytes.4

For utility 0.5, the ecv computation is labeled as
before, but the dropB computation has an arrival
interval of 0.1 (i.e. 10 fps) and an average framesize
of 8800, since now only I and P frames are being
sent. Finally, for utility 0.1, we label dropPB with
an arrival interval of 0.5 and an average framesize
of 13500.

5.2 Single Path Adaptation

We first consider a simple configuration in which
three nodes are placed in a line, with the movie
sender on pc1 and the player on pc2:

link1
pc3

link2
pc1 pc2

413500 × 2 + 7625 × 8 + 2850 × 20)/30 = 4833.



0 50 100

time (s)

0

50

100

150
ba

nd
w

id
th

 (
K

B
/s

)
decoded
not decoded
link1 b/w

(a) No adaptivity

0 20 40 60 80 100

time (s)

0

50

100

150

ba
nd

w
id

th
 (

K
B

/s
)

decoded
not decoded
link1 b/w

(b) Local adaptivity

Figure 5: User-perceived performance as available bandwidth diminishes

5.2.1 Local Adaptation

For our baseline cases, “local adaptation” consists
of tagging video frames with priorities, so that the
least important frames are dropped during overload.
Because our implementation is in user-space, we
only drop those frames that are queued within the
LS, and not those already in the kernel send buffer.
The experiment measures the video player’s per-
formance, in terms of the received bandwidth and
the decodable frames, as we lower link1’s available
bandwidth over time.

Each of the graphs we will show in this section
has the same format. Each circle in the figure is
a correctly-decoded frame, while each × is an in-
correctly decoded one. The figure plots time versus
bandwidth, so the x-location is the time the frame
is received, and the y-location is the bandwidth seen
by the player at that time (aggregated over the pre-
vious second). The available bandwidth is shown as
a dashed line. Dropped frames are not shown.

Figure 5(a) shows the no adaptivity case. We can
see that the video quality is quite poor: once conges-
tion kicks in, the application cannot decode any of
the frames it receives because temporally important
frames (I and P frames) are being indiscriminately
dropped.

In contrast, when using local adaptation, the per-
formance improves significantly, as shown in Fig-
ure 5(b). Until roughly time 75, the player can de-
code all of its received frames. Then from time 75
to 120, a number of frames cannot be decoded prop-
erly. This is because at this point we are only send-
ing I or P frames, so any dropped P frame could
prevent downstream P frames from being decoded.
During playback, this manifests as a “glitch” notice-

able by the user. In this case, the large clumping of
glitches is quite disruptive. In the players we have
used, these result in a checkerboard pattern momen-
tarily appearing and corrupting the playback; cor-
rupted playback persists until a frame can be cor-
rectly decoded (i.e. until a circle is reached in the
figure).

5.2.2 Global Adaptation

The MediaNet performance is shown in Figure 6.
In 6(a), the GS performs all adaptation by proac-
tively dropping B frames when it detects that there
is not enough bandwidth (at about time 20), and
later dropping both P and B frames (at about time
110). During the run, the GS optimistically tries to
return to the higher bandwidth configuration but
fails, accounting for the spikes upward at times 20,
30, and 40 (among others). The undecoded frames
arise from packets dropped during reconfiguration,
as was described in Section 4.3.

Figure 6(a) illustrates that MediaNet’s GS is able
to provide good overall viewing quality, whatever
the available bandwidth, whereas the local case has
poor performance while dropping P frames during
times 75-110. While MediaNet reduces the band-
width, particularly during times 20-60 when it is
dropping all B frames, user quality is not signifi-
cantly reduced (10 fps as opposed to 30 fps is hardly
noticeable to most users). Even so, we could com-
bine local and global adaptation to improve the sit-
uation: provide priority-based frame dropping of
B frames, and then perform global adaptation to
proactively drop all P frames. This approach is
taken in Figure 6(b). Until roughly time 60, Media-
Net has the same performance as the local case, but



0 50 100

time (s)

0

50

100

150
ba

nd
w

id
th

 (
K

B
/s

)
decoded
not decoded
link1 b/w

(a) Global adaptivity

0 50 100

time (s)

0

50

100

150

ba
nd

w
id

th
 (

K
B

/s
)

decoded
not decoded
link1 b/w

(b) Global/Local adaptivity

Figure 6: MediaNet performance under diminishing B/W

then gets better viewing quality because it starts
dropping all of its P frames.

While end-user performance is improved in Fig-
ure 6(b), this style of adaptation can reduce net-
work utilization. In particular, if congestion were
occurring on link2 rather than link1, then the con-
figuration used in Figure 6(b) would send the full
stream along link1, only to have some of its frames
dropped on link2; thus some of the bandwidth sent
on link1 would be wasted. In contrast, using the
global-only adaptation shown in Figure 6(a) would
result in the dropF component being inserted on pc1
as soon as congestion was detected on link2, pre-
venting wasted bandwidth on link1. More work is
needed to crystallize these tradeoffs and incorporate
appropriate metrics into the scheduler.

5.3 Finding Alternate Paths

Perhaps the most significant benefit of global adap-
tations is that they can better utilize redundant
paths, which are not uncommon in the wide
area [23]. To illustrate this, we set up an experi-
ment in which there is an additional node between
the sender on pc1 and the player on pc2, forming a
diamond:

pc1 pc2

pc4

pc3

aa

!! aa

!!

link1 link2

link3 link4

Figure 7 shows the performance of the MediaNet
as compared to just local adaptation. The experi-
ment starts with the path going through pc3, and

the bandwidth is incrementally reduced on link1.
For the local case, frames are dropped as the band-
width is reduced, while for MediaNet, the system
is reconfigured so that the traffic goes through pc4,
utilizing the idle link3 as opposed to the congested
link1. Later, link1’s bandwidth is reduced as well,
which causes MediaNet to start dropping frames un-
til it reaches the same level as the local case.

Again, MediaNet must guess as to the possible
available bandwidth on unmaximized links, so it un-
successfully attempts to reconfigure the system a
number of times, most obviously at time 50. Here,
enough time has passed since it last used link1 that
it thinks the bandwidth of the two links is the same,
so it tries to switch back to its preferred config-
uration through pc3. This fails, as noted by the
quick drop in bandwidth, and so the configuration
is restored to going through pc4. Reconfiguration
attempts also occur at times 90 and 105. In these
cases, however, the GS attempts to upgrade the user
configuration on the same path (going from drop-
ping P and B frames to dropping B frames adap-
tively).

We currently exploring ways to prevent the possi-
blity of “route-flapping” suggested by the reconfigu-
ration attempt at time 50. One possibility is to only
reconfigure if the total score (see Section 3.1) ex-
ceeds the current score by some ∆, where the larger
the ∆, the greater the preference for the current con-
figuration. Another possibility is to maintain “con-
fidence” measures for link bandwidth estimates, so
that mostly estimated links are not weighted as
highly in the shortest path computation.



0 50 100

time (s)

0

50

100

150

ba
nd

w
id

th
 (

K
B

/s
)

decoded
not decoded
link1 b/w
link3 b/w

(a) Local adaptivity

0 50 100

time (s)

0

50

100

150

ba
nd

w
id

th
 (

K
B

/s
)

decoded
not decoded
link1 b/w
link3 b/w

(b) Global/Local adaptivity

Figure 7: Local vs. Global adaptivity with redundant paths

6 Related Work

The idea of multi-media processing in the network
was first inspired by the problems of digital video
broadcasting in heterogeneous networks [26, 21].
The growing popularity of the World Wide Web
inspired many follow-up projects. A first practi-
cal implementation of such ideas was described in
[28]. Users could configure various filters on net-
work servers according to the users’ needs. Within
the context of Active Networking [25], various other
projects also have tackled the problem of multicas-
ting in heterogeneous networks, for example [4, 22].
Other projects have targeted the dissemination to
mobile, wireless workstations, such as Quasar [12]
and Odyssey [19].

The MeGa Media Gateway [2] is a server that
allows users to upload and instantiate so-called ser-
vice agents that can process on video streams. A
collection of these gateways can be set up in a clus-
ter configuration, called an Active Service [3]. This
allows services to be composed much like in Media-
Net. Another such project is Degas [20]. Degas
contains decentralized protocols for task distribu-
tion and load balancing. Neither project allows user
specified adaptation, however.

In CANS [10], a centralized plan manager con-
structs a data path in a network of wide-area ser-
vices, and uses heuristics to maximize the minimum
bandwidth along each path. Other projects that
do automatic path creation include Conductor [27],
Ninja [11], and PATHS [5]. The Darwin project [7]
uses a hierarchical resource management strategy
that includes resource reservation and Active Net-

working techniques. Again, MediaNet differs from
these systems in that it allows users to specify how
they wish to adapt to varying resource availability.

BBN’s UAV Open Experimental Platform [16]
allows users to specify how they wish to adopt to
changes in available resources. The adaptation spec-
ification is very low-level: the users have to spec-
ify how they wish to react to particular resource
changes, such as the bandwidth dropping on a par-
ticular link. In MediaNet, we expect most users
to not even be aware of what links exist. Since the
UAV OEP currently allows only one compute server
(called the distributor), no global scheduling is nec-
essary. The MediaNet project was strongly inspired
by the UAV OEP, but provides a much higher-level
specification of adaptation, and supports multiple
compute servers.

7 Conclusions

MediaNet is a system for experimenting with user-
specified, globally-adaptive quality of service in dis-
tributed streaming media applications. It has three
clear benefits:

1. User-specified Adaptation. Users specify
how adaptation should take place, and this is
considered in system-wide scheduling decisions.

2. Improved user performance. By combining
both global adaptations (e.g. by utilizing re-
dundant paths) and local adaptations (e.g. by
using reactive, priority-based frame dropping),
users obtain higher utility.



3. Efficient resource utilization. Because of
the use of an on-line global scheduler, MediaNet
can more efficiently utilize system resources, in
three ways:

(a) It aggregates user-specified continuous
media networks, thus removing redun-
dancy in a multicast-like fashion (e.g. as
in Figure 3).

(b) It utilizes redundant resources, such as al-
ternative, uncongested routing paths.

(c) It adapts proactively to prevent wasted re-
sources, for example by dropping frames
closer to the source when there is down-
stream congestion.

7.1 Future Work

While our work is a promising first step, many ques-
tions remain. These can be broken down in terms
of scalability, accuracy, and applications.

Scalability The largest outstanding questions
concern scalability. For example, how will the
scheduling algorithm perform as more users and
nodes are added? How can we ensure configuration
stability in a highly volatile network setting? How
much overhead will monitoring impose? How can
we eliminate the GS as a central point of failure?

We plan to seek answers to these questions by
pursuing a number of research directions. First, we
plan to use formal tools, in particular Nuprl [1], to
check the properties of our current components and
protocols (as in [18]) and to automate the process
of generating and/or annotating specifications (as
in [17]). We are currently developing a formal se-
mantics of CMNs and proving relevant properties.

Second, we plan to explore a more hierarchical
approach to scheduling, such as used in Darwin [7].
In particular, rather than have the GS determine
a single CMN for each LS, we could have it com-
municate a number of possible CMNs (derived from
different utility-levels), along with criteria for choos-
ing between them. These new specifications would
allow adaptive scheduling to be more distributed,
thus reducing monitoring overhead and the impact
of a GS failure. This approach could be thought of
as automatically generating local scheduling algo-
rithms (perhaps resembling the QuO contracts used
by the BBN OEP [16]) from a global algorithm and
user specifications. The challenge here is balancing
the reduction in overhead due to imposed hierarchy
with the utilization and performance benefits of a
global network view.

Accuracy One of the problems with using a
global scheduler is that it will never have completely
accurate information, due both to reporting delays
or measurement inaccuracies. Using a more hierar-
chical approach will help somewhat with the first
problem. To deal with the second, we are consid-
ering more accurate monitoring code. In particu-
lar, we are interested in developing on-line, avail-
able bandwidth estimations, and combining these
with the bandwidth creeping approach we currently
employ. As mentioned, some work in this direction
has been done by Jain and Dovrolis [13].

Another inaccuracy with our current setup is our
use of TCP. Since we imagine scenarios involving
wireless transmission of streaming media, we need
to consider something that better deals with lossy
links.

Applications Finally, while we have focused on
multimedia streams for our application domain, we
believe MediaNet is general enough to apply to
more general publish/subscribe applications, partic-
ularly ones that employ streaming data. For ex-
ample, we could readily support streaming stock
quote data with corresponding operations, like in-
network filtering. More aggressively, we are inter-
ested in applying MediaNet to the Air Force’s Joint
Battlespace Infosphere (JBI) [14]. The JBI is a
general infrastructure for information dispersement,
along with user-defined aggregation/filtering com-
putations carefully located in the network, called
fuselets. We believe MediaNet is a good fit for
scheduling JBI streams and computations, but the
large open question is how to make it scale to up-
wards of 1000 nodes, as might be required in a large
combat setting.

Acknowledgements

Thanks to Michael Marsh for helping us discover
the usefulness of the harmonic mean. Thanks to
Cyclone development team members Greg Mor-
risett and Dan Grossman for their rapid response
to our Cyclone-related problems. Thanks also to
Scott Nettles, Jonathan T. Moore, and Bobby Bhat-
tacharjee for helpful comments on earlier versions of
this paper.



References

[1] S. Allen, R. Constable, R. Eaton, C. Kreitz,
and L. Lorigo. The Nuprl open logical environ-
ment. In D. McAllester, editor, 17th Int. Conf.
on Automated Deduction, volume 1831 of Lec-
ture Notes in Artificial Intelligence, pages 170–
176. Springer Verlag, 2000.

[2] E. Amir, S. McCanne, and Z. Hui. An applica-
tion level video gateway. In ACM MULTIME-
DIA’95, pages 255–266, November 1995.

[3] E. Amir, S. McCanne, and R. Katz. An Active
Service framework and its application to real-
time multimedia transcoding. In ACM SIG-
COMM’98, pages 178–189, September 1998.

[4] S. Bhattacharjee, K. Calvert, and E. Zegura.
On Active Networking and congestion. Techni-
cal Report GIT-CC-96-02, College of Comput-
ing, Georgia Tech, 1996.

[5] J.M. Bjorndalen, O. Anshus, T. Larsen, and
B. Vinter. Paths – integrating the princi-
ples of method-combination and remote proce-
dure calls for run-time configuration and tuning
of high-performance distributed applications.
In Proc. Norsk Informatikk Konferanse, pages
164–175, November 2001.

[6] BRITE: Boston university Representative In-
ternet Topology gEnerator. http://www.cs.
bu.edu/brite/.

[7] P. Chandra, A. Fisher, C. Kosak, T. S. E. Ng,
P. Steenkiste, E. Takahashi, and H. Zhang.
Darwin: Customizable resource management
for value-added network services. In IEEE
ICNP’98, pages 177–188, October 1998.

[8] J. Curtis and A.J. McGregor. Review of band-
width estimation techniques. In Proc. New
Zealand Computer Science Research Students’
Conference, volume 8, April 2001.

[9] Emulab.net, 2001. http://www.emulab.net.

[10] X. Fu, W. Shi, A. Akkerman, and V. Karam-
cheti. CANS: Composable, adaptive network
services infrastructure. In USITS’01, March
2001.

[11] S.D. Gribble, M. Welsh, R. Van Behren, E.A.
Brewer, D. Culler, N. Borisov, S. Czerwinski,
R. Gummadi, J. Hill, A. Joseph, R.H. Katz,
Z.M. Mao, S. Ross, and B. Zhao. The Ninja
architecture for robust internet-scale systems

and services. Computer Networks (Special Is-
sue on Pervasive Computing), 35(4):473–497,
March 2001.

[12] J. Inouye, S. Cen, C. Pu, and J. Walpole.
System support for mobile multimedia applica-
tions. In ACM NOSSDAV’97, pages 143–154,
May 1997.

[13] M. Jain and C. Dovrolis. End-to-end avail-
able bandwidth: Measurement methodology,
dynamics, and relation with TCP throughput.
In ACM SIGCOMM’02, August 2002. To ap-
pear.

[14] JBI - Joint Battlespace Infosphere. http://
www.rl.af.mil/programs/jbi/default.cfm.

[15] T. Jim, G. Morrisett, D. Grossman, M. Hicks,
J. Cheney, and Y. Wang. Cyclone: A safe di-
alect of C. In USENIX Annual Technical Con-
ference, June 2002. To appear.

[16] D.A. Karr, C. Rodrigues, J.P. Loyall, R.E.
Schantz, Y. Krshnamurthy, I. Pyarali, and
D.C. Schmidt. Application of the QuO quality-
of-service framework to a distributed video ap-
plication. In Proc. of the International Sympo-
sium on Distributed Objects and Applications,
September 2001.

[17] X. Liu, C. Kreitz, R. van Renesse, J. Hickey,
M. Hayden, K. Birman, and R. Constable.
Building reliable, high-performance communi-
cation systems from components. In Proc.
of the 17th ACM Symp. on Operating System
Principles, Kiawah Island Resort, SC, Decem-
ber 1999.

[18] X. Liu, R. van Renesse, M. Bickford, C. Kreitz,
and R. Constable. Protocol switching: Exploit-
ing meta-properties. In Int. Workshop on Ap-
plied Reliable Group Communication, Phoenix,
AZ, April 2001.

[19] B.D. Noble and M. Satyanarayanan. Expe-
rience with adaptive mobile applications in
Odyssey. Mobile Networks and Applications,
4:245–254, 1999.

[20] W.T. Ooi, R. van Renesse, and B. Smith. De-
sign and implementation of programmable me-
dia gateways. In ACM NOSSDAV 2000, June
2000.

[21] J. C. Pasquale, G. C. Polyzos, E. W. Anderson,
and V. P. Kompella. Filter propagation in dis-
semination trees: Trading off bandwidth and

http://www.cs.bu.edu/brite/�
http://www.cs.bu.edu/brite/�
http://www.emulab.net�
http://www.rl.af.mil/programs/jbi/default.cfm�
http://www.rl.af.mil/programs/jbi/default.cfm�


processing in continuous media networks. Lec-
ture Notes in Computer Science, 846:259–269,
1994.

[22] R.S. Ramanujan and K.J. Thurber. An ac-
tive network-based design of a QoS adaptive
video multicast service. In ACM NOSSDAV’98,
pages 29–40, July 1998.

[23] S. Savage, A. Collins, E. Hoffman, J. Snell, and
T. Anderson. The end-to-end effects of internet
path selection. In ACM SIGCOMM’99, pages
289–299, September 1999.

[24] H. Schulzrinne, S. Casner, R. Frederick, and
V. Jacobson. RTP: A transport protocol for
real-time applications. Internet RFC 1889,
1996.

[25] D.L. Tennenhouse and D.J. Wetherall. Towards
an Active Network architecture. Computer
Communication Review, 26(2):5–18, April
1996.

[26] T. Turletti and J. Bolot. Issues with multi-
cast video distribution in heterogeneous packet
networks. In Packet Video Workshop, pages
F3.1–3.4, September 1994.

[27] M. Yavis, A. Wang, A. Rudenko, P. Reiher, and
G.J. Popek. Conductor: A framework for dis-
tributed adaptation. In IEEE HotOS’99, pages
44–49, March 1999.

[28] N. Yeadon, A. Mauthe, D. Hutchison, and
F. Garcia. QoS filters: Addressing the hetero-
geneity gap. Lecture Notes in Computer Sci-
ence, 1045:2271–243, 1996.


