ENHANCING THE NUPRL PROOF DEVELOPMENT SYSTEM AND APPLYING IT TO COMPUTATIONAL ABSTRACT ALGEBRA
Paul Bernard Jackson, Ph.D.
Cornell University 1995
The new proof tools include those that solve linear arithmetic problems, those that apply the properties of order relations, those that carry out inductive proof to support recursive definitions, and those that do sophisticated rewriting. The rewrite tools allow rewriting with relations of differing strengths and take care of selecting and applying appropriate congruence lemmas automatically. The rewrite relations can be order relations as well as equivalence relations. If they are order relations, appropriate monotonicity lemmas are selected.
These proof tools were heavily used throughout the work on computational algebra. Many examples are given that illustrate their operation and demonstrate their effectiveness.
The foundation for algebra introduced classes of monoids, groups, rings and modules, and included theories of order relations and permutations. Work on finite sets and multisets illustrates how a quotienting operation hides details of datatypes when reasoning about functional programs. Theories of summation operators were developed that drew indices from integer ranges, lists and multisets, and that summed over all the classes mentioned above. Elementary factorization theory was developed that characterized when cancellation monoids are factorial. An abstract data type for the operations of multivariate polynomial arithmetic was defined, and the correctness of an implementation of these operations was verified. The implementation is similar to those found in current computer algebra systems.
This work was all done in Nuprl's constructive type theory. The thesis discusses the appropriateness of this foundation, and the extent to which the work relied on it.
Paul Jackson / jackson@cs.cornell.edu