Research Statement

Explicit logic is a great tradition similar to that of classical and intuitionistic logic. Due to its very explicitness, it is the most challenging of the three, and the one most closely connected with Computer Science. Languages whose most natural semantics are in explicit logic include functional programming languages, PROLOG, together with theorem provers such as Nuprl, HOL, Coq, etc.

From the point of view of logic, every computation is a deduction from initial premises in a suitable associated formal system. From the point of view of Computer Science, every deduction is an execution sequence of a computation with the premises as initial data. The "Greats" (Brouwer, Kolmogorov, Goedel) raised in the 1930's a complex of fundamental questions of explicit logic which we can now characterize as determining the exact relation between deduction and computation. One such fundamental relation, stemming from the consistency proofs of Gentzen, has already become a cornerstone of Computer Science. This is the Curry-Howard Isomorphism between typed lambda-terms and intuitionistic deductions.

The Curry-Howard Isomorphism does not of itself capture the self-referential mechanisms available in deductions in sufficiently rich formal systems and in programming languages. Our discovery of a natural system of self-referential proof terms, which we call "proof polynomials", was essential in our solution to the famous open problem of Goedel (1933) concerning formalization of provability (cf. major scientific accomplishments). Proof polynomials considerably extend the Curry-Howard Isomorphism and lead to a joint calculus of propositions and proofs which unifies several previously unrelated areas. We will explain our solution, and why it changes our conception of the appropriate syntax and semantics for typed programming languages, automated deduction and formal verification, reasoning about knowledge, nonmonotonic reasoning.
 

Work in progress:

Applications:

In particular, I am working within the Cornell University PRL-team (R. Constable) on the reflection mechanism design for the next generation Nuprl style automated problem-solving systems (Nurpl 5 and MetaPrl). The current system is Nuprl 4, a 200,000-line Lisp-ML hybrid. It is being used for circuit synthesis; program language semantics; and formal verification; as accumulated database of mathematical knowledge. The system now ranks as one of the major tactic-oriented theorem provers.