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Equational Theory of Kleene Algebra

We now turn to the equational theory of Kleene algebra. This and the next lecture will be
devoted to proving that equational theory of Kleene algebra is the same as the equational
theory of the regular sets under the standard interpretation. In other words, an equation
s = t over Σ is an element of the kernel of the standard interpretation RΣ over RegΣ iff s = t
is a consequence of the axioms of Kleene algebra.

The equational theory of the regular sets, or regular events as they are sometimes called,
was first studied by Kleene [6], who posed axiomatization as an open problem. Salomaa [15]
gave two complete axiomatizations of the algebra of regular events in 1966. Salomaa’s ax-
iomatization is not a universal Horn axiomatization, since it depends on rules whose validity
is not preserved under substitution, thus are not sound under nonstandard interpretations.
Redko [13] proved in 1964 that no finite set of equational axioms could characterize the
algebra of regular events. The algebra of regular events and its axiomatization is the subject
of the extensive monograph of Conway [4]; as we have seen, the bulk of Conway’s treatment
is infinitary.

In Lecture ??, we gave a complete infinitary equational deductive system for the algebra
of regular events that is sound over all star-continuous Kleene algebras [7]. A completeness
theorem for relational algebras with ∗, a proper subclass of Kleene algebras, was given
by Ng and Tarski [12, 11], but their axiomatization relies on the presence of a converse
operator. Schematic equational axiomatizations for the algebra of regular events, necessarily
representing infinitely many equations, have been given by Krob [9] and Bloom and Ésik [3].

Salomaa’s Axiomatizations

Salomaa [15] was the first to axiomatize the equational theory of the regular events. Here is
a brief account of his axiomatization.

Recall that RΣ denotes the interpretation of regular expressions over Σ in the Kleene
algebra RegΣ in which RΣ(a) = {a}, a ∈ Σ. This is called the standard interpretation.

Salomaa [15] presented two axiomatizations F1 and F2 for the algebra of regular events
and proved their completeness. Aanderaa [1] independently presented a system similar to
Salomaa’s F1. Backhouse [2] gave an algebraic version of F1. These systems are equational
except for one rule of inference in each case that is sound under the standard interpretation
RΣ, but not sound in general over other interpretations.
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Salomaa defined a regular expression to have the empty word property (EWP) if the
regular set it denotes under RΣ contains the null string ε. He also observed that the EWP
can be characterized syntactically: a regular expression s has the EWP if either

• s = 1;

• s = t∗ for some t;

• s is a sum of regular expressions, at least one of which has the EWP; or

• s is a product of regular expressions, both of which have the EWP.

A simpler way to say this is that a regular expression s over Σ has the EWP iff ε(s) = 1,
where ε denotes the unique homomorphism ε : RExpΣ → {0, 1} such that ε(a) = 0, a ∈ Σ.

Salomaa’s system F1 contains the rule

u + st = t, s does not have the EWP

s∗u = t
. (7.1)

The rule (7.1) is sound under the standard interpretation RΣ, but the proviso “s does
not have the EWP” is not algebraic in the sense that it is not preserved under substititution.
Consequently, (7.1) is not valid under nonstandard interpretations. For example, if s, t, and
u are the single letters a, b and c respectively, then (7.1) holds; but it does not hold after
the substitution

a 7→ 1 b 7→ 1 c 7→ 0.

Another way to say this is that (7.1) must not be interpreted as a universal Horn formula.
Salomaa’s system F2 is somewhat different from F1 but contains a similar nonalgebraic
proviso.

In contrast, the axioms for Kleene algebra are all equations or equational implications in
which the symbols are regarded as universally quantified, so substitution is allowed.

Equational Logic

By general considerations of equational logic, the axioms of Kleene algebra, along with the
usual axioms for equality, instantiation, and rules for the introduction and elimination of
implications, constitute a complete deductive system for the universal Horn theory of Kleene
algebras (the set of universally quantified equational implications

s1 = t1 ∧ · · · ∧ sn = tn → s = t (7.2)

true in all Kleene algebras) [16, 17].
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More specifically, let ∆ be a set of implicitly universally quantified Horn formulas over
some signature and variables X (in our application, ∆ is the set of axioms of Kleene algebra).
Let d, e, . . . denote equations, A a sequence of equations, σ a substitution of terms for
variables, and ϕ Horn formula. The equational axioms are

x = x

x = y → y = x

x = y → y = z → x = z

x1 = y1 → . . . → xn = yn → f(x1, . . . , xn) = f(y1, . . . , yn),

where in the last, f is an n-ary function symbol of the signature. These are considered to
be implicitly universally quantified. This set of Horn formulas is denoted E. The rules of
inference are:

` σ(ϕ), ϕ ∈ ∆ ∪ E e ` e

A ` ϕ

A, e ` ϕ

A, e ` ϕ

A ` e → ϕ

A ` e A ` e → ϕ

A ` ϕ

and structural rules for permuting A.

Encoding Combinatorial Arguments

To show completeness, we will show how to encode several classical combinatorial construc-
tions of the theory of finite automata algebraically. The first step will be to construct a
transition matrix representing a finite automaton equivalent to a given regular expression.
This construction is essentially implicit in the work of Kleene [6] and appears in Conway’s
monograph [4]. The algebraic approach to the elimination of ε-transitions appears in the
work of Kuich and Salomaa [10] and Sakarovitch [14]. The results on the closure of Kleene
algebras under the formation of matrices essentially go back to Conway’s monograph [4]
and the thesis of Backhouse [2]. It was shown in [8] how to encode algebraically two other
fundamental constructions in the theory of finite automata:

• determinization of an automaton via the subset construction, and

• state minimization via equivalence modulo a Myhill-Nerode equivalence relation.

We then use the uniqueness of the minimal deterministic finite automaton to obtain com-
pleteness.
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We recall some elementary consequences of the axioms of Kleene algebra proved in Ex-
ercise ?? of Homework ??.

xy = yz → x∗y = yz∗

(xy)∗x = x(yx)∗

(x + y)∗ = x∗(yx∗)∗.

These are called the bisimulation rule, the sliding rule, and the denesting rule, respectively.

Matrices over a Kleene Algebra

Under the natural definitions of the Kleene algebra operators +, ·, ∗, 0, and 1, the family
Mat(n, K) of n× n matrices over a Kleene algebra K again forms a Kleene algebra. This is
a standard result that holds for various classes of Kleene algebra-like structures [4, 2]. The
proof for Kleene algebras in our sense appeared first in [8].

Define + and · on Mat(n, K) to be the usual operations of matrix addition and multipli-
cation, respectively, Zn the n×n zero matrix, and In the n×n identity matrix. The partial
order ≤ is defined on Mat(n, K) by

A ≤ B
def⇐⇒ A + B = B.

Under these definitions, it is routine to verify that the structure

(Mat(n,K), +, ·, Zn, In)

is an idempotent semiring.

The definition of E∗ for E ∈ Mat(n,K) comes from [4, 10, 5]. We first consider the case
n = 2. This construction will later be applied inductively.

If

E =

[
a b
c d

]
,

define

E∗ def
=

[
(a + bd∗c)∗ (a + bd∗c)∗bd∗
(d + ca∗b)∗ca∗ (d + ca∗b)∗

]
. (7.3)

To understand where this definition comes from, consider a two-state finite automaton
over the alphabet Σ = {a, b, c, d} and transitions as defined in the following diagram.

s s���� ������ ��

�



�

a d

c

b
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The matrix E is the transition matrix of this automaton. For each i, j, the ijth entry of E∗
is a regular expression describing the set of strings over the alphabet Σ going from state i to
state j.

Lemma 7.1 The matrix E∗ defined in (7.3) satisfies the Kleene algebra axioms for ∗. That
is,

I + EE∗ ≤ E∗ (7.4)

I + E∗E ≤ E∗ (7.5)

and for any X,

EX ≤ X → E∗X ≤ X (7.6)

XE ≤ X → XE∗ ≤ X. (7.7)

Proof. We show (7.4) and (7.6). The arguments for (7.5) and (7.7) are symmetric.

The matrix inequality (7.4) reduces to the four inequalities

1 + a(a + bd∗c)∗ + b(d + ca∗b)∗ca∗ ≤ (a + bd∗c)∗

a(a + bd∗c)∗bd∗ + b(d + ca∗b)∗ ≤ (a + bd∗c)∗bd∗

c(a + bd∗c)∗ + d(d + ca∗b)∗ca∗ ≤ (d + ca∗b)∗ca∗

1 + c(a + bd∗c)∗bd∗ + d(d + ca∗b)∗ ≤ (d + ca∗b)∗

in K. These simplify to

1 ≤ (a + bd∗c)∗

a(a + bd∗c)∗ ≤ (a + bd∗c)∗

b(d + ca∗b)∗ca∗ ≤ (a + bd∗c)∗ (7.8)

a(a + bd∗c)∗bd∗ ≤ (a + bd∗c)∗bd∗

b(d + ca∗b)∗ ≤ (a + bd∗c)∗bd∗ (7.9)

c(a + bd∗c)∗ ≤ (d + ca∗b)∗ca∗ (7.10)

d(d + ca∗b)∗ca∗ ≤ (d + ca∗b)∗ca∗

1 ≤ (d + ca∗b)∗

c(a + bd∗c)∗bd∗ ≤ (d + ca∗b)∗ (7.11)

d(d + ca∗b)∗ ≤ (d + ca∗b)∗,
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of which all but the labeled inequalities (7.8)–(7.11) are trivial. By symmetry, it suffices to
show only (7.8) and (7.9). Using the denesting rule, we can rewrite these as

b(d∗ca∗b)∗d∗ca∗ ≤ (a∗bd∗c)∗a∗

b(d∗ca∗b)∗d∗ ≤ (a∗bd∗c)∗a∗bd∗,

and by the sliding rule,

bd∗ca∗(bd∗ca∗)∗ ≤ a∗(bd∗ca∗)∗

bd∗(ca∗bd∗)∗ ≤ a∗bd∗(ca∗bd∗)∗,

which follow directly from the axioms.

We now establish (7.6). We show that (7.6) holds for X an arbitrary column vector of
length 2; then (7.6) for X any 2 × n matrix follows by applying this result to the columns
of X separately. Let

X =

[
x
y

]
.

We need to show that under the assumptions

ax + by ≤ x (7.12)

cx + dy ≤ y (7.13)

we can derive

(a + bd∗c)∗x + (a + bd∗c)∗bd∗y ≤ x (7.14)

(d + ca∗b)∗ca∗x + (d + ca∗b)∗y ≤ y. (7.15)

By symmetry, it suffices to show just (7.14). Simplifying (7.14), it suffices to show

(a + bd∗c)∗x ≤ x (7.16)

(a + bd∗c)∗bd∗y ≤ x. (7.17)

For both (7.16) and (7.17), it suffices to show

bd∗y + (a + bd∗c)x ≤ x,

and for this it suffices to show ax ≤ x, bd∗cx ≤ x, and bd∗y ≤ x. The first is immediate
from the assumption (7.12). The second is immediate from the last and (7.13). For the last,
we have d∗y ≤ y by (7.13) and an axiom of Kleene algebra, and then bd∗y ≤ by ≤ x by
(7.12) and monotonicity. 2

To extend to matrices of arbitrary dimension, we recall the following fact established in
Lecture ??:
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Lemma 7.2 In any Kleene algebra, a∗b is the unique least solution of the inequality b+ax ≤
x, and ba∗ is the unique least solution of b + xa ≤ x.

Lemma 7.3 Let E ∈ Mat(n, K). There is a unique matrix E∗ ∈ Mat(n, K) satisfying the
Kleene algebra axioms (7.4)–(7.7).

Proof. Partition E into submatrices A, B, C, and D such that A and D are square.

E =

[
A B
C D

]
(7.18)

By the induction hypothesis, D∗ exists and is unique. Let F = A + BD∗C. Again by the
induction hypothesis, F∗ exists and is unique. We define

E∗ =

[
F∗ F∗BD∗

D∗CF∗ D∗ + D∗CF∗BD∗
]

(7.19)

and claim that E∗ satisfies (7.4)–(7.7). The proof is essentially identical to the proof of
Lemma 7.1. We must check that the axioms and basic properties of Kleene algebra used
in the proof of Lemma 7.1 still hold when the primitive symbols of regular espressions are
interpreted as matrices of various dimensions, provided there is no type mismatch in the
application of the operators.

The uniqueness of E∗ follows from Lemma 7.2. 2

It follows from 7.3 that

Theorem 7.4 The structure

(Mat(n, K), +, ·, ∗, Zn, In)

is a Kleene algebra.

The inductive definition (7.19) of E∗ in Lemma 7.3 is independent of the partition of E
chosen in (7.18). This is a consequence of Lemma 7.2, once we have established that the
resulting structure is a Kleene algebra under some partition; cf. [4, Theorem 4, p. 27], which
establishes the same result for S-algebras.

In the proof of Lemma 7.3, we needed to know that the axioms of Kleene algebra still hold
when the primitive letters of regular expressions are interpreted as matrices of various shapes,
possibly nonsquare, provided there is no type mismatch in the application of operators. For
example, one cannot add two matrices unless they are the same shape, one cannot form the
matrix product AB unless the column dimension of A is the same as the row dimension of B,
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and one cannot form the matrix A∗ unless A is square. In general, all the axioms and basic
properties of Kleene algebra still hold when the primitive letters are interpreted as possibly
nonsquare matrices over a Kleene algebra, provided that there are no type conflicts in the
application of the Kleene algebra operators.

For example, consider the distributive law

a(b + c) = ab + ac.

Interpreting a, b, and c as matrices over a Kleene algebra K, this equation makes sense
provided the shapes of b and c are the same and the column dimension of a is the same as
the row dimension of b and c. Other than that, there are no type constraints. It is easy to
verify that the distributive law holds for any matrices a, b and c satisfying these constraints.

For a more involved example, consider the equational implication

ax = xb → a∗x = xb∗.

The type constraints say that a and b must be square (say s× s and t× t respectively) and
that x must be s × t. Under this typing, all steps of the proof of this implication involve
only well-typed expressions, thus the proof remains valid.
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