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Lecturer: Yuval Rabani

In today’s lecture, we will present a randomized algorithm that embeds any arbitrary
metric into a dominating tree metric such that each edge is distorted, in expectation, in the
worst case by a factor of O(log n) and such that each edge is not contracted.

1 Overview and Notation

Recall that a metric on graph G = (V, E) is a function d : E → R. One can define a
metric M = (X, d) on an arbitrary set of vertices X with a distance function d such that
the following properties hold:

• d : X ×X → R

• d(i, j) ≥ 0

• d(i, j) = 0 ⇔ i = j

• d(i, j) = d(j, i)

• d(i, j) + d(j, k) ≥ d(i, k)

A tree metric is the shortest path metric of a weighted tree. In other words, d(i, j) is the
length of the unique shortest path between node i and node j.

A metric (V ′, d′) is said to dominate metric (V, d) if ∀u, v ∈ V, d′(u, v) ≥ d(u, v).

WLOG, ∀i, j, d(i, j) ≥ 1.

Let ∆ denote the diameter of the metric (V, d). WLOG, ∆ = 2δ.

Let S be a family of metrics over V , and D be a distribution of S. We say that (S,D)
α-probabilistically approximates a metric (V, d) if every metric in S dominates d and for
every pair of vertices (u, v) ∈ V , Ed′∈(S,D)[d

′(u, v)] ≤ α · d(u, v). Formally, we’re interested
in O(log n)-probabilistically approximating an arbitrary metric (V, d) by a distribution over
tree metrics.

For a parameter r, an r-cut decomposition of (V, d) is a partitioning of V into clusters,
each centered around a node and having radius at most r. Thus each cluster will have di-
ameter at most 2r.
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A hierarchical cut decomposition of (V, d) is a sequence of δ+1 nested cut decompositions
D0, D1, . . . , Dδ such that

• Dδ = {V }, the trivial partition where all nodes are in a single cluster

• Di is a 2i-cut decomposition, and a refinement of Di+1.

Note that each cluster in D0 has radius at most 1. Hence, each cluster consists of just a
unique node.

Recall that a laminar family F ⊆ 2V is a family of subsets of V such that for any
A,B ∈ F , it si the case that A ⊆ B or B ⊆ A or A ∩B = ∅.

A hierarchical cut decomposition defines a laminar family. A root tree can be generated
from the decomposition as follows: Each set in the laminar family is a node in the tree and
the children of a node corresponding to a set S are the nodes corresponding to maximal
subsets of S in the family.

Remark 1: The node corresponding to V is the root and the singletons are the leaves.

Remark 2: The children of a set in Di+1 are sets in Di.

Define a distance function on this tree as follows: The links from a node S in Di to each
of its children in the tree have length equal to the 2i (which is an upper bound on the radius
of S). Hence, define the distance function dT (·, ·) on the tree to be the length of the shortest
(unique) path distance in T from node u to node v. It’s obvious that ∀u, v, dT (u, v) ≥ d(u, v).

An edge (u, v) is at level i if u and v are first separated in the decomposition Di. Note

that if (u, v) is at level i, then dT (u, v) = 2
i∑

j=0

2j ≤ 2i+2.

2 Algorithm

Below is the random process that defines a hierarchical cut decomposition of (V, d), such
that the probability that an edge (u, v) is at level i decreases geometrically with i:

• Pick a random permutation π of {v1, . . . , vn},
• Select β uniformly at random in the interval [1, 2]

• For each i, we compute Di from Di+1 as follows. First, set βi to be 2i−1β. Let S be a
cluster in Di+1. Assign a node u ∈ S to the first (as defined by π) node v ∈ V closer
than βi to u. Each child cluster of S in Di then consists of the set of vertices in S
assigned to a single center v.
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Remark 1: The center v itself need not be in S. Thus, one center v may correspond to
more than one cluster, each inside a different level (i + 1) cluster.

Remark 2: Since βi ≤ 2i, the radius of each cluster is at most 2i. Thus, we get a 2i-cut
decomposition.

3 Analysis

For a fixed edge (u, v), we’ll show E[dT (u, v)] ≤ O(log n) · d(u, v).

From previous remarks after the algorithm presented above, it follows that

E[dT (u, v)] ≤
δ∑

i=0

Pr[(u, v) is at level i] · 2i+2

If nodes u and v are in separate clusters in Di, we say that Di separates (u, v).

Based on that definition, (u, v) is at level i if

(a) Di separates (u, v).

(b) Dj does not separate (u, v) for any j > i.

Clearly if d(u, v) > 2i+2, then u and v cannot be in the same cluster in Di+1, i.e. Di+1

separates (u, v). From (b) above, (u, v) cannot be at level i. Let j∗ be the smallest i such
that d(u, v) ≤ 2i+2. Thus, Pr[(u, v) is at level i] = 0 for any i < j∗. For i ≥ j∗, we’ll find an
upper bound of the probability that (u, v) is at level i.

From (a) and (b) above, for any i ≥ j∗,

Pr[(u, v) is at level i]

= Pr[Di separates (u, v)] · Pr[@j > i : Dj separates (u, v)|Di separates (u, v)]

≤ Pr[Di separates (u, v)]

For any j∗ ≤ j ≤ δ, let Ku
j be the set of vertices in V closer than 2j to node u, and let

ku
j := |Ku

j |. Define Kv
j and kv

j similarly. For j < j∗, let ku
j = 0.

Now consider the clustering step at level i ≥ j∗. In each iteration, all unassigned nodes
v such that d(v, π(l)) ≤ βi assign themselves to π(l). For some initial iterations of this
procedure, both u and v remain unassigned. Then at some step l, at least one of u and v
gets assigned to the center π(l).
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Center π(l) settles the edge (u, v) at level i if its is the first center to which at least one of
u and v gets assigned. Note that exactly one center settles any edge (u, v) at any particular
level.

Center π(l) cuts the edge e = (u, v) at level i if it settles e at this level, but exactly one
of u and v is assigned to π(l) at level i. Clearly, Di separates (u, v) iff some center w cuts it
at this level. Hence Pr[Di separates (u, v)] =

∑
w Pr[w cuts (u, v) at level i].

Center w cuts u out of (u, v) at level i if w cuts (u, v) at this level and u is assigned to
w (and v is not assigned to w) at this level.

For each center w, we’ll find an upper bound for the probability that w cuts u out of
(u, v) at level i. Arrange the centers in Ku

i in increasing order of distance from u, say
w1, w2, . . . , wku

i
. For a center ws to cut (u, v) such that only u is assigned to ws, it must be

the case that

(a) d(u,ws) ≤ βi.

(b) d(v, ws) > βi.

(c) ws settles e.

Thus βi must lie in [d(u,ws), d(v, ws)]. By the triangle inequality, d(v, ws) ≤ d(v, u) +
d(u,ws), and hence the interval [d(u, ws), d(v, ws)] is of length at most d(u, v). Since βi is
distributed uniformly in [2i−1, 2i], the probability that βi falls in the bad interval is at most
d(u, v)/2i−1. Moreover, for such a value of βi, any of w1, w2, . . . , ws can settle (u, v) at level
i and hence the first amongst these in the permutation π will. Since π is a random permu-
tation, the probability that ws is the one to settle (u, v) at level i is at most 1/s.

At this point, it’s obvious that

Pr[Di separates (u, v)]

≤
ku

i∑
s=1

(d(u, v)/2i−1) · 1

s
+

kv
i∑

s=1

(d(u, v)/2i−1) · 1

s

≤ (d(u, v)/2i−1)(ln ku
i + ln kv

i )

Thus, each i contributes at most O(log n) to the expected value of dT (u, v). Hence, the
expected length is bounded by O(log n log ∆).

However, we want an upper bound of O(log n). Observe that the total number of centers
over all δ levels is n. A more careful analysis of the above procedure will give the desire result.
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First consider some i ≥ j∗ + 4. Since the radius of the cluster at level i is at least 2i−1,
centers very close to both u and v can never cut the edge (u, v). More precisely, for any w
in Ku

i−2, if u is assigned to w, it must be the case that v gets assigned to w also, because
d(v, w) ≤ d(v, u) + d(u,w) ≤ 2i−2 + 2i−2 ≤ 2i−1 ≤ βi (since i ≥ j∗ + 4). Thus, no center in
w1, w2, . . . , wku

i−2
can ever cut u out of (u, v). This implies that the probability that u gets

cut out of edge e is in fact bounded by

ku
i∑

s=ku
(i−2)

+1

1

s
(d(u, v)/2i−1)

= (d(u, v)/2i−1) · (Hku
i
−Hku

(i−2)
)

Since (u, v) can be cut when either u or v is cut out by some node, the overall probability
that Di separates (u, v) is then at most (d(u, v)/2i−1) · [Hku

i
+ Hkv

i
−Hku

(i−2)
−Hkv

i−2
].

For i = j∗+1, j∗+2, j∗+3, this probability is bounded by (d(u, v)/2i−1) · (Hku
i
+Hkv

i
) ≤

(d(u, v)/2i−1 · 2Hn).

Hence,

E[dT (u, v)]

≤
δ∑

i=0

Pr[(u, v) is at level i] · 2i+2

≤
δ∑

i=j∗
Pr[Di separates (u, v)] · 2i+2

≤
j∗+3∑
i=j∗

2Hn · d(u, v)

2i−1
· 2i+2 +

δ∑
i=j∗+4

(Hku
i

+ Hkv
i
−Hku

(i−2)
−Hkv

i−2
) · d(u, v)

2i−1
· 2i+2

≤ 8d(u, v)(4 · 2Hn + Hku
δ

+ Hkv
δ

+ Hku
δ−1

+ Hkv
δ−1

)

≤ 8d(u, v)(12Hn)

= 96 ln n · d(u, v)

The third to last inequality follows because alternate terms of the summation
∑

i(Hku
i
−

Hku
(i−2)

) telescope.
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