Machine Learning theory (CS 6783)

Problem set 0

This assignment is not counted towards your grade and you don't need to submit it. Its meant to brush up some basics and get your hands wet.

Some facts/results you will need for this assignment :

1. Markov Inequality: For any non-negative integrable random variable X, and any $\epsilon>0$,

$$
P(X \geq \epsilon) \leq \frac{\mathbb{E}[X]}{\epsilon}
$$

2. Hoeffding inequality : Let X_{1}, \ldots, X_{n} be n independent identically distributed (iid) random variables such that each $X_{i} \in[a, b]$ and let μ be the expected value of these random variables. Then,

$$
P\left(\left|\frac{1}{n} \sum_{t=1}^{n} X_{t}-\mu\right| \geq \epsilon\right) \leq 2 \exp \left(-\frac{2 n \epsilon^{2}}{(b-a)^{2}}\right)
$$

3. Berntein inequality : Let X_{1}, \ldots, X_{n} be n independent identically distributed (iid) random variables such that each $X_{i} \in[a, b]$ and let μ be the expected value of these random variables and let σ^{2} be their variance. Then,

$$
P\left(\left|\frac{1}{n} \sum_{t=1}^{n} X_{t}-\mu\right| \geq \epsilon\right) \leq 2 \exp \left(-\frac{n \epsilon^{2}}{2 \sigma^{2}+(b-a) \epsilon / 3}\right)
$$

4. Hoeffding-Azuma inequality : Let $\left(X_{t}\right)_{t \geq 0}$ be a martingale and for any $t \geq 2, \mid X_{t}-$ $X_{t-1} \mid \leq c$ then, for any n,

$$
P\left(\left|X_{N}-X_{0}\right| \geq \epsilon\right) \leq 2 \exp \left(-\frac{\epsilon^{2}}{2 n c}\right)
$$

Q1 Let X_{1}, \ldots, X_{n} be n independent identically distributed (iid) random variables that are possibly unbounded having expected value μ. Also assume that for any $i \in[n],\left|X_{i}\right| \leq c$. Use Markov inequality to provide a bound of form

$$
P\left(\left|\frac{1}{n} \sum_{t=1}^{n} X_{t}-\mu\right| \geq \epsilon\right) \leq F(n, c, \epsilon)
$$

What is the form of $F(n, c, \epsilon)$.

Hint :

(a) Write μ as $\mathbb{E}\left[\frac{1}{n} \sum_{t=1}^{n} X_{t}^{\prime}\right]$) where $X_{1}^{\prime}, \ldots, X_{n}^{\prime}$ are drawn iid from same distribution.
(b) Notice that $X_{t}-X_{t}^{\prime}$ has same distribution as $\varepsilon_{t}\left(X_{t}-X_{t}^{\prime}\right)$ where each ε_{t} is a Rademacher random variable (ie. $\{ \pm 1\}$ valued random variable which is either +1 or -1 with equal probability)
(c) Use the fact that $\mathbb{E}\left[\left|\frac{1}{n} \sum_{t=1}^{n} \varepsilon_{t}\right|\right] \leq \sqrt{\frac{2}{n}}$

Q2 Markov Vs Hoeffding Vs Bernstein

Let D be some distribution over the interval $[a, b]$ such that expectation of random variables X 's drawn from D is μ and variance is σ^{2}. We want the following statement to hold :

For any $\delta>0$ and $\epsilon>0$, as long as $n>n(\epsilon, \delta)$, if X_{1}, \ldots, X_{n} are drawn iid from D, with probability at least $1-\delta$,

$$
\left|\frac{1}{n} \sum_{t=1}^{n} X_{t}-\mu\right| \leq \epsilon
$$

What is $n(\epsilon, \delta)$ implied by
(a) Markov bound (more specifically bound from Q1)
(b) Hoeffding inequality
(c) Bernstein inequality

Which of the three is better when
(a) σ^{2} is much smaller compared to $(a-b)^{2}$ and δ is large (say $1 / 2$)
(b) σ^{2} is much smaller compared to $(a-b)^{2}$ and δ is small
(c) σ^{2} is large and δ is small

Basically get a feel for when each of these bounds are useful.
Q3 In this question we will learn to derive what is called Bounded difference inequality or McDiarmid's inequality using Hoeffding-Azuma inequality. The bounded difference inequality states that :

Theorem 1. Consider independent \mathcal{X} valued random variables X_{1}, \ldots, X_{n}. Let $F: \mathcal{X}^{n} \mapsto$ \mathbb{R} be any function such that for any $x_{1}, \ldots, x_{n}, x_{1}^{\prime}, \ldots, x_{n}^{\prime}$ and any $i \in[n]$,

$$
\left|F\left(x_{1}, \ldots, x_{i-1}, x_{i}, x_{i+1}, \ldots, x_{n}\right)-F\left(x_{1}, \ldots, x_{i-1}, x_{i}^{\prime}, x_{i+1}, \ldots, x_{n}\right)\right| \leq c
$$

(the above is called the bounded difference property). Then we have that

$$
P\left(\left|F\left(X_{1}, \ldots, X_{n}\right)-\mathbb{E}[F]\right| \geq \epsilon\right) \leq 2 \exp \left(-\frac{\epsilon^{2}}{2 n c^{2}}\right)
$$

Prove the above theorem using Hoeffding Azuma bound.
Hint :
(a) Define the right martingale sequence using conditional expectations of the function
(b) Use the bounded difference inequality to show that the premise of the HoeffdingAzuma bound holds.

