
Machine Learning Theory (CS 6783)

Lecture 7 : Growth Function, Massart’s Finite Lemma, VC Dimension

1 Recap

1. Bound below holds for Empirical Risk Minimizer (ERM) as well.
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2. Binary classification problem

2

n
sup
D

ESEε

[
sup
f∈F

n∑
t=1

εt`(f(xt), yt)

]
≤ 1

n
sup
D

ESEε

[
sup
f∈F

n∑
t=1

εtf(xt)

]

2 Growth Function

Why is the introduction of Rademacher averages important ? To analyze the term,
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consider the inner expectation, that is conditioned on sample con-

sider the term Eε
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. Note that 1

n
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random variables and we can apply Hoeffding bound for each fixed f ∈ F individually. Now F
might be an infinite class, but, conditioned on input instances x1, . . . , xn, one can ask, what is the
size of the projection set

F|x1,...,xn = {f(x1), . . . , f(xn) : f ∈ F}
For any binary class F , first note that this set can have a maximum cardinality of 2n however it
could be much smaller. In fact we can have,
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]
where the last step is using the Lemma 1 which we shall prove in a bit. Now one can define the
growth function for a hypothesis class F as follows.

ΠF (F , n) = sup{|F|x1,...,xn | : x1, . . . , xn ∈ X}

Example : thresholds
What does the growth function of the class of threshold function look like ?
Well sort any given n points in ascending order, using thresholds, we can get at most n+ 1 possible
labeling on the n points. Hence ΠF (n) = n + 1. From this we conclude that for the learning
thresholds problem,

Vstatn (F) ≤
√

log(n)

n
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3 Massart’s Finite Lemma

Lemma 1. For any set V ⊂ Rn :
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Taking expectation w.r.t. Rademacher random variables,
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Choosing λ =

√
2 log |V |

supv∈V (
∑n

t=1 v
2[t])

completes the proof.

4 Growth Function and VC dimension

Growth function is defined as,
Π(F , n) = max

x1,...,xn

∣∣F|x1,...,xn∣∣
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Clearly we have from the previous results on bounding minimax rates for statistical learning in
terms of cardinality of growth function that :

Vstatn (F) ≤
√

2 log Π(F , n)

n

Note that Π(F , n) is at most 2n but it could be much smaller. In general how do we get a handle
on growth function for a hypothesis class F? Is there a generic characterization of growth function
of a hypothesis class ?

Definition 1. VC dimension of a binary function class F is the largest number of points d =
VC(F), such that

ΠF (d) = 2d

If no such d exists then VC(F) =∞

If for any set {x1, . . . , xn} we have that |F|x1,...,xn | = 2n then we say that such a set is shattered.
Alternatively VC dimension is the size of the largest set that can be shattered by F . We also define
VC dimension of a class F restricted to instances x1, . . . , xn as

VC(F ;x1, . . . , xn) = max
{
t : ∃i1, . . . , it ∈ [n] s.t.

∣∣∣F|xi1 ,...,xin ∣∣∣ = 2t
}

That is the size of the largest shattered subset of n. Note that for any n ≥ VC(F),
supx1,...,xn VC(F|x1,...,xn) = VC(F).

Eg. Thresholds One point can be shattered, but two points cannot be shattered. Hence VC
dimension is 1. (If we allow both threshold to right and left, VC dimension is 2).

Eg. Spheres Centered at Origin in d dimensions one point can be shattered. But even two
can’t be shattered. VC dimension is 1!

Eg. Half-spaces Consider the hypothesis class where all points to the left (or right) of a hyper-
plane in Rd are marked positive and the rest negative. In 1 dimension this is threshold both to left
and right. VC dimension is 2. In d dimensions, think of why d+ 1 points can be shattered. d+ 2
points can’t be shattered. Hence VC dimension is d+ 1.

Lemma 2 (VC’71/Sauer’72/Shelah’72). For any class F ⊂ {±1}X with VC(F) = d, we have that,

Π(F , n) ≤
d∑
i=0

(
n

i

)

Proof. For notational ease let g(d, n) =
∑d

i=0

(
n
i

)
. We want to prove that Π(F , n) ≤ g(d, n) =

g(d, n− 1) + g(d− 1, n− 1). We prove this one by induction on n+ d.

Base case : We need to consider two base cases. First, note that when VC dimension d = 0,
then clearly for any x, x′ ∈ X , f(x) = f(x′) and so we can conclude that for such a class F effec-
tively contains only one function and so Π(F , n) = g(0, n) = 1. On the other hand, note that for
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any d ≥ 1, if VC dimension of the function class F is d then it can at least shatter 1 point and so
Π(F , 1) = g(d, 1) = 2. These form our base case.

Induction : Assume that the statement holds for any class F with VC dimension d′ ≤ d
and any n′ ≤ n− 1 that Π(F , n′) ≤ g(d′, n′). We shall prove the that in this case, for any F with
VC dimension d′ ≤ d, Π(F , n) ≤ g(d′, n) and similarly for any n′ ≤ n, and for any F with VC
dimension at most d+ 1, Π(F , n′) ≤ g(d+ 1, n′).

To this end, consider any class F of VC dimension at most d′ and consider any set of n instances
x1, . . . , xn. Define hypothesis class

F̃ =
{
f ∈ F : ∃f ′ ∈ F s.t. f(xn) 6= f ′(xn), ∀i < n, f(xi) = f ′(xi)

}
That is the hypothesis class consisting of all functions that have a pair with same exact value of
x1, . . . , xn−1 but opposite sign only on xn. We first claim that,∣∣F|x1,...,xn∣∣ =

∣∣F|x1,...,xn−1

∣∣+
∣∣∣F̃|x1,...,xn−1

∣∣∣
This is because F̃|x1,...,xn−1

are exactly the elements that need to be counted twice (once for + and

once for −). We also claim that VC(F̃ ;x1, . . . , xn−1) ≤ d′ − 1 because if not, by definition of F̃ we
know that F̃ can shatter xn and so we will have that

VC(F̃ ;x1, . . . , xn) = VC(F̃ ;x1, . . . , xn−1) + 1 = d′ + 1

This is a contradiction as F̃ is a subset of F which itself has only VC dimension at most d′. Thus
we conclude that for any class F of VC dimension at most d′,

Π(F , n) = sup
x1,...,xn

∣∣F|x1,...,xn∣∣
≤ sup

x1,...,xn

{∣∣F|x1,...,xn−1

∣∣+
∣∣∣F̃|x1,...,xn−1

∣∣∣}
where VC(F̃ ;x1, . . . , xn−1) is at most d− 1. Using the above bound, the inductive hypothesis and
the fact that g(d′, n) = g(d′, n − 1) + g(d′ − 1, n − 1), we conclude that for any class F with VC
dimension at most d′ ≤ d,

Π(F , n) ≤ sup
x1,...,xn

{∣∣F|x1,...,xn−1

∣∣+
∣∣∣F̃|x1,...,xn−1

∣∣∣}
≤ g(d′, n− 1) + g(d′ − 1, n− 1) = g(d′, n)

Similarly for any n′ ≤ n, and for any F with VC dimension at most d + 1, we can show by
repeatedly using the inductive hypothesis, starting from n′ = 2 up until n′ = n that for any
Π(F , n′) ≤ g(d+ 1, n′). This concludes out induction.

Remark 4.1. Note that
∑d

i=0

(
n
i

)
≤
(
n
d

)d
. Hence we can conclude that for any binary classification

problem with hypothesis class F in the statistical learning setting, if VCF ≤ d then,

Vstatn (F) ≤ 1

n
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[
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≤

√
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(
n
d
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n

The above statement basically implies that if a binary hypothesis class F has finite VC dimension,
then it is learnable in the statistical learning (agnostic PAC) framework.
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