Machine Learning Theory (CS 6783)

Lecture 20 : Sequential Rademacher Complexity and Properties

1 Recap

e Using minimax theorem repeatedly and the idea of conditional symmetrization we showed:
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e Further we also showed
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2 Sequential Rademacher Complexity

The above complexity can be equivalently written as follows.
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Where x and y are X and ) valued complete binary tree of depth n. That is, for instance
X = (X1,...,X,) where each x; : {+ — 1}'71 > X.

In general for a given function class G on space Z to reals we define below the sequential
Rademacher complexity.

Definition 1. Given a class G C RZ, we define the sequential Rademacher complexity of the class
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Pictorially, we can view the Rademacher complexity as :
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To see that the two forms are equivalent, note that, given any trees x and y, note that
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Since the above statement holds for any trees x and y we can take the supremum over the trees.
On the other hand, define a pair of tree x* and y™* as follows :
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(and similarly define y}) and subsequently, given each €1.;—1 define
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Clearly by definition of these trees,
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Since we have both inequalities we conclude that the two forms are equivalent.



3 Lower Bound on Online Learning

Let ¥ = [~1,1] and £(y',y) = |y — y.
Claim 1.
Val(F) = RA(F)

Proof. We start with the equality of the minimax rate from two lectures ago. And for the lower
bound we specifically choose the distributions on y’s to be fair coin flip with {£1} outcomes. Hence,
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4 Properties of Sequential Rademacher Complexity

Proposition 2. For any classes G , H mapping instances in Z to reals :
1. If H C G, then Ry (H) < RY(G)
2. For any fized function h: Z — R, R;X (G + h) = RaHG)
3. Rl(cvx(G)) = Ra'(G)
4. RO H)(G +H) =RG) + Ral(H)

Proof for the above properties are identical to proofs for the classical Rademacher complexity ver-
sion from Lecture 7.

Below we prove a proposition that turns out to be helpful for removing the loss function from the
complexity measure in many cases.

Proposition 3. Let s be any {—1,1} valued tree of depth n, then,
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Proof. The statement follows from a very simple observation. Consider any a € {+1} and any
arbitrary function ® : +1 — R. We have that
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We can use the above to conclude the proposition. Let s be any {£1}-valued tree and z any
Z-valued tree. For each t, Given €1,...,¢_1, define
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Note that given any s and z,
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Now since we already showed that for any a € {£1}, ®/(a - ¢) = E, [P+(et)], we have that ,
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e Binary classification : £(y',y) = Iy = 1_23“/ hence Ry, = 5= (30 Geye — infrer >ory f@)ye)
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e Convex Lipchitz loss : YV C R, ¢(g,y) is convex and L-Lipschitz in §. First note that since
loss in convex, no randomization required.
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Since y; is picked after adversary sees g;, think of adversary, instead of picking y; picks
O = 0(Yt,yr) € [—L,L]. Thus the value of the original learning problem is bounded by
minimax rate of the learning problem with linear loss 0, - §;. Hence,
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where in the above 0 is a [—L, L]-valued tree. Since term is convex in 0 it is maximized at
vertex {—L, L} valued tree. Now using above proposition we can get rid of the gradient tree.

4.1 Finite Lemma

Lemma 4. For any set 'V of real valued trees of depth n,
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Proof idea. Similar to the iid version of finite lemma except on trees. We start with replacing max

with soft-max and using Jensen.
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where in the last step we used the inequality (e 4+ e~)/2 < €%°/2. Thus we can conclude that
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5 Growth Function and Covering Number

In the iid case we looked at (effective) cardinality ||, . ,,|- For online learning should we look at
Fix? (Fix is the set of real valued trees got by projecting JF on to tree x, that is Fx = f(x) : f € F).
Is this the right quantity ? Clearly,
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But is the size of F|, the right quantity?
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