Machine Learning Theory (CS 6783)

Lecture 13 : Online Learning, minimax value, sequential Rademacher complexity

1 Recap: Minimax Theorem

We shall use the celebrated minimax theorem as a key tool to bound the minimax rate for online
learning problems. Below we state a generalization of Von Neuman’s minimax theorem.

Theorem 1 (Browein’l4). Let A and B be Banach spaces. Let A C A be nonempty, weakly
compact, and convex, and let B C B be nonempty and convexr. Let g: A x B — R be concave with
respect to b € B and convex and lower-semicontinuous with respect to a € A and weakly continuous
in a when restricted to A. Then

sup inf g(a b) = 1nf sup g(a,b)
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The above theorem states that under the right conditions, one can swap infimum and supremum.
We shall use this in a sequential manner to swap the order of the learner and adversary and use
this to get a handle on minimax rate for online learning. For instance using the above theorem,
we can show that for any loss ¢, lower semicontinuous in its first argument, as long as ) is well
behaved (compact for instance),

inf  sup Eg,q, [0(Gt, 9t) + P(ye)] = sup  inf Eyp, [€(G2, v¢) + P(ye)
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where @ is some arbitrary function.

2 Minimax Rate for Online Learning

Recall that the minimax rate for an online learning problem can be written as :

1« 1 «
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That is in a sequential fashion, on each round, adversary picks the worst input instance x; € X,
The learner then picks the optimal ¢; € A()) the adversary then picks the worst outcome y; € ),
then learner draws prediction ¢ ~ ¢ with the aim of learner to minimize regret and goal of
adversary to maximize regret. We now introduce a shorthand notation. We shall use the notation
(Operator, ), [...] to refer to Operator, Operator, ... Operator, [...]. Hence for instance,

Vot = << sup inf sup E >> [Zf Ut, Yt) — }gfrzﬂ(f(xt),yt)]
t=1 t=1
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We can also write the conditional value as

V(21,915 - @, Yt) :<< sup inf sup E >> Z UGty y) — 1nf ZE

2;€X GEAWD) y;€Y i~4; j=t1 | =il

Claim 2.
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Thus we have the claim. O

Notice that in the above claim, we have a distributions (possibly dependent) over instances but
have essentially eliminated the role of the learner and moved to a completely stochastic object.
From the above claim it is easy to show that the the minimax rate if governed by a quantity
measuring rate of uniform convergence of class F over martingale difference sequences.

Claim 3.
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where P is a joint distribution over the sequence of instances and Ey_1 [-] refers to the conditional
expectation over instance (¢, y:) given past instances (x1,Y1), .-, (Tt—1,Yt—1)
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3 Sequential Rademacher Complexity

In the statistical learning framework a key tool was symmetrization and the use of Rademacher
complexity. With the use of Rademacher complexity we were able to move our focus on how the
function class behaves on the entire space of instances to only how rich the class is effectively on
samples of size n. The question now, is whether there is an analogue of this for uniform convergence
over martingales. Surprisingly it turns out that there is and this complexity we shall refer to as
sequential Rademacher complexity.

Claim 4.
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proceeding in similar fashion
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The above complexity can be equivalently written as follows.
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Where x and y are X and ) valued complete binary tree of depth n. That is, for instance
x = (x1,...,%,) where each x; : {£ — 1}71 = X.
To see that the two forms are equivalent, note that, given any trees x and y, note that
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Since the above statement holds for any trees x and y we can take the supremum over the trees.
On the other hand, define a pair of tree x* and y* as follows :

n n
x] = argmax sup E, << sup IE>> sup Z el (f(xe), ye)
zeX y1€Y T EX € feFri
WEY 49



(and similarly define y}) and subsequently, given each €1.;—1 define
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Clearly by definition of these trees,
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Since we have both inequalities we conclude that the two forms are equivalent.
In general for a given function class G on space Z to reals we define below the sequential
Rademacher complexity.

Definition 1. Given a class G C R?, we define the sequential Rademacher complexity of the class

G as,
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Pictorially, we can view the Rademacher complexity as :

+1

e=(+1,-1,-1,...,1)
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