
Machine Learning Theory (CS 6783)

Lecture 17: Online Convex Optimization/Learning

1 Recap

• Statistical learning :

– Tools : Sample based Rademacher complexity, sample based covering number, fat-
shattering dimension, (Binary classification VC dimension)

– Upper Bounds on Learning Rate : Rademacher complexity, Dudley integral bound,
Integral bound with fat-shattering dimension.

– Lower Bounds : For supervised learning in terms of same tools

– Algorithm : Empirical Risk Minimization

• Online Learning :

– Tools : Sequential Rademacher complexity, sequential covering number, sequential fat-
shattering dimension, (Binary classification Littlestone dimension)

– Upper Bounds on Learning Rate : sequential Rademacher complexity, sequential version
of Dudley integral bound, Integral bound with sequential fat-shattering dimension.

– Lower Bounds : For supervised learning in terms of same tools (to within constant factor
for interesting losses)

– Algorithm : ?

Is there a principled way of designing online learning algorithms?

2 Online Convex Optimization Setting

For the purpose of this lecture let us modify the online learning protocol a bit (this can be done
w.l.o.g.). First, Let Z = X × Y, that is the instance space pair. Let F be a convex subset of a
vector space. ` : F × Z 7→ R is the loss function. For each z ∈ Z let `(·, z) be a convex function.

For t = 1 to n

Learner picks ŷt ∈ F
Receives instance zt ∈ Z
Suffers loss `(ŷt, zt)

End

1

The goal again is to minimize regret :

Regn :=
1

n

n∑
t=1

`(ŷt, zt)− inf
f∈F

1

n

n∑
t=1

`(f , zt)

3 Examples

Online Linear SVM In the case of SVM we are interested in linear predictors with constraint
on the `2 norm of the predictor. In this case, X ⊂ Rd, Y = {±1}. Z = X × Y and `(f , (x, y)) =
max{0, 1 − y · f>x}, F = {f : ‖f‖2 ≤ R}. Feel free to change hinge loss to any convex loss line
square loss, logistic loss etc. Also feel free to replace the constraint ‖f‖2 ≤ R by some other convex
constraint. Regret is given by

Regn =
1

n

n∑
t=1

max{0, 1− yt · ŷ>t xt} − inf
f∈F

1

n

n∑
t=1

max{0, 1− yt · f>t xt}

Regularized Linear Prediction Another set of problems that automatically fits the online
convex optimization framework are regularized loss minimization problem. Here again X ⊂ Rd,
Y could be say [−1, 1]. Now consider the case when `(f , (x, y)) = φ(f>x, y) + R(f). Where
φ : R × R 7→ R is some loss convex in first argument. R : F 7→ R is a convex function. As an
example think of the regularized version of SVM or online ridge regression, or online Lasso.

Matrix Prediction/Collaborative Filtering Imagine we have a bunch of M users and a bunch
of N products. We want to predicts ratings of users for various products in an online fashion. Eg.
on round t we are given xt ∈ [M] × [N] the position of the matrix we are required to predict.
Learner then picks the predicted rating. Finally the true rating is revealed and learner suffers loss
for predicting wrong.

Regn =
1

n

n∑
t=1

|ŷt[xt]− yt| − inf
f∈F

1

n

n∑
t=1

|f [xt]− yt|

Think of F as a convex set where each f ∈ F is an M × N matrix. Each ŷt is also an M × N
matrix.

3.1 Online to Batch/Statistical

Given an online learning algorithm for these convex problems it is really simple to get a batch
learning algorithm for the problem with almost no extra computational cost. Note that if we have
an online learning algorithm with regret bound raten, this would imply that :

1

n

n∑
t=1

`(ŷt, zt)− inf
f∈F

1

n

n∑
t=1

`(f , zt) ≤ raten

Now say we were really interested only in statistical learning, and say we get sample S = {z1, . . . , zn}
iid from some fixed but unknown distribution D. The new simply run the online learning procedure

2

on this sample one by one for n rounds.

raten ≥ ES

[
1

n

n∑
t=1

`(ŷt, zt)− inf
f∈F

1

n

n∑
t=1

`(f , zt)

]

≥ ES

[
1

n

n∑
t=1

`(ŷt, zt)

]
− inf

f∈F
ES

[
1

n

n∑
t=1

`(f , zt)

]

= ES

[
1

n

n∑
t=1

`(ŷt, zt)

]
− inf

f∈F
LD(f)

=
1

n

n∑
t=1

Ez1,...,zt−1 [Ezt∼D [`(ŷt, zt)]]− inf
f∈F

LD(f)

However ŷt only depends on z1, . . . , zt−1 and so Ezt∼D [`(ŷt, zt)] = LD(ŷt). Hence :

raten ≥
1

n

n∑
t=1

ES [LD(ŷt)]− inf
f∈F

LD(f)

= ES

[
1

n

n∑
t=1

LD(ŷt)

]
− inf

f∈F
LD(f)

= ES

[
LD

(
1

n

n∑
t=1

ŷt

)]
− inf

f∈F
LD(f)

Thus given an online learning algorithm which some regret guarantee for a convex learning problem
the way to convert it to a batch algorithm is simply run it over the training sample once and then
calculate the average ỹn = 1

n

∑n
t=1 ŷt and return this ash the final predictor.

3.2 Online Linear Optimization

Though we are concerned with general convex losses, it suffices (in many cases with no additional
cost) to only consider online linear optimization where the loss is linear rather than general convex.
The reason for this is the following. First, given any z1, . . . , zn ∈ Z let f∗ = argmin

f∈F

∑n
t=1 `(f , zt).

Now note that by convexity,

n∑
t=1

`(ŷt, zt)−
n∑

t=1

`(f∗, zt) ≤
n∑

t=1

〈∇`(ŷt, zt), ŷt − f∗〉

≤
n∑

t=1

〈∇`(ŷt, zt), ŷt〉 − inf
f∈F

n∑
t=1

〈∇`(ŷt, zt), f〉

Now let D be the subset of vectors defined as, D = {∇(f , z) : f ∈ F , z ∈ Z. Now since in the online
learning protocol, learner picks ŷt ∈ F and then adversary picks z ∈ Z, we can simply think of
adversary as directly picking any ∇t ∈ D directly and this only increases the bound. Thus,

1

n

n∑
t=1

`(ŷt, zt)− inf
f∈F

1

n

n∑
t=1

`(f , zt) ≤
1

n

n∑
t=1

〈∇t, ŷt〉 − inf
f∈F

1

n

n∑
t=1

〈∇t, f〉

3

What the above means is that if we have an algorithm for online linear optimization, we can use
it as an algorithm for online convex optimization assuming the instance received on round t is the
gradients of the convex function at the point ŷt.

4 Online Gradient Descent

In this example we assume F = {f : ‖f‖2 ≤ R} and D is a set whose elements all have Euclidean
norm bounded by B. We consider linear loss. That is at time t the loss is 〈∇t, ŷt〉.

Algorithm :
ŷt+1 = ΠF (ŷt − η∇t)

where ΠF is the Euclidean projection on to set F and η > 0 is referred to as step-size.

ΠF (f) =

{
f if ‖f‖2 ≤ R

R f
‖f‖2

otherwise

Claim 1. If we use the online gradient descent algorithm with η = R
B
√
n
and ŷ1 = 0, then

1

n

n∑
t=1

〈∇t, ŷt〉 − inf
f∈F

1

n

n∑
t=1

〈∇t, f〉 ≤
RB√
n

Proof. Fix any f∗ ∈ F . Note that,

‖ŷt+1 − f∗‖22 = ‖ΠF (ŷt − η∇t)− f∗‖22 ≤ ‖ŷt − η∇t − f∗‖22 = ‖ŷt − f∗‖22+η2 ‖∇t‖22−2η〈∇t, ŷt − f∗〉

Thus we can conclude that

〈∇t, ŷt − f∗〉 ≤ 1

2η

(
‖ŷt − f∗‖22 − ‖ŷt+1 − f∗‖22

)
+
η

2
‖∇t‖22

Summing we get,

n∑
t=1

〈∇t, ŷt − f∗〉 ≤ 1

2η

n∑
t=1

(
‖ŷt − f∗‖22 − ‖ŷt+1 − f∗‖22

)
+
η

2

n∑
t=1

‖∇t‖22

=
1

2η

(
‖ŷ1 − f∗‖22 − ‖ŷn+1 − f∗‖22

)
+
η

2
nB2

≤ 1

2η
R2 +

η

2
nB2

Using the η from the claim and dividing throughout by n gives the result.

Bound from sequential Rademacher complexity : Recall that for linear case with bounded
Euclidean norms the Sequential Rademacher complexity was in fact bounded as RB√

n
which matches

the above
What is the lower bound for this problem? In fact it is not hard to see that the lower bound

for this problem is also RB√
n

at least when dimensionality is huge. To see this assume the adver-

sary simply plays on each round vector orthogonal to current ŷt and also orthogonal to previous
∇1, . . . ,∇t−1.

4

This algorithm is worst case optimal (in terms of computational efficiency) for SVM (even for
statistical learning). Why ? Think about sample complexity and amount of time needed to read
the data.

5 Online Mirror Descent

Online gradient descent doesn’t even type check in general vector space! If F and D have more
interesting (convex) structures, can we get better bounds ? How do we design algorithms for these
problems.

5

