
CS5412:

OVERLAY NETWORKS

Ken Birman

1 CS5412 Spring 2014 (Cloud Computing: Birman)

Lecture IV

Overlay Networks

CS5412 Spring 2014 (Cloud Computing: Birman)

2

 We use the term overlay network when one network

(or a network-like data structure) is superimposed

upon an underlying network

 We saw this idea at the end of lecture III

 Today we’ll explore some examples

 The MIT “Resilient Overlay Network” (RON)

 Content-sharing overlays (Napster, Gnutella, dc++)

 Chord: An overlay for managing (key,value) pairs. Also

known as a distributed hash table or DHT.

Why create a overlay?

CS5412 Spring 2014 (Cloud Computing: Birman)

3

 Typically, we’re trying to superimpose some form of

routed behavior on a set of nodes

 The underlying network gives the nodes a way to

talk to each other, e.g. over TCP or with IP packets

 But we may want a behavior that goes beyond just

being able to send packets and reflects some kind

of end-user “behavior” that we want to implement

VPN overlays

CS5412 Spring 2014 (Cloud Computing: Birman)

4

 Many CS5412 students have experience with VPNs

 A kind of remote login to your company or University

 Allows you to access site securely through a firewall

 A VPN usually works by

 Negotiating a security key (using saved credentials plus
some form of password)

 Making a TCP SSL (TLS) connection to a server

 “Tunneling” traffic over that link; the IP address space
of the VPN is available via this route

Next example: RON

CS5412 Spring 2014 (Cloud Computing: Birman)

5

 Developed at MIT by a research group that

 Noticed that Internet routing was surprisingly slow to
adapt during overloads and other problems

 Wanted to move data and files within a set of nodes

 Realized that “indirect” routes often outperformed
direct ones

 What do we mean by an indirect route?

 Rather than send file F from A to B, A sends to C and C
relays the file to B

 If the A-B route is slow, perhaps A-C-B will be faster

But doesn’t Internet “route around” congestion?

CS5412 Spring 2014 (Cloud Computing: Birman)

6

 Early Internet adapted routing very frequently

 Circumvent failed links or crashed routers

 Cope with periodic connectivity, like dialup modems
that are only connected now and then

 Spread network traffic evenly by changing routing
when loads change

 By 1979 a problem was noticed

 Routing messages were creating a LOT of overhead

 In fact the rate of growth of this overhead was faster
than the rate of growth of the network size & load!

How can overheads grow so fast?

CS5412 Spring 2014 (Cloud Computing: Birman)

7

 Think about the idea of algorithmic complexity

 Like for sorting

 In a single machine, we know that sorting takes time

O(n log n) but that bubble sort is slow and takes

time O(n2).

 Both do the same thing

 But bubble sort is just an inefficient way to do it

 Leads to notion of asymptotic complexity

Protocols have complexity too!

CS5412 Spring 2014 (Cloud Computing: Birman)

8

 Can be measured in many ways

 How many messages are sent in total on the network?

 How many do individual nodes send or receive?

 How many “rounds” of the protocol are required

 How many bytes of data are exchanged?

 Of this how much is legitimate data and how much was

added by the protocol?

 Of the legitimate data, how many bytes are ones the

receiver has never seen, and how many are duplicates?

 How directly does data go from source to destination?

Complexity of routing protocols

CS5412 Spring 2014 (Cloud Computing: Birman)

9

 Routing protocols vary widely in network complexity

 BGP, for example, is defined in terms of dialog
between a BGP instance and its peers

 At start, sends initialization messages that inform peers of
the full routing table.

 Subsequently, sends “incremental” update messages that
announce new routes and withdraw old ones

 To understand the complexity of BGP we need to
understand relationship between frequency of these
packets size of network, and rate of network “events”

BGP complexity study

CS5412 Spring 2014 (Cloud Computing: Birman)

10

 Can be evaluated using theory tools.

 Create a model... then present equations that

predict costs in terms of event rates

[Bringing order to BGP: decreasing time and message

complexity. Anat Bremler-barr, Nir Chen, Jussi Kangasharju,

Osnat Mokryn, Yuval Shavitt. ACM Principles of Distributed

Computing (PODC), Aug. 2007, pp. 368-369.]

But more common to just use practical tools

CS5412 Spring 2014 (Cloud Computing: Birman)

11

 For example, back in 1979, Internet developers

simply measured the percentage of network traffic

that was due to network management protocols

 They discovered it was quite high and rising

 Concluded that steps were needed to reduce costs

 Eliminated routing protocols that had higher overheads

 Reduced rate of routing adaptations

Today’s Internet?

CS5412 Spring 2014 (Cloud Computing: Birman)

12

 There are many reasons routing adapts slowly

 Old desire to keep overheads low

 Modern need to route heavy traffic on economically

efficient paths

 Many policies and “cross-border” deals between ASs

enter the picture

 Best route is the cheapest route to operate not

necessarily the route that makes the A-B file transfer

move fastest!

How RON approaches this

CS5412 Spring 2014 (Cloud Computing: Birman)

13

 They built an infrastructure that supports IP tunneling

 Means that a packet from A to B might be treated as data

and placed within a packet from A to C

 Sometimes called “IP over IP”

 Now they can implement their own special routing layer

that decides how to get data from A to B

 A sends packet

 RON intercepts it and “encapsulates” it for tunneling

 Routes on its own routing infrastructure (still on the Internet)

 On arrival, de-encapsulate and deliver

How RON approaches this

CS5412 Spring 2014 (Cloud Computing: Birman)

14

 Build an all-to-all monitoring tool to track bandwidth
and delay (latency)

 Part of the trick was to estimate one-way costs

 For brevity won’t delve into those details

 This results in a table (we’ll just show latency):

 Note that A-B delay is 17ms, but A-C is 9 and C-B 2

A B C

A - 17 9

B 5 - 22

C 14 2 -

Source routing

CS5412 Spring 2014 (Cloud Computing: Birman)

15

 RON sender

 Computes the best route considering direct and also

one-hop indirect routes

 Encapsulated packets

 Specifies the desired routing in a special header: a

form of “source routing”

 RON daemons relay the packet as instructed

 On arrival, extract inner packet and deliver it

RON really works!

CS5412 Spring 2014 (Cloud Computing: Birman)

16

 MIT studies showed big performance speedups

using this technique!

 In fact the direct routes are almost always worse than

the best indirect routes

 And a single indirect hop is generally all they needed

(double indirection adds too much delay)

 RON also adapts quickly

 Internet routes much more slowly

Learning from history...

CS5412 Spring 2014 (Cloud Computing: Birman)

17

 Concept: Tragedy of the Commons (or “Crisis”)

 We share a really great resource (the “commons”)

 But someone decides to use the commons for themseles

in an unsustainable way and gains economic advantage

 We need to be competitive, so all of us do the same

 This denudes the commons... Everyone loses

 When we share a limited resource, sometimes the

bet shared policy isn’t the best individual one

//upload.wikimedia.org/wikipedia/commons/7/7c/Cows_on_Selsley_Common_-_geograph.org.uk_-_192472.jpg

What does this say about RON?

CS5412 Spring 2014 (Cloud Computing: Birman)

18

 For the individual user, RON makes things better

 But if we believe that economics has “shaped” the

Internet, RON basically cheats!

 In effect, the RON user is getting more network

resource than he’s paying for by circumventing the

normal sharing policy

 If everyone did this, the RON approach would break

down much as the commons ends up with no grass left

Broader theory...

CS5412 Spring 2014 (Cloud Computing: Birman)

19

 The research community has been interested in what are
called “Nash Equillibria”

 Idea is that a set of competitors each have a “utility”
function (a measure of happiness) and sets of strategies that
guide their action

 Such as “decide to graze my cow on the commons”

 Goal is to find a configuration where if any player were to
use some other strategy, they would lose utility

 In principle we all see the logic of the optimal strategy

 But assumes that players are logical and able to see big picture

Other cases for overlays?

CS5412 Spring 2014 (Cloud Computing: Birman)

20

 A major use of overlays has been in peer to peer file
sharing services such as Napster, Gnutella, dc++

 These generally have two aspects

 A way to create a list of places that have the file you want
(perhaps, a movie you want to download)

 A way to connect to one of those places to pull the file from
that machine to yours
 Once you have the file, your system becomes a possible source for

other users to download from

 In practice, some users tend to run servers with better resources
and others tend to be mostly downloaders

A mix of technical and non-technical issues

CS5412 Spring 2014 (Cloud Computing: Birman)

21

 Non-technical: what is the “tragedy of the commons”

scenario if everyone uses these sharing services?

 How should the law deal with digital IP ownership

 If a web search helps you find “inappropriate”

content, or an ISP happens to carry that, were they

legally responsible for doing so?

Technical issue

CS5412 Spring 2014 (Cloud Computing: Birman)

22

 What’s the very best way for a massive collection

of computers in the wide-area Internet (the WAN)

to implement these two aspects

 Best way to do search?

 Best way to implement peer-to-peer downloads?

 Cloud computing solutions often have a search

requirement so we’ll focus on that

 Useful even within a single data center

Context

CS5412 Spring 2014 (Cloud Computing: Birman)

23

 We have a vast number of machines (millions)

 Goal is to support (key,value) operations

 Put(key,value) stores this value in association with key

 Get(key) finds the value currently bound to this key

 Some systems allow updates, some allow multiple

bindings for a single key. We won’t worry about

those kinds of detail today

P2P “environment”

 Nodes come and go at will (possibly quite

frequently---a few minutes)

 Nodes have heterogeneous capacities

 Bandwidth, processing, and storage

 Nodes may behave badly

 Promise to do something (store a file) and not do it

(free-loaders)

 Attack the system

CS5412 Spring 2014 (Cloud Computing: Birman)

24

Basics of all DHTs

 Goal is to build some “structured” overlay

network with the following characteristics:

 Node IDs can be mapped to the hash key

space

 Given a hash key as a “destination

address”, you can route through the

network to a given node

 Always route to the same node no matter

where you start from

13

33

58 81

97

111
127

CS5412 Spring 2014 (Cloud

Computing: Birman)
25

Simple example (doesn’t scale)

 Circular number space 0 to 127

 Routing rule is to move counter-clockwise

until current node ID key, and last hop

node ID < key

 Example: key = 42

 Obviously you will route to node 58 from

no matter where you start

13

33

58 81

97

111
127

CS5412 Spring 2014 (Cloud Computing: Birman)

26

81

Building any DHT

 Newcomer always starts with at least one

known member

13

33

58

97

111
127

24

CS5412 Spring 2014 (Cloud Computing: Birman)

27

Building any DHT

 Newcomer always starts with at least one

known member

 Newcomer searches for “self” in the

network

 hash key = newcomer’s node ID

 Search results in a node in the vicinity

where newcomer needs to be

81

13

33

58

97

111
127

24

CS5412 Spring 2014 (Cloud Computing: Birman)

28

Building any DHT

 Newcomer always starts with at least one

known member

 Newcomer searches for “self” in the

network

 hash key = newcomer’s node ID

 Search results in a node in the vicinity

where newcomer needs to be

 Links are added/removed to satisfy

properties of network

81

13

33

58

97

111
127

24

CS5412 Spring 2014 (Cloud Computing: Birman)

29

Building any DHT

 Newcomer always starts with at least one
known member

 Newcomer searches for “self” in the
network

 hash key = newcomer’s node ID

 Search results in a node in the vicinity
where newcomer needs to be

 Links are added/removed to satisfy
properties of network

 Objects that now hash to new node are
transferred to new node

81

13

33

58

97

111
127

24

CS5412 Spring 2014 (Cloud Computing: Birman)

30

Insertion/lookup for any DHT

 Hash name of object to produce key

 Well-known way to do this

 Use key as destination address to

route through network

 Routes to the target node

 Insert object, or retrieve object, at

the target node

81

13

33

58

97

111
127

24

foo.htm93

CS5412 Spring 2014 (Cloud Computing: Birman)

31

Properties of most DHTs

 Memory requirements grow (something like)

logarithmically with N

 Unlike our “any DHT”, where routing is linear in N, real

DHTs have worst possible routing path length (something

like) logarithmic with N

 Cost of adding or removing a node grows (something like)

logarithmically with N

 Has caching, replication, etc…

CS5412 Spring 2014 (Cloud Computing: Birman)

32

DHT Issues

 Resilience to failures

 Load Balance

 Heterogeneity

 Number of objects at each node

 Routing hot spots

 Lookup hot spots

 Locality (performance issue)

 Churn (performance and correctness issue)

 Security

CS5412 Spring 2014 (Cloud Computing: Birman)

33

We’re going to look at four DHTs

 At varying levels of detail…

 CAN (Content Addressable Network)

 ACIRI (now ICIR)

 Chord

 MIT

 Kelips

 Cornell

 Pastry

 Rice/Microsoft Cambridge

CS5412 Spring 2014 (Cloud Computing: Birman)

34

Things we’re going to look at

 What is the structure?

 How does routing work in the structure?

 How does it deal with node departures?

 How does it scale?

 How does it deal with locality?

 What are the security issues?

CS5412 Spring 2014 (Cloud Computing: Birman)

35

CAN structure is a cartesian coordinate

space in a D dimensional torus

1

CAN graphics care of Santashil PalChaudhuri, Rice Univ CS5412 Spring 2014 (Cloud Computing: Birman)

36

Simple example in two dimensions

1 2

CS5412 Spring 2014 (Cloud Computing: Birman)

37

Note: torus wraps on “top” and “sides”

1

2

3

CS5412 Spring 2014 (Cloud Computing: Birman)

38

Each node in CAN network occupies a

“square” in the space

1

2

3

4

CS5412 Spring 2014 (Cloud Computing: Birman)

39

With relatively uniform square sizes

CS5412 Spring 2014 (Cloud Computing: Birman)

40

Neighbors in CAN network

 Neighbor is a node
that:

 Overlaps d-1
dimensions

 Abuts along one
dimension

CS5412 Spring 2014 (Cloud

Computing: Birman)
41

Route to neighbors closer to target

 d-dimensional space

 n zones

 Zone is space occupied by a

“square” in one dimension

 Avg. route path length

 (d/4)(n 1/d)

 Number neighbors = O(d)

 Tunable (vary d or n)

 Can factor proximity into

route decision

Z1 Z2 Z3 Z4… Zn

(x,y)

(a,b)

CS5412 Spring 2014 (Cloud

Computing: Birman)
42

Chord uses a circular ID space

N32

N10

N100

N80

N60

Circular
ID Space

• Successor: node with next highest ID

K33, K40, K52

K11, K30

K5, K10

K65, K70

K100

Key ID Node ID

Chord slides care of Robert Morris, MIT CS5412 Spring 2014 (Cloud Computing: Birman)

43

Basic Lookup

N32

N10

N5

N20

N110

N99

N80

N60

N40

“Where is key 50?”

“Key 50 is
At N60”

• Lookups find the ID’s predecessor
• Correct if successors are correct CS5412 Spring 2014 (Cloud Computing: Birman)

44

Successor Lists Ensure Robust Lookup

• Each node remembers r successors

• Lookup can skip over dead nodes to find blocks
• Periodic check of successor and predecessor links

N32

N10

N5

N20

N110

N99

N80

N60

N40

10, 20, 32

20, 32, 40

32, 40, 60

40, 60, 80

60, 80, 99

80, 99, 110

99, 110, 5

110, 5, 10

5, 10, 20

CS5412 Spring 2014 (Cloud Computing: Birman)

45

Chord “Finger Table” Accelerates Lookups

N80

½ ¼

1/8

1/16
1/32
1/64
1/128

To build finger tables, new

node searches for the key

values for each finger

To do it efficiently, new nodes

obtain successor’s finger table,

and use as a hint to optimize

the search

CS5412 Spring 2014 (Cloud Computing: Birman)

46

Chord lookups take O(log N) hops

N32

N10

N5

N20

N110

N99

N80

N60

Lookup(K19)

K19

CS5412 Spring 2014 (Cloud Computing: Birman)

47

Drill down on Chord reliability

 Interested in maintaining a correct routing table
(successors, predecessors, and fingers)

 Primary invariant: correctness of successor pointers

 Fingers, while important for performance, do not have to be
exactly correct for routing to work

 Algorithm is to “get closer” to the target

 Successor nodes always do this

CS5412 Spring 2014 (Cloud Computing: Birman)

48

Maintaining successor pointers

 Periodically run “stabilize” algorithm

 Finds successor’s predecessor

 Repair if this isn’t self

 This algorithm is also run at join

 Eventually routing will repair itself

 Fix_finger also periodically run

 For randomly selected finger

CS5412 Spring 2014 (Cloud Computing: Birman)

49

Initial: 25 wants to join correct ring

(between 20 and 30)

20

30

25

20

30 25

20

30

25

25 finds successor, and

tells successor (30) of

itself
20 runs “stabilize”:

20 asks 30 for 30’s predecessor

30 returns 25

20 tells 25 of itself

CS5412 Spring 2014 (Cloud Computing: Birman)

50

This time, 28 joins before 20 runs

“stabilize”

20

30 25

28

20

30

25

28

28 finds successor, and

tells successor (30) of

itself

20

30

28

25

20 runs “stabilize”:

20 asks 30 for 30’s predecessor

30 returns 28

20 tells 28 of itself

CS5412 Spring 2014 (Cloud Computing: Birman)

51

20

30

28

25

25 runs “stabilize”

20

30

28

25

25

30

28

20

20 runs “stabilize”

CS5412 Spring 2014 (Cloud Computing: Birman)

52

Chord summary

CS5412 Spring 2014 (Cloud Computing: Birman)

53

 Ring with a kind of binary-search

 Self-repairing and self-organizing

 Depends on having a “good” hash function;

otherwise some nodes might end up with many

(key,value) pairs and others with few of them

Chord can malfunction if the network

partitions…

0

123

199

202

241

255

248

108

177

64

30

Europe
USA

0

123

199

202

241

255

248

108

177

64

30

Transient Network

Partition

CS5412 Spring 2014 (Cloud Computing: Birman)

54

Chord has no sense of “integrity”

CS5412 Spring 2014 (Cloud Computing: Birman)

55

 The system doesn’t know it should be a ring... so it

won’t detect that it isn’t a ring!

 MIT solution is to make this very unlikely using

various tricks, and they work

 But an attacker might be able to force Chord into a

partitioned state and if so, it would endure

… so, who cares?

 Chord lookups can fail… and it suffers from high

overheads when nodes churn

 Loads surge just when things are already disrupted…

quite often, because of loads

 And can’t predict how long Chord might remain

disrupted once it gets that way

 Worst case scenario: Chord can become inconsistent

and stay that way

CS5412 Spring 2014 (Cloud Computing: Birman)

56

More issues

CS5412 Spring 2014 (Cloud Computing: Birman)

57

 Suppose my machine has a (key,value) pair and

your machine, right in this room, needs it.

 Search could still take you to Zimbabwe, Lima,

Moscow and Paris first!

 Chord paths lack “locality” hence can be very long,

and failures that occur, if any, will disrupt the system

Impact?

CS5412 Spring 2014 (Cloud Computing: Birman)

58

 Other researchers began to look at Chord and ask

if they could design similar structures that

 Implement the DHT interface

 But have better locality and are better at self-healing

after disruptive events

 We’ll examine some of them in the next lecture

