CS 381 Fall 2000 Solutions to Homework 2

Handout #4

UNION OF DFAs 1 & 2

In case of intersection (2,3) is the only final state.

DFA accepting A.2

Proof that the DFA accepts $A_{5,2}$

Claim: If $w = a_1 a_2 \dots a_n$ and decimal(w) = 5k + r, $0 \le r < 5$, where decimal(w) is the decimal value represented by the binary string, then the above DFA after reading w is in state r.

Proof of the claim by induction on length of w: If |w|=1, then it obvious that the claim is true. Assume that it is true for |w| < n. Consider $w = a_1 a_2 \dots a_n$. Let $w' = a_1 a_2 \dots a_{n-1}$. Then $decimal(w) = 2 * decimal(w') + a_n$. If decimal(w') = 5k + r, then $decimal(w) = 2*(5k+r)+a_n = 5*(2k)+2r+a_n$. Hence w should be in state $2r+a_n \pmod{5}$. By induction hypothesis, after reading w', the DFA will be in state r. Check that for all possible values of r (0,1,2,3,4,) and all possible a_n (0,1), the DFA goes to the state $2r+a_n \pmod{5}$. Hence the claim.

Hence using this claim, it is obvious the the DFA accepts $A_{5,2}$, because if $w \in A_{5,2}$, then the DFA after reading w will be in state 0 which is the final state.

Handout #5

Problem 1

Construction of the new DFA M': Let s be the start state of M. The new DFA M' has all the states of M plus the additional state s'. If s is a final state in M, then s' is a final state in M'. The start state of M' is again s. The transition function δ' of M' is:

 \forall states q in M, if $\delta(q, a) = q'$ and $q' \neq s$, then $\delta'(q, a) = q'$ else $\delta'(q, a) = s'$.

Finally if $\delta(s, a) \neq s$, then $\delta'(s', a) = \delta(s, a)$ else $\delta'(s', a) = s'$.

So from the construction it is obvious that in M', the start state s has no incoming arrows. Claim: If M reads a string w and reaches state q, then M' on w will reach q if $q \neq s$ else s'.

An immediate inference of this claim is if M' reaches a final state iff M reaches a final state on the same input. i.e M and M' are equivalent.

Proof by induction on the length of w: If |w|=1, then easy to see that the above claim is true. Therefore let it be true for |w| < n. Consider |w| = n. Let $w = a_1 a_2 \dots a_n$. Let $w' = a_1 a_2 \dots a_{n-1}$. $\delta'(s,w) = \delta'(\delta'(s,w'),a_n)$ Let $\delta'(s,w') = q_{n-1}$. There are 2 cases: $q_{n-1} = s'$ and $q_{n-1} \neq s'$. Consider the case $q_{n-1} \neq s'$. Then by induction hypothesis, $\delta(s,w') = q_{n-1}$. Let $\delta(q_{n-1},a_n) = q_n$. If $q_n \neq s$, then by definition $\delta'((q_{n-1},a_{n-1}) = q_n$ and we are done. If $q_n = s$, then by definition $\delta'((q_{n-1},a_n) = s')$ and again we are done. The other case $q_{n-1} = s'$ is analysed similarly. Hence the claim.

Problem 3

The idea: A regular $\Rightarrow \exists$ DFA M, such that language accepted by M is A. From M, we will construct NFA M^R such that language accepted it is A^R , the reverse of A. This implies M^R is regular.

Construction of M^R : Let s be the start state of M. M^R includes all the states of M plus an additional state t. The transition function δ' of M^R is defined as follows:

 \forall states q in M, $\delta'(q, a)$ =includes r iff $\delta(r.a) = q$ (reversing the edges in M) and $\delta'(t, \epsilon) = f \quad \forall f$ which are final states of M t is the start state of M^R and s the final state.

Claim: Language accepted by M^R is A^R .

Proof: Suppose $w=a_1a_2\ldots a_n$ is acceped by M.Let M go reach the states q_1,q_2,\cdots,q_n after reading $a_1,a_1a_2,\cdots,a_1a_2\ldots a_n$ respectively. q_n is a final state. Then in M^R there is a path from t to s via q_n,q_{n-1},\cdots,q_1 traversing the edges a_n,a_{n-1},\cdots,a_1 . Hence w^R is accepted by M^R .

Now suppose $w = a_1 a_2 \dots a_n$ is not acceped by M. We have to show that w^R is not accepted by M^R . On the contrary assume that w^R is accepted by M^R . This implies that starting from t we can reach s through a path consisting of edges a_n, a_{n-1}, \dots, a_1 . From our construction of M^R , it follows that there is a path in M from s to a final state consisting of edges a_1, a_2, \dots, a_n , which implies w is accepted by M, a contradiction. Hence w^R is not accepted by M^R . Hence the claim.