Announcements:

e PS4 due Thursday Oct 20, 11:59PM
e Partner up for PS5!
o Design reviews, TBD in section Monday
e Anonymous survey out soon
e Quiz #4 on 10/27 at start of class
e Prelim #2 on evening of Tue 11/15, review session the night before

e Guest lecture: “Effective OCaml” on Thu 11/3 by Yaron Minsky, Jane Street
Capital
e Guest lecture on Tue 11/22 (right before Thanksgiving break)

Concurrency

So far in this class we've been talking about sequential programs.
o Execution of a sequential program proceeds one step at a time, with
no choice about which step to take next.
Sequential programs are somewhat limited
o both because they are not very good at dealing with multiple sources
of simultaneous input
o And because they are limited by the execution resources of a single
processor.
For this reason, many modern applications are written using parallel
programming techniques.

There are many different approaches to parallel programming
o They all share the fact that a program is split into multiple different
processes that run at the same time.
Each process runs a sequential program,
o But the collection of processes no longer results in a single overall
predictable sequence of steps.
Rather, steps execute concurrently with one another,
o Resulting in potentially unpredictable order of execution for certain
steps with respect to other steps.

e The granularity of parallel programming can vary widely,
o from coarse-grained techniques that loosely coordinate the
execution of separate programs, such as pipes in Unix
= or the http protocol between a Web server and its clients
o To fine-grained techniques where concurrent code shares the same
memory, such as lightweight threads.

e In both cases it is necessary to coordinate the execution of multiple

sequential programs.

e Two important types of coordination are commonly used:
o Synchronization, where multiple processes wait for certain

conditions.
o Communications, where messages are passed between processes.

e In this lecture we will consider the lightweight thread mechanism in OCaml.

The threads library provides concurrent programming primitives for

multiple threads of control which execute concurrently in the same
memory space.

Threads communicate by modifying shared data structures or by sending

and receiving data on communication channels.

The threads library is not enabled by default. Compilation using threads is
described in the threads library documentation.

It should be noted that the OCaml threads library is implemented by time-
sharing on a single processor

o Does not take advantage of multi-processor machines.
Thus the library will not make programs run faster

However often programs are easier to write when structured as multiple
communicating threads.

http://caml.inria.fr/pub/docs/manual-ocaml/manual038.html
http://caml.inria.fr/pub/docs/manual-ocaml/manual038.html

e Forinstance, most user interfaces concurrently handle user input and the
processing necessary to respond to that input.

e A user interface that does not have a separate execution thread for user
interaction is highly frustrating to use

o Because it does not respond to the user in any way until a current
action is completed.

o For example, a web browser must be simultaneously:
= handling input from the user interface,
= reading and rendering web pages incrementally as new data
comes in, and
= Running programs embedded in web pages.

o All these activities must happen at once, so separate threads are
used to handle each of them.

e Another example of a naturally concurrent application is a web crawler,
which traverses the web collecting information about its structure and
content.

o It doesn't make sense for the web crawler to access sites
sequentially,
= Most of the time would be spent waiting for the remote server
and network to respond to each request.
o Therefore, a typical web crawler is highly concurrent, simultaneously
accessing thousands of different web sites.
o This design uses the processor and network efficiently.

Concurrency is a powerful language feature that enables new kinds of
applications,
But it also makes writing correct programs more difficult,

o because execution of a concurrent program is nondeterministic:

o The order in which things happen is not known ahead of time.
The programmer must think about all possible orders in which the different
threads might execute,

o And make sure that in all of them the program works correctly.

If the program is purely functional, nondeterminism is easier because
evaluation of an expression always returns the same value

o For example, the expression (2+4)+(3*5) could be executed
concurrently, with the left and right products evaluated at the same
time. The answer would not change.

Note that many programming languages do not specify the order of
argument evaluation

o Why is this?

Imperative programming is much more problematic.

o For example, the expressions (!x) and (a := 1a+1), if executed by
two different threads, could give different results depending on
which thread executed first, if it happened that x and a were the
same ref.

A simple example

Let's consider a simple example using multiple threads and a shared
variable, to illustrate how what would be straightforward in a sequential
program produces quite unexpected results in a concurrent program.

A partial signature for the Thread module is

module type Thread = sig
type t
val create : ('a -> 'b) -> 'a > t
val self: unit -> t
val id: t -> int
val delay: float -> unit
end

Thread.create f a Creates a new thread in which the function ¢ is applied to
the argument s, returning the handle for the new thread as soon as it is
created (not waiting for r to be run).

The new thread runs concurrently with the other threads of the program.
The thread exits when £ exits (either normally or due to an uncaught
exception).
O Thread.self () returns the handle for the current thread, and
Thread.id (t) returns the identifier for the given thread handle.
O Thread.delay(d) causes the current thread to suspend itself (stop
execution) for 4 seconds.
o There are a number of other functions in the thread module,
however note that a number of these other functions are not
implemented on all platforms.

http://caml.inria.fr/pub/docs/manual-ocaml/libref/Thread.html

Now consider the following function, which defines an internal function t
that simply loops n times, and on each loop increments the shared variable
result by the specified amount, i, sleeping for a random amount of time up
to one second in between reading result and incrementing it.
o The function £ is invoked in two separate threads, one of which
increments in by 1 on each iteration and the other of which

increments by 2.

Tet progl (n) =

let result = ref 0 in

Tet f (i) =
for j =1 to n do
Tet v = !result in Thread.delay(Random.float 1.0); result := v+i;

print_string("value " A string_of_int(!result) A "\n");
flush stdout

done

in
ignore (Thread.create f 1);
ignore (Thread.create f 2)

e Viewed as a sequential program, this function could never result in the
value of resu1t decreasing from one iteration to the next,

o Asthe values passed in to r are positive, and are added to resu1t.

o However, with multiple threads, it is easy for the value of resuit to
actually decrease.

o If one thread reads the value of resuit, and then while it is sleeping
that value is incremented by another thread, that increment will be
overwritten, resulting in the value decreasing.

e Forinstance:

progl(10);;
value
value
value
value
value
value
value
value
value
value
value
value
value
value
value
value
value
value 9
value 10
value 20

- unit = O

ORRrRPRPNRORFRPRUVIRPERROWONRMAREDN
co O & N o

e |tisimportant to note that this same issue exists even without the thread
sleeping between the time that it reads and updates the variable resuit.

o The sleep increases the chance that we will see the code execute in
an unexpected manner,

o The simple act of incrementing a mutable variable inherently needs
to first read that variable, do a calculation and then write the
variable.

o If aprocess is interrupted between the read and write steps by some
other process that also modifies the variable, the results will be
unexpected.

10

