
1 

 

Announcements: 

 PS4 due Thursday Oct 20, 11:59PM 

 Partner up for PS5! 

o Design reviews, TBD in section Monday 

 Anonymous survey out soon 

 Quiz #4 on 10/27 at start of class 

 Prelim #2 on evening of Tue 11/15, review session the night before 

 

 Guest lecture: “Effective OCaml” on Thu 11/3 by Yaron Minsky, Jane Street 

Capital 

 Guest lecture on Tue 11/22 (right before Thanksgiving break) 

  



2 

 

Concurrency 

 

 So far in this class we've been talking about sequential programs.  

o Execution of a sequential program proceeds one step at a time, with 

no choice about which step to take next.  

 Sequential programs are somewhat limited  

o both because they are not very good at dealing with multiple sources 

of simultaneous input  

o And because they are limited by the execution resources of a single 

processor.  

 For this reason, many modern applications are written using parallel 

programming techniques. 

  

 

 

 There are many different approaches to parallel programming 

o They all share the fact that a program is split into multiple different 

processes that run at the same time.  

 Each process runs a sequential program,  

o But the collection of processes no longer results in a single overall 

predictable sequence of steps.  

 Rather, steps execute concurrently with one another,  

o Resulting in potentially unpredictable order of execution for certain 

steps with respect to other steps. 

 

  



3 

 

 The granularity of parallel programming can vary widely,  

o from coarse-grained techniques that loosely coordinate the 

execution of separate programs, such as pipes in Unix  

 or the http protocol between a Web server and its clients 

o To fine-grained techniques where concurrent code shares the same 

memory, such as lightweight threads.  

 

 

 In both cases it is necessary to coordinate the execution of multiple 

sequential programs.  

 

 

 Two important types of coordination are commonly used:  

o Synchronization, where multiple processes wait for certain 

conditions.  

o Communications, where messages are passed between processes.  

 

 In this lecture we will consider the lightweight thread mechanism in OCaml. 

 

  



4 

 

 The threads library provides concurrent programming primitives for 

multiple threads of control which execute concurrently in the same 

memory space.  

 

 Threads communicate by modifying shared data structures or by sending 

and receiving data on communication channels. 

 

  

 The threads library is not enabled by default. Compilation using threads is 

described in the threads library documentation.  

 

 It should be noted that the OCaml threads library is implemented by time-

sharing on a single processor  

o Does not take advantage of multi-processor machines.  

 Thus the library will not make programs run faster 

 

 However often programs are easier to write when structured as multiple 

communicating threads. 

 

  

http://caml.inria.fr/pub/docs/manual-ocaml/manual038.html
http://caml.inria.fr/pub/docs/manual-ocaml/manual038.html


5 

 

 For instance, most user interfaces concurrently handle user input and the 

processing necessary to respond to that input.  

 

 A user interface that does not have a separate execution thread for user 

interaction is highly frustrating to use 

 

o Because it does not respond to the user in any way until a current 

action is completed.  

 

o For example, a web browser must be simultaneously:  

 handling input from the user interface,  

 reading and rendering web pages incrementally as new data 

comes in, and  

 Running programs embedded in web pages.  

 

o All these activities must happen at once, so separate threads are 

used to handle each of them. 

  

 Another example of a naturally concurrent application is a web crawler, 

which traverses the web collecting information about its structure and 

content.  

o It doesn't make sense for the web crawler to access sites 

sequentially,  

 Most of the time would be spent waiting for the remote server 

and network to respond to each request.  

o Therefore, a typical web crawler is highly concurrent, simultaneously 

accessing thousands of different web sites.  

o This design uses the processor and network efficiently. 

 

  



6 

 

 Concurrency is a powerful language feature that enables new kinds of 

applications,  

 But it also makes writing correct programs more difficult,  

o because execution of a concurrent program is nondeterministic:  

o The order in which things happen is not known ahead of time.  

 The programmer must think about all possible orders in which the different 

threads might execute,  

o And make sure that in all of them the program works correctly.  

 

 If the program is purely functional, nondeterminism is easier because 

evaluation of an expression always returns the same value 

o For example, the expression (2*4)+(3*5) could be executed 

concurrently, with the left and right products evaluated at the same 

time. The answer would not change. 

 Note that many programming languages do not specify the order of 

argument evaluation 

o Why is this? 

 Imperative programming is much more problematic.  

o For example, the expressions (!x) and (a := !a+1), if executed by 

two different threads, could give different results depending on 

which thread executed first, if it happened that x and a were the 

same ref. 

  



7 

 

 A simple example 

 

 Let's consider a simple example using multiple threads and a shared 

variable, to illustrate how what would be straightforward in a sequential 

program produces quite unexpected results in a concurrent program.  

 A partial signature for the Thread module is  

 
module type Thread = sig 
  type t 
  val create : ('a -> 'b) -> 'a -> t 
  val self: unit -> t 
  val id: t -> int 
  val delay: float -> unit 
end 
 

 Thread.create f a creates a new thread in which the function f is applied to 

the argument a, returning the handle for the new thread as soon as it is 

created (not waiting for f to be run).  

 

 The new thread runs concurrently with the other threads of the program. 

The thread exits when f exits (either normally or due to an uncaught 

exception).  

o Thread.self() returns the handle for the current thread, and 

Thread.id(t) returns the identifier for the given thread handle.  

o Thread.delay(d) causes the current thread to suspend itself (stop 

execution) for d seconds.  

o There are a number of other functions in the Thread module, 

however note that a number of these other functions are not 

implemented on all platforms. 

 

  

http://caml.inria.fr/pub/docs/manual-ocaml/libref/Thread.html


8 

 

 Now consider the following function, which defines an internal function f 

that simply loops n times, and on each loop increments the shared variable 

result by the specified amount, i, sleeping for a random amount of time up 

to one second in between reading result and incrementing it.  

o The function f is invoked in two separate threads, one of which 

increments in by 1 on each iteration and the other of which 

increments by 2.  

let prog1 (n) = 
  let result = ref 0 in 
  let f (i) = 
    for j = 1 to n do 
      let v = !result in Thread.delay(Random.float 1.0); result := v+i; 
 print_string("Value " ^ string_of_int(!result) ^ "\n"); 
 flush stdout 
 
    done 
  in 
    ignore (Thread.create f 1); 
    ignore (Thread.create f 2) 

  



9 

 

 Viewed as a sequential program, this function could never result in the 

value of result decreasing from one iteration to the next,  

o As the values passed in to f are positive, and are added to result.  

o However, with multiple threads, it is easy for the value of result to 

actually decrease.  

o If one thread reads the value of result, and then while it is sleeping 

that value is incremented by another thread, that increment will be 

overwritten, resulting in the value decreasing.  

 For instance:  

# prog1(10);; 
Value 2 
Value 1 
Value 4 
Value 2 
Value 6 
Value 3 
Value 8 
Value 4 
Value 10 
Value 5 
Value 12 
Value 6 
Value 14 
Value 7 
Value 16 
Value 18 
Value 8 
Value 9 
Value 10 
Value 20 
- : unit = () 

  



10 

 

 It is important to note that this same issue exists even without the thread 

sleeping between the time that it reads and updates the variable result.  

o The sleep increases the chance that we will see the code execute in 

an unexpected manner,  

o The simple act of incrementing a mutable variable inherently needs 

to first read that variable, do a calculation and then write the 

variable.  

o If a process is interrupted between the read and write steps by some 

other process that also modifies the variable, the results will be 

unexpected. 

 

 


