Linear Congruences

- The equation $ax = b$ for $a, b \in \mathbb{R}$ is uniquely solvable if $a \neq 0$: $x = b/a$.
- Want to extend to the linear congruence:

 $ax \equiv b \pmod{m}, \qquad a, b \in \mathbb{Z}, m \in \mathbb{N}^+$. (1)

- If x_0 is a solution then so is $x_k := x_0 + km$, $\forall k \in \mathbb{Z}$
- ... since $km \equiv 0 \pmod{m}$.
- So, uniqueness can only be modulo m .
- How many solutions modulo 4 to $2x \equiv 2 \pmod{4}$?

$$
\bullet \ 2 \cdot 1 \equiv 2 \cdot 3 \equiv 2 \pmod{4}.
$$

- Claim If $gcd(a, m) = 1$ then (1) has at most one solution modulo m.
- **Proof.** Suppose $r, s \in \mathbb{Z}$ are solutions of (1).

$$
\cdot \Rightarrow a(r - s) \equiv 0 \pmod{m}
$$

$$
\cdot \Rightarrow m \mid r - s \Rightarrow r \equiv s \pmod{m}.
$$

Linear Congruences cont.

- The key to finding a solution:
- $x = b/a = ba^{-1}$ where a^{-1} is the solution to $ay = 1$.
- Claim. Let $m \in \mathbb{N}^+$, $a \in \mathbb{Z}$. Suppose $\exists \bar{a} \in \mathbb{Z}$ s.t $a\bar{a} \equiv 1 \pmod{m}$. Then for any $b \in \mathbb{Z}$, $x = b\bar{a}$ is a solution of $ax \equiv b \pmod{m}$.
- Proof.

$$
a(b\bar{a}) \equiv a\bar{a}b \equiv 1 \cdot b \equiv b \pmod{m}.
$$

- Example: to solve $3x \equiv 4 \pmod{7}$ first find $\overline{3} \pmod{7}$:
	- \cdot -2 \cdot 3 \equiv -6 \equiv 1 (mod 7) \Rightarrow -2 \equiv 3 (mod 7).
	- $x = 3 \cdot 4 = -2 \cdot 4 = -8$ satisfies $3x \equiv 4 \pmod{7}$.
- Does \bar{a} always exist?
- Can you solve $2x \equiv 1 \pmod{4}$?
- $2 \cdot 0 \equiv 2 \cdot 2 \equiv 0 \pmod{4}$ and $2 \cdot 1 \equiv 2 \cdot 3 \equiv 2 \pmod{4}$.
- What about $2x \equiv 1 \pmod{2n}$?
- What about 2 modulo 3?
- When does \bar{a} exist? Is it unique? How can we find it?

Inverse Modulo m

• Theorem. If a, m are relatively prime integers and $m > 1$ then there exists a unique inverse of a modulo m denoted as \bar{a} .

• Proof.

- $\cdot \exists s, t \in \mathbb{Z} \text{ s.t. } as + mt = 1$
- $\cdot \Rightarrow as \equiv 1 \pmod{m} \Rightarrow s$ is an inverse modulo m
- · Since an inverse is a solution to $ax \equiv 1 \pmod{m}$ uniqueness was already proved.
- Cor. \bar{a} is given by the extended Euclid algorithm.
- Example: $gcd(3, 7) = 1 \Rightarrow \exists \overline{3} \text{ modulo } 7$
	- $\cdot 7 = 2 \cdot 3 + 1 \Rightarrow -2 \cdot 3 + 7 = 1 \Rightarrow \overline{3} \equiv -2 \pmod{7}$.

The Chinese Remainder Theorem

- Example. Pick an integer $n \in [0, 104]$.
	- \cdot Tell me its remainders modulo 3, 5, and 7 (r_3, r_5, r_7) .
	- · Let me "guess": $n = 70r_3 + 21r_5 + 15r_7 \mod 105$.
- Def. m_1, \ldots, m_n are pairwise relatively prime if $\forall i, j$, $gcd(m_i, m_j) = 1.$
- Theorem. Let $m_1, \ldots, m_n \in \mathbb{N}^+$ be pairwise relatively prime. The set of equations

 $x \equiv a_i \pmod{m_i} \qquad i = 1, 2 \ldots n \qquad (2)$ has a unique solution modulo $M := \prod_{i=1}^{n} m_i$.

- Comments:
	- \cdot If x is a solution then so is $x + kM$ for any $k \in \mathbb{Z}$.
	- There exists a unique solution $x \in \mathbb{N} \cap [0, M-1]$.
- Example: a solution to
	- $\cdot x \equiv r_3 \pmod{3}$, $x \equiv r_5 \pmod{5}$, $x \equiv r_7 \pmod{7}$
	- \cdot is $x = 70r_3 + 21r_5 + 15r_7 \mod 105$.
	- · The key:

 \cdot 70 mod 3 = 1, 70 mod 5 = 0, 70 mod 7 = 0

- \cdot 21 mod 3 = 0, 21 mod 5 = 1, 21 mod 7 = 0
- \cdot 15 mod 3 = 0, 15 mod 5 = 0, 15 mod 7 = 1

Proof of the CRT

- Proof. A solution exists if $\exists x_i, i = 1, \ldots, n$ s.t.: $x_i \equiv 1 \pmod{m_i}$ $x_i \equiv 0 \pmod{m_j} \quad \forall j \neq i.$ (3) • Indeed, $x := \sum_{1}^{n} a_j x_j$ satisfies $x \equiv$ $\frac{n}{\sqrt{2}}$ $j=1$ $a_j(x_j \mod m_i) \equiv$ $\frac{n}{\sqrt{2}}$ $j=1$ $a_j \delta_{ij} \equiv a_i \pmod{m_i}.$ • We prove (3) constructively: let $s_i = M/m_i$. · Then, $s_i = \prod_{i \neq j} m_j \equiv 0 \pmod{m_j}$ for $j \neq i$. י (י
דד · s_i has an inverse modulo m_i , $\bar{s_i}$ $\cdot \ldots$ since $gcd(m_i, s_i) = 1$. Let $x_i := s_i \overline{s_i}$. · For $i = 1, \ldots, n$, x_i satisfies (3). · In our example: $s_3 = 5 \cdot 7 = 35$, $\bar{s}_3 = 2$ $s_5 = 3 \cdot 7 = 21$, $\bar{s_5} = 1$ $s_7 = 3 \cdot 5 = 15$, $\bar{s_7} = 1$. • Uniqueness: suppose x and y satisfy (2) . $\cdot \Rightarrow x - y \equiv 0 \pmod{m_i}$ for $i = 1, \ldots, n$. · The next lemma completes the proof: • Lemma. If $m_i \in \mathbb{N}^+$ are pairwise relatively prime
	- **Lemma.** If $m_i \in \mathbb{N}$ are pairwise relatively
and $m_i | s$ for $i = 1, ..., n$ then $\prod_1^n m_i | s$.

Proof of the CRT cont.

- Lemma. If $m_i \in \mathbb{N}^+$ are pairwise relatively prime **Lemma.** If $m_i \in \mathbb{N}$ are pairwise relativished and $m_i | s$ for $i = 1, ..., n$ then $\prod_{i=1}^{n} m_i | s$.
- **Proof.** By induction on n .
	- \cdot For $n=1$ the statement is trivial.
	- · Assuming it holds for $n = N$ we want to prove it for $n = N + 1$.
	- Let $a := \prod_{1}^{N} m_i$ and let $b = m_{N+1}$.

$$
\cdot \exists l \in \mathbb{Z} \text{ s.t. } s = la
$$

 $\cdot \ldots$ by the inductive hypothesis $a \mid s$.

$$
\cdot b \mid s \Rightarrow b \mid l
$$

 $\cdot \ldots$ because a and b are relatively prime.

$$
\cdot \Rightarrow \exists k \in \mathbb{Z} \text{ s.t. } l = bk.
$$

 $\cdot \Rightarrow s = al = abk \Rightarrow ab \mid s.$

Computer Arithmetic with Large Integers

- Want to work with *very* large integers.
- Choose m_1, \ldots, m_n pairwise relatively prime.
- To compute $N_1 + N_2$ or $N_1 \cdot N_2$:

 $N_i \longleftrightarrow (N_i \mod m_1, \dots, N_i \mod m_n)$ $N_1 + N_2 \longleftrightarrow (N_1 + N_2 \mod m_1, \dots, N_1 + N_2 \mod m_n)$ $N_1 \cdot N_2 \longleftrightarrow (N_1 \cdot N_2 \mod m_1, \dots, N_1 \cdot N_2 \mod m_n)$

- The lhs of the last two equation can readily be computed component wise.
- Requires efficient transition:

$$
N \longleftrightarrow (N \bmod m_1, \ldots, N \bmod m_n).
$$

- Advantages:
	- · Allows arithmetic with very large integers.
	- · Can be readily parallelized.
- Example. The following are pairwise relatively prime. ${m_i}_1^5 = {2^{35} - 1, 2^{34} - 1, 2^{33} - 1, 2^{29} - 1, 2^{23} - 1}$
- We can add and multiply positive integers up to $M =$ ы
апа $\frac{5}{1}m_i > 2^{184}.$

Fermat's Little Theorem

- If p is a prime and $p \nmid a \in \mathbb{Z}$ then $a^{p-1} \equiv 1 \pmod{p}$. Moreover, for any $a \in \mathbb{Z}$, $a^p \equiv a \pmod{p}$. • Proof. Let $A = \{1, 2, \ldots, p-1\}$, and let $B = \{1a \mod p, 2a \mod p, \ldots, (p-1)a \mod p\}.$ $\cdot 0 \notin B$ so $B \subset A$. · $|A| = p - 1$ so if $|B| = p - 1$ then $A = B$. \cdot Let $1 \leq i \neq j \leq p-1$, then \cdot *ia* mod $p \neq ja \mod p$ $\cdot \iff ia \not\equiv ja \pmod{p}$ $\cdot \iff p \nmid a(i - j)$ $\cdot \Rightarrow A = B$. $\Rightarrow (p-1)! = \prod^{p-1} (ia \bmod p) \equiv a^{p-1}(p-1)! \pmod{p}.$ $p-1$ $i=1$ $\cdot \Rightarrow a^{p-1} \equiv 1 \pmod{p}$ $\cdot \dots$ since $gcd((p-1)!, p) = 1$. · In particular, $a^p \equiv a \pmod{p}$.
	- The latter clearly holds for a s.t. $p \mid a$ as well.

Private Key Cryptography

- Alice (aka A) wants to send an encrypted message to Bob (aka B).
- A and B might share a private key known only to them.
- The same key serves for encryption and decryption.
- Example: Caesar's cipher $f(m) = m + 3 \text{ mod } 26$.
	- · ABCDEFGHIJKLMNOPQRSTUVWXYZ
	- · WKH EXWOHU GLG LW
	- · THE BUTLER DID IT
	- · Note that $f(m) 3 \mod 26 = m$
- Slightly more sophisticated: $f(m) = am + b \mod 26$
	- · Example: $f(m) = 4m + 1 \text{ mod } 26$
	- $\cdot \ldots$ oops $f(0) = f(13) = 1$.
	- Decryption: solve for m , $(am + b) \mod 26 = c$, or $am \equiv c - b \pmod{26}$.
	- \cdot Need $\exists \bar{a}$, or $gcd(a, 26) = 1$.
	- · Weakness of this cipher: suppose the triplet QMB is much more popular than all other triplets...

Private Key cont.

- However, some private key systems are totally immune to non-physical attacks:
	- · A and B share the only two copies of a long list of random integers s_i for $i = 1, ..., N$.
	- \cdot A sends B the message $\{m_i\}_{i=1}^n$ encrypted as:
	- \cdot $c_i = m_i + s_{K+i} \mod 26$ for $i = 1, ..., n$.
	- \cdot A also sends the key K and deletes s_{K+1}, \ldots, s_{K+n} .
	- · B decrypts A's message by computing
	- \cdot $c_i s_{K+i} \mod 26$.
	- \cdot Upon decryption B also deletes s_{K+1}, \ldots, s_{K+n} .
	- · Pros: bullet proof cryptography system
	- · Cons: horrible logistics
- Cons (any private key system):
	- · Only predetermined users can exchange messages

Public Key Encryption

- A uses B's public encryption key to send an encrypted message to B.
- Only B has the decryption key that allows decoding of messages encrypted with his public key.
- BIG advantage: A need not know nor trust B.

RSA

• Generating the keys.

- · Choose two very large (hundreds of digits) primes p, q.
- \cdot Let $n = pq$.
- Choose $e \in \mathbb{N}$ relatively prime to $(p-1)(q-1)$.
- Compute d, the inverse of e modulo $(p-1)(q-1)$.
- Publish the modulos n and the encryption key e .
- Keep the decryption key d to yourself.

• Encryption protocol.

· The message is divided into blocks each represented as $M \in \mathbb{N} \cap [0, n-1]$. Each block M is encrypted:

$$
C = M^e \pmod{n}.
$$

- Example. Encrypt "stop" using $e = 13$ and $n = 2537$:
	- \cdot s t o p \longleftrightarrow 18 19 14 15 \longleftrightarrow 1819 1415
	- \cdot 1819¹³ mod 2537 = 2081 and 1415^{13} mod $2537 = 2182$ so
	- · 2081 2182 is the encrypted message.
	- We did not need to know $p = 43, q = 59$ for that.
	- By the way, $gcd(13, 42 \cdot 58) = 1$.

RSA cont.

- Decryption: compute C^d mod n.
- Claim. $C^d \mod n = M$.
- Lemma Suppose p is prime. Then for $a \in \mathbb{Z}$
	- $\cdot p \nmid a$ and $k \equiv 0 \pmod{p-1} \Rightarrow a^k \equiv 1 \pmod{p}$.
	- $\cdot m \equiv 1 \pmod{p-1} \Rightarrow a^m \equiv a \pmod{p}.$
- Proof of Claim.
	- \cdot ed \equiv 1 (mod $p-1$) and ed \equiv 1 (mod $q-1$) $\cdot \dots$ since $ed \equiv 1 \pmod{(p-1)(q-1)}$ $\cdot \Rightarrow M^{ed} \equiv M \pmod{p}$, and $M^{ed} \equiv M \pmod{q}$. $\cdot \Rightarrow M^{ed} \equiv M \pmod{n}.$ $\cdot \Rightarrow M^{ed} \mod n = M.$ $\cdot \Rightarrow C^d \bmod n = [M^e \bmod n]^d \bmod n$ $= M^{ed} \bmod n$ $= M$

• Proof of lemma.

$$
k = l(p-1) \text{ for some } l \in \mathbb{Z}.
$$

\n
$$
\Rightarrow a^k = (a^{p-1})^l \equiv (a^{p-1} \mod p)^l \equiv 1 \pmod{p}.
$$

\nIf $p \mid a, a^m \equiv a \pmod{p}$ for any m .
\nIf $p \nmid a$, use $m - 1 \equiv 0 \pmod{p - 1}$ above.

Probabilistic Primality Testing

- RSA requires really large primes.
- The popular way of testing primality is through probabilistic algorithms.
- The procedure for randomized testing of n 's primality is based on a readily computable test $T(b, n)$: is $b \in$ \mathbb{Z}_{n}^{*} $\mathbf{z}_n^* := \{1, \ldots, n-1\}$ a "witness" for *n*'s primality.
- Example. Is $b^{n-1} \equiv 1 \pmod{n}$?
- The answer is always positive if n is prime.
- Unfortunately, the answer might be positive even if n is composite: $2^{340} \equiv 1 \pmod{341}$ and $341 = 11 \cdot 31$.
- The probability that a randomly chosen b will be a witness to the "primality" of the composite n , depends on T.
- Machine Learning: false positive rate of T on n , $FP(n)$.
- Need to control the overall FP rate of T: establish a lower bound q , on the probability of a false witness for any n.
- If m randomly chosen bs have all testified that n is prime then the probability that *n* is composite $\leq q^m$.

Probabilistic Primality Testing cont

```
IsPrime(n, \varepsilon, [\mathbf{T}, q]): Primality Testing
 Input: n \in \mathbb{N}^+ - the prime suspect
           \varepsilon \in (0, 1) - probability of false classification
           T - a particular prime test
           FPr - a lower bound on Prob(false witness)
 Output: "yes, with probability \geq 1 - \varepsilon", or "no"
 Pr = 1while Pr > \varepsilonrandomly draw b \in \mathbb{Z}_n^*\mathbf{a}_n^* := \{1, 2 \ldots, n-1\}if T(b, n)Pr := Pr \cdot \text{FPr}else
      return "no"
return "yes, with probability \geq 1 - \varepsilon"
```
- For a given ε , the complexity clearly depends on FPr, the false positive rate of T.
- How many false witnesses b can there possibly be?

Fermat's Pseudoprimes

- Def. If *n* is a composite and $b^{n-1} \equiv 1 \pmod{n}$ then n is a Fermat pseudoprime to the base b.
- Let T_F be the Fermat test and assume *n* is composite.
- n is a Fermat pseudoprime to the base b if and only if $T_F(b, n)$ is a FP.
- What is the probability, q_n , that $T_F(b, n)$ yields a FP for a randomly chosen $b \in \mathbb{Z}_n^*$ $\chi_n^* := \{1, 2, \ldots, n-1\}$?
- If $k = |\{b \in \mathbb{Z}_n^*\}|$ \mathcal{L}_n^* : $\mathrm{T}_F(b,n)$ is positive}|, for k out of the $n-1$ possible bs, $T_F(b, n)$ gives a FP.
- Since each of the bs is equally likely to be drawn, $q_n = k/(n-1).$
- Are there composites n which are Fermat pseudoprimes to *relatively* many bases b?

Carmichael numbers

- Def. A composite n which is a Fermat pseudoprime for any b with $gcd(n, b) = 1$ is a *Carmichael number*.
- Example. $n = 561$ is a Carmichael number.
	- Suppose $b \in \mathbb{Z}_n^*$ with $gcd(b, n) = 1$.
	- \cdot $n = p_1 p_2 p_3$ with $p_1 = 3$, $p_2 = 11$, $p_3 = 17$.
	- Check: $n 1 \equiv 0 \pmod{p_i 1}$ for $i = 1, 2, 3$.

$$
\cdot \Rightarrow b^{n-1} \equiv 1 \pmod{p_i}
$$
 for $i = 1, 2, 3$

 $\cdot \ldots$ since $p_i \nmid b$.

$$
\cdot \Rightarrow b^{n-1} \equiv 1 \pmod{n}.
$$

- T_F can perform miserably on Carmichael numbers: it will yield a FP for most bs.
- Example. If $n = p_1p_2p_3$ is a Carmichael numbers then

$$
1 - q_n \le \frac{n/p_1 - 1}{n - 1} + \frac{n/p_2 - 1}{n - 1} + \frac{n/p_3 - 1}{n - 1}
$$

$$
\le \frac{1}{p_1} + \frac{1}{p_2} + \frac{1}{p_3}
$$

• Aside: Use of a Carmichael number instead of a prime factor in the modulus of an RSA cryptosystem is likely to make the system fatally vulnerable - Pinch (97).

The Rabin-Miller Test

• Input:

- \cdot $n = 2^{s}t + 1$ where t is odd and $s \in \mathbb{N}$
- $\cdot b \in \mathbb{Z}_n^*$ n
- T_{RM} : Does exactly one of the following hold?
	- $\cdot b^t \equiv 1 \pmod{n}$ or
	- $\cdot b^{2^{j}t} \equiv -1 \pmod{n}$ for one $0 \leq j \leq s-1$.
- Claim. If n is prime, $T_{RM}(b, n)$ is positive $\forall b \in \mathbb{Z}_n^*$ $\frac{*}{n}$.
- Fact. If *n* is composite the FP rate is at most $1/4$.
- The probability that a composite n will survive m tests $T_{RM}(b, n)$ with randomly chosen bs is $\leq 4^{-m}$.
- The claim is a corollary of the following lemma.
- Lemma. If $p \neq 2$ is prime and $p \mid b^{2^{s}t} 1$ then p divides exactly one factor in

 $b^{2^{s}t} - 1 = (b^{t} - 1)(b^{t} + 1)(b^{2t} + 1) \dots (b^{2^{s-1}t} + 1).$

- Note that in our case $p = 2^st + 1$ so for b relatively prime to p, $p \mid b^{2^{s}t} - 1$ by Fermat's theorem.
- Sketch of lemma's proof.
- \cdot Induction on s , base is trivial.
- $\cdot p \mid b^{2^{s}t} 1 \Rightarrow p \mid (b^{2^{s-1}t} 1)(b^{2^{s-1}t} + 1).$
- \cdot But p cannot divide both factors since then
- $\cdot p \mid (b^{2^{s-1}t} + 1) (b^{2^{s-1}t} 1) = 2.$

Pseudorandom Numbers

- For the randomized algorithms we need a random number generator.
- Most languages provide you with a function "rand".
- There is nothing random about such a function...
- Being deterministic it creates pseudorandom numbers.
- Example. The linear congruential method.
	- Choose a modulus $m \in \mathbb{N}^+,$
	- · a multiplier $a \in \{2, 3, \ldots, m-1\}$ and
	- · an increment $c \in \mathbb{Z}_m := \{0, 1, \ldots, m-1\}.$
	- Choose a seed $x_0 \in \mathbb{Z}_m$ (time is typically used).
	- Compute $x_{n+1} = ax_n + c \pmod{m}$.
- Warning: a poorly implemented rand(), such as in C, can wreak havoc on Monte Carlo simulations.

Database 101

- Problem: How can we efficiently store, retrieve and delete records from a large database?
- For example, students records.
- Each record has a unique key (e.g. student ID).
- Shall we keep an array sorted by the key?
- Easy retrieval but difficult insertion and deletion.
- How about a table with an entry for every possible key?
- Often infeasible, almost always wasteful.

Hashing

- Store the records in an array of size N .
- N should be somewhat bigger than the expected number of records.
- The location of a record is given by $h(k)$ where k is the key and h is the *hashing function* which maps the space of keys to \mathbb{Z}_N .
- Example: $h(k) := k \text{ mod } N$.
- A collision occurs when $h(k_1) = h(k_2)$ and $k_1 \neq k_2$.
- To minimize collisions makes sure N is sufficiently large.
- You can re-hash the data if the table gets too full.
- A good hashing function should distribute the images of the possible set of keys fairly evenly over \mathbb{Z}_N .
- Ideally, $P(h(k) = i) = 1/N$ for any $i \in \mathbb{Z}_N$.
- When collisions occur there are mechanisms to resolve them (buckets, next empty cell, etc.)

Tentative Prelim Coverage

IMPORTANT: The only type of calculator that you can bring with you to the prelim is one *without any mem*ory or programming capability. If you have any doubt about whether or not your calculator qualifies it probably doesn't but feel free to ask one of the professors.

- Chapter 0:
	- · Sets
		- ∗ Set builder notation
		- ∗ Operations: union, intersection, complementation, set difference
	- · Relations:
		- ∗ reflexive, symmetric, transitive, equivalence relations
		- ∗ transitive closure
	- · Functions
		- ∗ Injective, surjective, bijective
		- ∗ Inverse function
	- · Important functions and how to manipulate them:
		- ∗ exponent, logarithms, ceiling, floor, mod, polynomials
- · Summation and product notation
- · Matrices (especially how to multiply them)
- · Proof and logic concepts
	- \ast logical notions (\Rightarrow , \equiv , \neg)
	- ∗ Proofs by contradiction
- Chapter 1
	- · You do not have to write algorithms in their notation
	- · You must be able to read algorithms in their notation
- Chapter 2
	- · induction vs. strong induction
	- · guessing the right inductive hypothesis
	- · inductive (recursive) definitions
- Number Theory everything we covered in class including
	- · Fundamental Theorem of Arithmetic
	- · gcd, lcm
	- · Euclid's Algorithm and its extended version
	- · Modular arithmetics, linear congruences, modular inverse
- · CRT
- · Fermat's little theorem
- · RSA
- · Probabilistic primality testing
- \bullet Chapter 4:
	- · Section 4.1, 4.2, 4.3
	- · Sum and product rule