Linear Congruences

- The equation ax = b for $a, b \in \mathbb{R}$ is uniquely solvable if $a \neq 0$: x = b/a.
- Want to extend to the linear congruence:

 $ax \equiv b \pmod{m}, \qquad a, b \in \mathbb{Z}, m \in \mathbb{N}^+.$ (1)

- If x_0 is a solution then so is $x_k := x_0 + km, \forall k \in \mathbb{Z}$
- ... since $km \equiv 0 \pmod{m}$.
- So, uniqueness can only be modulo m.
- How many solutions modulo 4 to $2x \equiv 2 \pmod{4}$?

•
$$2 \cdot 1 \equiv 2 \cdot 3 \equiv 2 \pmod{4}$$
.

- Claim If gcd(a, m) = 1 then (1) has at most one solution modulo m.
- **Proof.** Suppose $r, s \in \mathbb{Z}$ are solutions of (1).

$$\cdot \Rightarrow a(r-s) \equiv 0 \pmod{m}$$

$$\cdot \Rightarrow m \mid r-s \Rightarrow r \equiv s \pmod{m} .$$

Linear Congruences cont.

- The key to finding a solution:
- $x = b/a = ba^{-1}$ where a^{-1} is the solution to ay = 1.
- Claim. Let $m \in \mathbb{N}^+$, $a \in \mathbb{Z}$. Suppose $\exists \bar{a} \in \mathbb{Z}$ s.t $a\bar{a} \equiv 1 \pmod{m}$. Then for any $b \in \mathbb{Z}$, $x = b\bar{a}$ is a solution of $ax \equiv b \pmod{m}$.
- Proof.

$$a(b\bar{a}) \equiv a\bar{a}b \equiv 1 \cdot b \equiv b \pmod{m}.$$

- Example: to solve $3x \equiv 4 \pmod{7}$ first find $\overline{3} \pmod{7}$:
 - $\cdot -2 \cdot 3 \equiv -6 \equiv 1 \pmod{7} \Rightarrow -2 \equiv \overline{3} \pmod{7}.$
 - $\cdot x = \overline{3} \cdot 4 = -2 \cdot 4 = -8$ satisfies $3x \equiv 4 \pmod{7}$.
- Does \bar{a} always exist?
- Can you solve $2x \equiv 1 \pmod{4}$?
- $2 \cdot 0 \equiv 2 \cdot 2 \equiv 0 \pmod{4}$ and $2 \cdot 1 \equiv 2 \cdot 3 \equiv 2 \pmod{4}$.
- What about $2x \equiv 1 \pmod{2n}$?
- What about $\overline{2}$ modulo 3?
- When does \bar{a} exist? Is it unique? How can we find it?

Inverse Modulo m

• **Theorem.** If *a*, *m* are relatively prime integers and m > 1 then there exists a unique inverse of *a* modulo *m* denoted as \bar{a} .

• Proof.

- $\cdot \exists s, t \in \mathbb{Z} \text{ s.t. } as + mt = 1$
- $\cdot \Rightarrow as \equiv 1 \pmod{m} \Rightarrow s$ is an inverse modulo m
- Since an inverse is a solution to $ax \equiv 1 \pmod{m}$ uniqueness was already proved.
- Cor. \bar{a} is given by the extended Euclid algorithm.
- • Example: $gcd(3,7) = 1 \Rightarrow \exists \overline{3} \mod 7$
 - $\cdot 7 = 2 \cdot 3 + 1 \Rightarrow -2 \cdot 3 + 7 = 1 \Rightarrow \overline{3} \equiv -2 \pmod{7}.$

The Chinese Remainder Theorem

- Example. Pick an integer $n \in [0, 104]$.
 - Tell me its remainders modulo 3, 5, and 7 (r_3, r_5, r_7) .
 - Let me "guess": $n = 70r_3 + 21r_5 + 15r_7 \mod 105$.
- **Def.** m_1, \ldots, m_n are pairwise relatively prime if $\forall i, j$, $gcd(m_i, m_j) = 1$.
- **Theorem.** Let $m_1, \ldots, m_n \in \mathbb{N}^+$ be pairwise relatively prime. The set of equations

 $x \equiv a_i \pmod{m_i} \qquad i = 1, 2 \dots n \qquad (2)$ has a unique solution modulo $M := \prod_{i=1}^n m_i.$

- Comments:
 - If x is a solution then so is x + kM for any $k \in \mathbb{Z}$.
 - There exists a unique solution $x \in \mathbb{N} \cap [0, M-1]$.
- Example: a solution to
 - $\cdot x \equiv r_3 \pmod{3}, x \equiv r_5 \pmod{5}, x \equiv r_7 \pmod{7}$
 - is $x = 70r_3 + 21r_5 + 15r_7 \mod 105$.
 - \cdot The key:

 \cdot 70 mod 3 = 1, 70 mod 5 = 0, 70 mod 7 = 0

- $\cdot 21 \mod 3 = 0, 21 \mod 5 = 1, 21 \mod 7 = 0$
- $\cdot 15 \mod 3 = 0, 15 \mod 5 = 0, 15 \mod 7 = 1$

Proof of the CRT

• **Proof.** A solution exists if $\exists x_i, i = 1, ..., n$ s.t.: $x_i \equiv 1 \pmod{m_i}$ (3) $x_i \equiv 0 \pmod{m_i} \quad \forall j \neq i.$ · Indeed, $x := \sum_{j=1}^{n} a_j x_j$ satisfies $x \equiv \sum_{i=1}^{n} a_j(x_j \mod m_i) \equiv \sum_{i=1}^{n} a_j \delta_{ij} \equiv a_i \pmod{m_i}.$ • We prove (3) constructively: let $s_i = M/m_i$. • Then, $s_i = \prod_{i \neq j} m_j \equiv 0 \pmod{m_j}$ for $j \neq i$. $\cdot s_i$ has an inverse modulo $m_i, \bar{s_i}$ \cdots since $gcd(m_i, s_i) = 1$. Let $x_i := s_i \bar{s_i}$. • For $i = 1, \ldots, n, x_i$ satisfies (3). · In our example: $s_3 = 5 \cdot 7 = 35$, $\bar{s}_3 = 2$ $s_5 = 3 \cdot 7 = 21$. $\bar{s}_5 = 1$ $s_7 = 3 \cdot 5 = 15$, $\bar{s}_7 = 1$. • Uniqueness: suppose x and y satisfy (2). $\cdot \Rightarrow x - y \equiv 0 \pmod{m_i}$ for $i = 1, \ldots, n$. \cdot The next lemma completes the proof: • Lemma. If $m_i \in \mathbb{N}^+$ are pairwise relatively prime

and $m_i \mid s$ for i = 1, ..., n then $\prod_{i=1}^{n} m_i \mid s$.

Proof of the CRT cont.

- Lemma. If $m_i \in \mathbb{N}^+$ are pairwise relatively prime and $m_i \mid s$ for i = 1, ..., n then $\prod_{i=1}^{n} m_i \mid s$.
- **Proof.** By induction on *n*.
 - For n = 1 the statement is trivial.
 - Assuming it holds for n = N we want to prove it for n = N + 1.
 - Let $a := \prod_{i=1}^{N} m_i$ and let $b = m_{N+1}$.

$$\cdot \exists l \in \mathbb{Z} \text{ s.t. } s = la$$

 $\cdot \ldots$ by the inductive hypothesis $a \mid s$.

$$\cdot b \mid s \Rightarrow b \mid l$$

 $\cdot \ldots$ because a and b are relatively prime.

$$\cdot \Rightarrow \exists k \in \mathbb{Z} \text{ s.t. } l = bk.$$

 $\cdot \Rightarrow s = al = abk \Rightarrow ab \mid s.$

Computer Arithmetic with Large Integers

- Want to work with *very* large integers.
- Choose m_1, \ldots, m_n pairwise relatively prime.
- To compute $N_1 + N_2$ or $N_1 \cdot N_2$:

 $N_i \longleftrightarrow (N_i \mod m_1, \dots, N_i \mod m_n)$ $N_1 + N_2 \longleftrightarrow (N_1 + N_2 \mod m_1, \dots, N_1 + N_2 \mod m_n)$ $N_1 \cdot N_2 \longleftrightarrow (N_1 \cdot N_2 \mod m_1, \dots, N_1 \cdot N_2 \mod m_n)$

- The lhs of the last two equation can readily be computed component wise.
- Requires efficient transition:

$$N \longleftrightarrow (N \mod m_1, \ldots, N \mod m_n).$$

- Advantages:
 - Allows arithmetic with very large integers.
 - \cdot Can be readily parallelized.
- Example. The following are pairwise relatively prime. $\{m_i\}_1^5 = \{2^{35} - 1, 2^{34} - 1, 2^{33} - 1, 2^{29} - 1, 2^{23} - 1\}$
- We can add and multiply positive integers up to $M = \prod_{i=1}^{5} m_i > 2^{184}.$

Fermat's Little Theorem

- If p is a prime and $p \nmid a \in \mathbb{Z}$ then $a^{p-1} \equiv 1 \pmod{p}$. Moreover, for any $a \in \mathbb{Z}$, $a^p \equiv a \pmod{p}$.
- **Proof.** Let $A = \{1, 2, ..., p 1\}$, and let
 - $\cdot B = \{1a \mod p, 2a \mod p, \dots, (p-1)a \mod p\}.$
 - $\cdot 0 \notin B$ so $B \subset A$.
 - $\cdot |A| = p 1$ so if |B| = p 1 then A = B.
 - Let $1 \leq i \neq j \leq p 1$, then
 - $\cdot ia \mod p \neq ja \mod p$
 - $\cdot \iff ia \not\equiv ja \pmod{p}$
 - $\cdot \iff p \nmid a(i-j)$
 - $\cdot \Rightarrow A = B.$

 $\Rightarrow (p-1)! = \prod_{i=1}^{p-1} (ia \mod p) \equiv a^{p-1}(p-1)! \pmod{p}.$

$$\cdot \Rightarrow a^{p-1} \equiv 1 \pmod{p}$$

- $\cdot \ldots \operatorname{since} \operatorname{gcd}((p-1)!, p) = 1.$
- In particular, $a^p \equiv a \pmod{p}$.
- The latter clearly holds for a s.t. $p \mid a$ as well.

Private Key Cryptography

- Alice (aka A) wants to send an encrypted message to Bob (aka B).
- A and B might share a private key known only to them.
- The same key serves for encryption and decryption.
- Example: Caesar's cipher $f(m) = m + 3 \mod 26$.
 - · ABCDEFGHIJKLMNOPQRSTUVWXYZ
 - \cdot WKH EXWOHU GLG LW
 - \cdot THE BUTLER DID IT
 - Note that $f(m) 3 \mod 26 = m$
- Slightly more sophisticated: $f(m) = am + b \mod 26$
 - Example: $f(m) = 4m + 1 \mod 26$
 - ... oops f(0) = f(13) = 1.
 - Decryption: solve for m, $(am + b) \mod 26 = c$, or $am \equiv c b \pmod{26}$.
 - Need $\exists \bar{a}, \text{ or } \gcd(a, 26) = 1.$
 - \cdot Weakness of this cipher: suppose the triplet QMB is much more popular than all other triplets...

Private Key cont.

- However, some private key systems are totally immune to non-physical attacks:
 - A and B share the only two copies of a long list of random integers s_i for i = 1, ..., N.
 - · A sends B the message $\{m_i\}_{i=1}^n$ encrypted as:
 - $c_i = m_i + s_{K+i} \mod 26$ for i = 1, ..., n.
 - A also sends the key K and deletes s_{K+1}, \ldots, s_{K+n} .
 - \cdot B decrypts A's message by computing
 - $\cdot c_i s_{K+i} \mod 26.$
 - Upon decryption B also deletes s_{K+1}, \ldots, s_{K+n} .
 - \cdot Pros: bullet proof cryptography system
 - \cdot Cons: horrible logistics
- Cons (any private key system):
 - \cdot Only predetermined users can exchange messages

Public Key Encryption

- A uses B's public encryption key to send an encrypted message to B.
- Only B has the decryption key that allows decoding of messages encrypted with his public key.
- BIG advantage: A need not know nor trust B.

RSA

• Generating the keys.

- · Choose two very large (hundreds of digits) primes p, q.
- · Let n = pq.
- Choose $e \in \mathbb{N}$ relatively prime to (p-1)(q-1).
- \cdot Compute d, the inverse of $e \bmod (p-1)(q-1).$
- Publish the modulos n and the encryption key e.
- Keep the decryption key d to yourself.

• Encryption protocol.

• The message is divided into blocks each represented as $M \in \mathbb{N} \cap [0, n-1]$. Each block M is encrypted:

$$C = M^e \pmod{n}$$
.

- Example. Encrypt "stop" using e = 13 and n = 2537:
 - $\cdot \texttt{ s t o } p \longleftrightarrow \texttt{18 19 14 15} \longleftrightarrow \texttt{1819 1415}$
 - $\cdot 1819^{13} \mod 2537 = 2081$ and
 - $1415^{13} \mod 2537 = 2182$ so
 - \cdot 2081 2182 is the encrypted message.
 - We did not need to know p = 43, q = 59 for that.
 - By the way, $gcd(13, 42 \cdot 58) = 1$.

RSA cont.

- **Decryption:** compute $C^d \mod n$.
- Claim. $C^d \mod n = M$.
- Lemma Suppose p is prime. Then for $a \in \mathbb{Z}$
 - $\cdot p \nmid a \text{ and } k \equiv 0 \pmod{p-1} \Rightarrow a^k \equiv 1 \pmod{p}.$
 - $\cdot m \equiv 1 \pmod{p-1} \Rightarrow a^m \equiv a \pmod{p}.$
- Proof of Claim.
 - $\cdot ed \equiv 1 \pmod{p-1} \text{ and } ed \equiv 1 \pmod{q-1}$ $\cdot \dots \text{ since } ed \equiv 1 \pmod{(p-1)(q-1)}$ $\cdot \Rightarrow M^{ed} \equiv M \pmod{p}, \text{ and } M^{ed} \equiv M \pmod{q}.$ $\cdot \Rightarrow M^{ed} \equiv M \pmod{n}.$ $\cdot \Rightarrow M^{ed} \mod n = M.$ $\cdot \Rightarrow C^d \mod n = [M^e \mod n]^d \mod n$ $= M^{ed} \mod n$

• Proof of lemma.

·
$$k = l(p-1)$$
 for some $l \in \mathbb{Z}$.
· $\Rightarrow a^k = (a^{p-1})^l \equiv (a^{p-1} \mod p)^l \equiv 1 \pmod{p}$.
· If $p \mid a, a^m \equiv a \pmod{p}$ for any m .
· If $p \nmid a$, use $m-1 \equiv 0 \pmod{p-1}$ above.

Probabilistic Primality Testing

- RSA requires really large primes.
- The popular way of testing primality is through probabilistic algorithms.
- The procedure for randomized testing of n's primality is based on a readily computable test T(b, n): is $b \in \mathbb{Z}_n^* := \{1, \ldots, n-1\}$ a "witness" for n's primality.
- Example. Is $b^{n-1} \equiv 1 \pmod{n}$?
- The answer is always positive if n is prime.
- Unfortunately, the answer might be positive even if n is composite: $2^{340} \equiv 1 \pmod{341}$ and $341 = 11 \cdot 31$.
- The probability that a randomly chosen b will be a witness to the "primality" of the composite n, depends on T.
- Machine Learning: false positive rate of T on n, FP(n).
- Need to control the overall FP rate of T: establish a lower bound q, on the probability of a false witness for any n.
- If m randomly chosen bs have all testified that n is prime then the probability that n is composite $\leq q^m$.

Probabilistic Primality Testing cont

IsPrime(n, ε , [T, q]): Primality Testing Input: $n \in \mathbb{N}^+$ - the prime suspect $\varepsilon \in (0, 1)$ - probability of false classification T - a particular prime test FPr - a lower bound on Prob(false witness) Output: "yes, with probability $\ge 1 - \varepsilon$ ", or "no" Pr = 1while $Pr > \varepsilon$ randomly draw $b \in \mathbb{Z}_n^* := \{1, 2..., n - 1\}$ if T(b, n) $Pr := Pr \cdot FPr$ else return "no" return "yes, with probability $\ge 1 - \varepsilon$ "

- For a given ε , the complexity clearly depends on FPr, the false positive rate of T.
- How many false witnesses b can there possibly be?

Fermat's Pseudoprimes

- **Def.** If n is a composite and $b^{n-1} \equiv 1 \pmod{n}$ then n is a *Fermat pseudoprime* to the base b.
- Let T_F be the Fermat test and assume n is composite.
- n is a Fermat pseudoprime to the base b if and only if $T_F(b, n)$ is a FP.
- What is the probability, q_n , that $T_F(b, n)$ yields a FP for a randomly chosen $b \in \mathbb{Z}_n^* := \{1, 2, \dots, n-1\}$?
- If $k = |\{b \in \mathbb{Z}_n^* : \mathrm{T}_F(b, n) \text{ is positive}\}|$, for k out of the n-1 possible bs, $\mathrm{T}_F(b, n)$ gives a FP.
- Since each of the bs is equally likely to be drawn, $q_n = k/(n-1).$
- Are there composites n which are Fermat pseudoprimes to *relatively* many bases b?

Carmichael numbers

- **Def.** A composite n which is a Fermat pseudoprime for any b with gcd(n, b) = 1 is a *Carmichael number*.
- Example. n = 561 is a Carmichael number.
 - Suppose $b \in \mathbb{Z}_n^*$ with gcd(b, n) = 1.
 - $n = p_1 p_2 p_3$ with $p_1 = 3, p_2 = 11, p_3 = 17$.
 - Check: $n 1 \equiv 0 \pmod{p_i 1}$ for i = 1, 2, 3.

$$\cdot \Rightarrow b^{n-1} \equiv 1 \pmod{p_i} \text{ for } i = 1, 2, 3$$

 $\cdot \ldots \text{ since } p_i \nmid b.$

$$\cdot \Rightarrow b^{n-1} \equiv 1 \pmod{n}.$$

- T_F can perform miserably on Carmichael numbers: it will yield a FP for most bs.
- Example. If $n = p_1 p_2 p_3$ is a Carmichael numbers then

$$1 - q_n \le \frac{n/p_1 - 1}{n - 1} + \frac{n/p_2 - 1}{n - 1} + \frac{n/p_3 - 1}{n - 1}$$
$$\le \frac{1}{p_1} + \frac{1}{p_2} + \frac{1}{p_3}$$

• Aside: Use of a Carmichael number instead of a prime factor in the modulus of an RSA cryptosystem is likely to make the system fatally vulnerable - Pinch (97).

The Rabin-Miller Test

• Input:

- $\cdot n = 2^{s}t + 1$ where t is odd and $s \in \mathbb{N}$
- $\cdot b \in \mathbb{Z}_n^*$
- $\mathbf{T}_{\mathbf{RM}}$: Does *exactly* one of the following hold?
 - $\cdot b^t \equiv 1 \pmod{n}$ or
 - $b^{2^{j_t}} \equiv -1 \pmod{n}$ for one $0 \le j \le s 1$.
- Claim. If n is prime, $T_{RM}(b, n)$ is positive $\forall b \in \mathbb{Z}_n^*$.
- Fact. If n is composite the FP rate is at most 1/4.
- The probability that a composite n will survive m tests $T_{RM}(b, n)$ with randomly chosen bs is $\leq 4^{-m}$.
- The claim is a corollary of the following lemma.
- Lemma. If $p \neq 2$ is prime and $p \mid b^{2^{s_t}} 1$ then p divides exactly one factor in

 $b^{2^{s_t}} - 1 = (b^t - 1)(b^t + 1)(b^{2t} + 1)\dots(b^{2^{s-1}t} + 1).$

- Note that in our case $p = 2^{s}t + 1$ so for b relatively prime to $p, p \mid b^{2^{s}t} 1$ by Fermat's theorem.
- Sketch of lemma's proof.

- \cdot Induction on s, base is trivial.
- $\cdot \ p \mid b^{2^{s_t}} 1 \Rightarrow p \mid (b^{2^{s-1}t} 1)(b^{2^{s-1}t} + 1).$
- \cdot But p cannot divide both factors since then
- $\cdot \ p \mid (b^{2^{s-1}t} + 1) (b^{2^{s-1}t} 1) = 2.$

Pseudorandom Numbers

- For the randomized algorithms we need a random number generator.
- Most languages provide you with a function "rand".
- There is nothing random about such a function...
- Being deterministic it creates pseudorandom numbers.
- Example. The linear congruential method.
 - Choose a modulus $m \in \mathbb{N}^+$,
 - \cdot a multiplier $a \in \{2, 3, \ldots, m-1\}$ and
 - \cdot an increment $c \in \mathbb{Z}_m := \{0, 1, \dots, m-1\}.$
 - Choose a seed $x_0 \in \mathbb{Z}_m$ (time is typically used).
 - Compute $x_{n+1} = ax_n + c \pmod{m}$.
- Warning: a poorly implemented rand(), such as in C, can wreak havoc on Monte Carlo simulations.

Database 101

- Problem: How can we efficiently store, retrieve and delete records from a large database?
- For example, students records.
- Each record has a unique key (e.g. student ID).
- Shall we keep an array sorted by the key?
- Easy retrieval but difficult insertion and deletion.
- How about a table with an entry for every possible key?
- Often infeasible, almost always wasteful.

Hashing

- Store the records in an array of size N.
- N should be somewhat bigger than the expected number of records.
- The location of a record is given by h(k) where k is the key and h is the hashing function which maps the space of keys to \mathbb{Z}_N .
- Example: $h(k) := k \mod N$.
- A collision occurs when $h(k_1) = h(k_2)$ and $k_1 \neq k_2$.
- To minimize collisions makes sure N is sufficiently large.
- You can re-hash the data if the table gets too full.
- A good hashing function should distribute the images of the possible set of keys fairly evenly over \mathbb{Z}_N .
- Ideally, P(h(k) = i) = 1/N for any $i \in \mathbb{Z}_N$.
- When collisions occur there are mechanisms to resolve them (buckets, next empty cell, etc.)

Tentative Prelim Coverage

IMPORTANT: The only type of calculator that you can bring with you to the prelim is one *without any memory or programming capability*. If you have any doubt about whether or not your calculator qualifies it probably doesn't but feel free to ask one of the professors.

- Chapter 0:
 - \cdot Sets
 - * Set builder notation
 - * Operations: union, intersection, complementation, set difference
 - \cdot Relations:
 - \ast reflexive, symmetric, transitive, equivalence relations
 - * transitive closure
 - \cdot Functions
 - * Injective, surjective, bijective
 - * Inverse function
 - Important functions and how to manipulate them:
 * exponent, logarithms, ceiling, floor, mod, polynomials

- \cdot Summation and product notation
- \cdot Matrices (especially how to multiply them)
- \cdot Proof and logic concepts
 - * logical notions $(\Rightarrow, \equiv, \neg)$
 - \ast Proofs by contradiction
- Chapter 1
 - \cdot You do not have to write algorithms in their notation
 - \cdot You must be able to read algorithms in their notation
- Chapter 2
 - \cdot induction vs. strong induction
 - \cdot guessing the right inductive hypothesis
 - \cdot inductive (recursive) definitions
- Number Theory everything we covered in class including
 - \cdot Fundamental Theorem of Arithmetic
 - \cdot gcd, lcm
 - \cdot Euclid's Algorithm and its extended version
 - \cdot Modular arithmetics, linear congruences, modular inverse

- \cdot CRT
- \cdot Fermat's little theorem
- $\cdot RSA$
- \cdot Probabilistic primality testing
- Chapter 4:
 - \cdot Section 4.1, 4.2, 4.3
 - \cdot Sum and product rule