
Linear Congruences

• The equation ax = b for a, b ∈ R is uniquely solvable
if a 6= 0: x = b/a.

• Want to extend to the linear congruence:

ax ≡ b (mod m), a, b ∈ Z,m ∈ N+. (1)

• If x0 is a solution then so is xk := x0 + km, ∀k ∈ Z
• . . . since km ≡ 0 (mod m).

• So, uniqueness can only be modulo m.

• How many solutions modulo 4 to 2x ≡ 2 (mod 4)?

• 2 · 1 ≡ 2 · 3 ≡ 2 (mod 4).

• Claim If gcd(a,m) = 1 then (1) has at most one
solution modulo m.

• Proof. Suppose r, s ∈ Z are solutions of (1).

· ⇒ a(r − s) ≡ 0 (mod m)

· ⇒ m | r − s ⇒ r ≡ s (mod m).

1

Linear Congruences cont.

• The key to finding a solution:

• x = b/a = ba−1 where a−1 is the solution to ay = 1.

• Claim. Let m ∈ N+, a ∈ Z. Suppose ∃ā ∈ Z s.t
aā ≡ 1 (mod m). Then for any b ∈ Z, x = bā is a
solution of ax ≡ b (mod m).

• Proof.

a(bā) ≡ aāb ≡ 1 · b ≡ b (mod m).

• Example: to solve 3x ≡ 4 (mod 7) first find 3̄ (mod 7):

· −2 · 3 ≡ −6 ≡ 1 (mod 7) ⇒ −2 ≡ 3̄ (mod 7).

· x = 3̄ · 4 = −2 · 4 = −8 satisfies 3x ≡ 4 (mod 7).

• Does ā always exist?

• Can you solve 2x ≡ 1 (mod 4)?

• 2·0 ≡ 2·2 ≡ 0 (mod 4) and 2·1 ≡ 2·3 ≡ 2 (mod 4).

• What about 2x ≡ 1 (mod 2n)?

• What about 2̄ modulo 3?

• When does ā exist? Is it unique? How can we find it?

2

Inverse Modulo m

• Theorem. If a,m are relatively prime integers and
m > 1 then there exists a unique inverse of a modulo
m denoted as ā.

• Proof.

· ∃s, t ∈ Z s.t. as + mt = 1

· ⇒ as ≡ 1 (mod m) ⇒ s is an inverse modulo m

· Since an inverse is a solution to ax ≡ 1 (mod m)
uniqueness was already proved.

• Cor. ā is given by the extended Euclid algorithm.

• · Example: gcd(3, 7) = 1 ⇒ ∃3̄ modulo 7

· 7 = 2 ·3+1 ⇒ −2 ·3+7 = 1 ⇒ 3̄ ≡ −2 (mod 7).

3

The Chinese Remainder Theorem

• Example. Pick an integer n ∈ [0, 104].

· Tell me its remainders modulo 3, 5, and 7 (r3, r5, r7).

· Let me “guess”: n = 70r3 + 21r5 + 15r7 mod 105.

• Def. m1, . . . , mn are pairwise relatively prime if ∀i, j,
gcd(mi,mj) = 1.

• Theorem. Let m1, . . . , mn ∈ N+ be pairwise rela-
tively prime. The set of equations

x ≡ ai (mod mi) i = 1, 2 . . . n (2)

has a unique solution modulo M :=
∏n

1 mi.

• Comments:

· If x is a solution then so is x + kM for any k ∈ Z.

· There exists a unique solution x ∈ N∩ [0,M − 1].

• Example: a solution to

· x ≡ r3 (mod 3), x ≡ r5 (mod 5), x ≡ r7 (mod 7)

· is x = 70r3 + 21r5 + 15r7 mod 105.

· The key:

· 70 mod 3 = 1, 70 mod 5 = 0, 70 mod 7 = 0

· 21 mod 3 = 0, 21 mod 5 = 1, 21 mod 7 = 0

· 15 mod 3 = 0, 15 mod 5 = 0, 15 mod 7 = 1

4

Proof of the CRT

• Proof. A solution exists if ∃xi, i = 1, . . . , n s.t.:

xi ≡ 1 (mod mi)

xi ≡ 0 (mod mj) ∀j 6= i.
(3)

· Indeed, x :=
∑n

1 ajxj satisfies

x ≡
n∑

j=1

aj(xj mod mi) ≡
n∑

j=1

ajδij ≡ ai (mod mi).

· We prove (3) constructively: let si = M/mi.

· Then, si =
∏

i 6=j mj ≡ 0 (mod mj) for j 6= i.

· si has an inverse modulo mi, s̄i

· . . . since gcd(mi, si) = 1. Let xi := sis̄i.

· For i = 1, . . . , n, xi satisfies (3).

· In our example: s3 = 5 · 7 = 35 , s̄3 = 2
s5 = 3 · 7 = 21 , s̄5 = 1
s7 = 3 · 5 = 15 , s̄7 = 1.

· Uniqueness: suppose x and y satisfy (2).

· ⇒ x− y ≡ 0 (mod mi) for i = 1, . . . , n.

· The next lemma completes the proof:

· Lemma. If mi ∈ N+ are pairwise relatively prime
and mi | s for i = 1, . . . , n then

∏n
1 mi | s.

5

Proof of the CRT cont.

• Lemma. If mi ∈ N+ are pairwise relatively prime
and mi | s for i = 1, . . . , n then

∏n
1 mi | s.

• Proof. By induction on n.

· For n = 1 the statement is trivial.

· Assuming it holds for n = N we want to prove it
for n = N + 1.

· Let a :=
∏N

1 mi and let b = mN+1.

· ∃l ∈ Z s.t. s = la

· . . . by the inductive hypothesis a | s.

· b | s ⇒ b | l
· . . . because a and b are relatively prime.

· ⇒ ∃k ∈ Z s.t. l = bk.

· ⇒ s = al = abk ⇒ ab | s.

6

Computer Arithmetic with Large
Integers

• Want to work with very large integers.

• Choose m1, . . . , mn pairwise relatively prime.

• To compute N1 + N2 or N1 ·N2:

Ni ←→ (Ni mod m1, . . . , Ni mod mn)

N1 + N2 ←→ (N1 + N2 mod m1, . . . , N1 + N2 mod mn)

N1 ·N2 ←→ (N1 ·N2 mod m1, . . . , N1 ·N2 mod mn)

• The lhs of the last two equation can readily be com-
puted component wise.

• Requires efficient transition:

N ←→ (N mod m1, . . . , N mod mn).

• Advantages:

· Allows arithmetic with very large integers.

· Can be readily parallelized.

• Example. The following are pairwise relatively prime.

{mi}5
1 = {235 − 1, 234 − 1, 233 − 1, 229 − 1, 223 − 1}

• We can add and multiply positive integers up to
M =

∏5
1 mi > 2184.

7

Fermat’s Little Theorem

• If p is a prime and p - a ∈ Z then ap−1 ≡ 1 (mod p).
Moreover, for any a ∈ Z, ap ≡ a (mod p).

• Proof. Let A = {1, 2, . . . , p− 1}, and let

· B = {1a mod p, 2a mod p, . . . , (p− 1)a mod p}.
· 0 /∈ B so B ⊂ A.

· |A| = p− 1 so if |B| = p− 1 then A = B.

· Let 1 ≤ i 6= j ≤ p− 1, then

· ia mod p 6= ja mod p

· ⇐⇒ ia 6≡ ja (mod p)

· ⇐⇒ p - a(i− j)

· ⇒ A = B.

⇒ (p−1)! =

p−1∏
i=1

(ia mod p) ≡ ap−1(p−1)! (mod p).

· ⇒ ap−1 ≡ 1 (mod p)

· . . . since gcd((p− 1)!, p) = 1.

· In particular, ap ≡ a (mod p).

· The latter clearly holds for a s.t. p | a as well.

8

Private Key Cryptography

• Alice (aka A) wants to send an encrypted message to
Bob (aka B).

• A and B might share a private key known only to
them.

• The same key serves for encryption and decryption.

• Example: Caesar’s cipher f (m) = m + 3 mod 26.

· ABCDEFGHIJKLMNOPQRSTUVWXYZ
· WKH EXWOHU GLG LW

· THE BUTLER DID IT

· Note that f (m)− 3 mod 26 = m

• Slightly more sophisticated: f (m) = am + b mod 26

· Example: f (m) = 4m + 1 mod 26

· . . . oops f (0) = f (13) = 1.

· Decryption: solve for m, (am + b) mod 26 = c, or
am ≡ c− b (mod 26).

· Need ∃ā, or gcd(a, 26) = 1.

· Weakness of this cipher: suppose the triplet QMB is
much more popular than all other triplets. . .

9

Private Key cont.

• However, some private key systems are totally im-
mune to non-physical attacks:

· A and B share the only two copies of a long list of
random integers si for i = 1, . . . , N .

· A sends B the message {mi}n
i=1 encrypted as:

· ci = mi + sK+i mod 26 for i = 1, . . . , n.

· A also sends the key K and deletes sK+1, . . . , sK+n.

· B decrypts A’s message by computing

· ci − sK+i mod 26.

· Upon decryption B also deletes sK+1, . . . , sK+n.

· Pros: bullet proof cryptography system

· Cons: horrible logistics

• Cons (any private key system):

· Only predetermined users can exchange messages

10

Public Key Encryption

• A uses B’s public encryption key to send an encrypted
message to B.

• Only B has the decryption key that allows decoding
of messages encrypted with his public key.

• BIG advantage: A need not know nor trust B.

11

RSA

• Generating the keys.

· Choose two very large (hundreds of digits) primes
p, q.

· Let n = pq.

· Choose e ∈ N relatively prime to (p− 1)(q − 1).

· Compute d, the inverse of e modulo (p−1)(q−1).

• Publish the modulos n and the encryption key e.

• Keep the decryption key d to yourself.

• Encryption protocol.

· The message is divided into blocks each represented
as M ∈ N∩ [0, n−1]. Each block M is encrypted:

C = M e (mod n).

• Example. Encrypt “stop” using e = 13 and n = 2537:

· s t o p ←→ 18 19 14 15 ←→ 1819 1415

· 181913 mod 2537 = 2081 and
141513 mod 2537 = 2182 so

· 2081 2182 is the encrypted message.

· We did not need to know p = 43, q = 59 for that.

· By the way, gcd(13, 42 · 58) = 1.

12

RSA cont.

• Decryption: compute Cd mod n.

• Claim. Cd mod n = M .

• Lemma Suppose p is prime. Then for a ∈ Z
· p - a and k ≡ 0 (mod p− 1) ⇒ ak ≡ 1 (mod p).

· m ≡ 1 (mod p− 1) ⇒ am ≡ a (mod p).

• Proof of Claim.

· ed ≡ 1 (mod p− 1) and ed ≡ 1 (mod q − 1)

· . . . since ed ≡ 1 (mod (p− 1)(q − 1))

· ⇒ M ed ≡ M (mod p), and M ed ≡ M (mod q).

· ⇒ M ed ≡ M (mod n).

· ⇒ M ed mod n = M .

· ⇒ Cd mod n = [M e mod n]d mod n
= M ed mod n
= M .

• Proof of lemma.

· k = l(p− 1) for some l ∈ Z.

· ⇒ ak =
(
ap−1

)l ≡ (
ap−1 mod p

)l ≡ 1 (mod p).

· If p | a, am ≡ a (mod p) for any m.

· If p - a, use m− 1 ≡ 0 (mod p− 1) above.

13

Probabilistic Primality Testing

• RSA requires really large primes.

• The popular way of testing primality is through prob-
abilistic algorithms.

• The procedure for randomized testing of n’s primality
is based on a readily computable test T(b, n): is b ∈
Z∗n := {1, . . . , n− 1} a “witness” for n’s primality.

• Example. Is bn−1 ≡ 1 (mod n)?

• The answer is always positive if n is prime.

• Unfortunately, the answer might be positive even if n
is composite: 2340 ≡ 1 (mod 341) and 341 = 11 · 31.

• The probability that a randomly chosen b will be a
witness to the “primality” of the composite n, de-
pends on T.

• Machine Learning: false positive rate of T on n, FP(n).

• Need to control the overall FP rate of T: establish a
lower bound q, on the probability of a false witness
for any n.

• If m randomly chosen bs have all testified that n is
prime then the probability that n is composite ≤ qm.

14

Probabilistic Primality Testing cont

IsPrime(n, ε, [T, q]): Primality Testing
Input: n ∈ N+ - the prime suspect

ε ∈ (0, 1) - probability of false classification
T - a particular prime test
FPr - a lower bound on Prob(false witness)

Output: “yes, with probability ≥ 1− ε”, or “no”

Pr = 1
while Pr > ε

randomly draw b ∈ Z∗n := {1, 2 . . . , n− 1}
if T(b, n)

Pr := Pr · FPr
else

return “no”
return “yes, with probability ≥ 1− ε”

• For a given ε, the complexity clearly depends on FPr,
the false positive rate of T.

• How many false witnesses b can there possibly be?

15

Fermat’s Pseudoprimes

• Def. If n is a composite and bn−1 ≡ 1 (mod n) then
n is a Fermat pseudoprime to the base b.

• Let TF be the Fermat test and assume n is composite.

• n is a Fermat pseudoprime to the base b if and only
if TF (b, n) is a FP.

• What is the probability, qn, that TF (b, n) yields a FP
for a randomly chosen b ∈ Z∗n := {1, 2, . . . , n− 1}?

• If k = |{b ∈ Z∗n : TF (b, n) is positive}|, for k out of
the n− 1 possible bs, TF (b, n) gives a FP.

• Since each of the bs is equally likely to be drawn,
qn = k/(n− 1).

• Are there composites n which are Fermat pseudo-
primes to relatively many bases b?

16

Carmichael numbers

• Def. A composite n which is a Fermat pseudoprime
for any b with gcd(n, b) = 1 is a Carmichael number.

• Example. n = 561 is a Carmichael number.

· Suppose b ∈ Z∗n with gcd(b, n) = 1.

· n = p1p2p3 with p1 = 3, p2 = 11, p3 = 17.

· Check: n− 1 ≡ 0 (mod pi − 1) for i = 1, 2, 3.

· ⇒ bn−1 ≡ 1 (mod pi) for i = 1, 2, 3

· . . . since pi - b.
· ⇒ bn−1 ≡ 1 (mod n).

• TF can perform miserably on Carmichael numbers: it
will yield a FP for most bs.

• Example. If n = p1p2p3 is a Carmichael numbers then

1− qn ≤ n/p1 − 1

n− 1
+

n/p2 − 1

n− 1
+

n/p3 − 1

n− 1

≤ 1

p1
+

1

p2
+

1

p3

• Aside: Use of a Carmichael number instead of a prime
factor in the modulus of an RSA cryptosystem is likely
to make the system fatally vulnerable - Pinch (97).

17

The Rabin-Miller Test

• Input:

· n = 2st + 1 where t is odd and s ∈ N
· b ∈ Z∗n

• TRM: Does exactly one of the following hold?

· bt ≡ 1 (mod n) or

· b2jt ≡ −1 (mod n) for one 0 ≤ j ≤ s− 1.

• Claim. If n is prime, TRM(b, n) is positive ∀b ∈ Z∗n.
• Fact. If n is composite the FP rate is at most 1/4.

• The probability that a composite n will survive m
tests TRM(b, n) with randomly chosen bs is ≤ 4−m.

• The claim is a corollary of the following lemma.

• Lemma. If p 6= 2 is prime and p | b2st − 1 then p
divides exactly one factor in

b2st − 1 = (bt − 1)(bt + 1)(b2t + 1) . . . (b2s−1t + 1).

• Note that in our case p = 2st + 1 so for b relatively
prime to p, p | b2st − 1 by Fermat’s theorem.

• Sketch of lemma’s proof.

18

· Induction on s, base is trivial.

· p | b2st − 1 ⇒ p | (b2s−1t − 1)(b2s−1t + 1).

· But p cannot divide both factors since then

· p | (b2s−1t + 1)− (b2s−1t − 1) = 2.

19

Pseudorandom Numbers

• For the randomized algorithms we need a random
number generator.

• Most languages provide you with a function “rand”.

• There is nothing random about such a function. . .

• Being deterministic it creates pseudorandom numbers.

• Example. The linear congruential method.

· Choose a modulus m ∈ N+,

· a multiplier a ∈ {2, 3, . . . , m− 1} and

· an increment c ∈ Zm := {0, 1, . . . , m− 1}.
· Choose a seed x0 ∈ Zm (time is typically used).

· Compute xn+1 = axn + c (mod m).

• Warning: a poorly implemented rand(), such as in C,
can wreak havoc on Monte Carlo simulations.

20

Database 101

• Problem: How can we efficiently store, retrieve and
delete records from a large database?

• For example, students records.

• Each record has a unique key (e.g. student ID).

• Shall we keep an array sorted by the key?

• Easy retrieval but difficult insertion and deletion.

• How about a table with an entry for every possible
key?

• Often infeasible, almost always wasteful.

21

Hashing

• Store the records in an array of size N .

• N should be somewhat bigger than the expected num-
ber of records.

• The location of a record is given by h(k) where k is
the key and h is the hashing function which maps
the space of keys to ZN .

• Example: h(k) := k mod N .

• A collision occurs when h(k1) = h(k2) and k1 6= k2.

• To minimize collisions makes sure N is sufficiently
large.

• You can re-hash the data if the table gets too full.

• A good hashing function should distribute the images
of the possible set of keys fairly evenly over ZN .

• Ideally, P (h(k) = i) = 1/N for any i ∈ ZN .

• When collisions occur there are mechanisms to resolve
them (buckets, next empty cell, etc.)

22

Tentative Prelim Coverage

IMPORTANT: The only type of calculator that you can
bring with you to the prelim is one without any mem-
ory or programming capability. If you have any doubt
about whether or not your calculator qualifies it probably
doesn’t but feel free to ask one of the professors.

• Chapter 0:

· Sets

∗ Set builder notation

∗ Operations: union, intersection, complementa-
tion, set difference

· Relations:

∗ reflexive, symmetric, transitive, equivalence re-
lations

∗ transitive closure

· Functions

∗ Injective, surjective, bijective

∗ Inverse function

· Important functions and how to manipulate them:

∗ exponent, logarithms, ceiling, floor, mod, poly-
nomials

23

· Summation and product notation

· Matrices (especially how to multiply them)

· Proof and logic concepts

∗ logical notions (⇒, ≡, ¬)

∗ Proofs by contradiction

• Chapter 1

· You do not have to write algorithms in their nota-
tion

· You must be able to read algorithms in their no-
tation

• Chapter 2

· induction vs. strong induction

· guessing the right inductive hypothesis

· inductive (recursive) definitions

• Number Theory - everything we covered in class in-
cluding

· Fundamental Theorem of Arithmetic

· gcd, lcm

· Euclid’s Algorithm and its extended version

· Modular arithmetics, linear congruences, modular
inverse

24

· CRT

· Fermat’s little theorem

· RSA

· Probabilistic primality testing

• Chapter 4:

· Section 4.1, 4.2, 4.3

· Sum and product rule

25

