Linear Congruences

e The equation ax = b for a,b € R is uniquely solvable

ifa 4 0: x =b/a.
e Want to extend to the linear congruence:

ar =b (mod m), a,be Z,meN". (1)

o If z( is a solution then so is x;. == o + km, Vk € Z
e ...since km =0 (mod m).

e S0, uniqueness can only be modulo m.

e How many solutions modulo 4 to 2x = 2 (mod 4)7
©2-1=2-3=2 (mod 4).

e Claim If ged(a,m) = 1 then (1) has at most one
solution modulo m.

e Proof. Suppose r, s € Z are solutions of (1).
= a(r—s) =0 (mod m)

-=>m|r—s=r=s (mod m).



Linear Congruences cont.

e The key to finding a solution:
ez =b/a = ba"! where a™! is the solution to ay = 1.

e Claim. Let m € N*, @ € Z. Suppose 3a € Z s.t
aad = 1 (mod m). Then for any b € Z, x = ba is a
solution of ax = b (mod m).

e Proof.
a(ba)=aab=1-b=b (mod m).

e Example: tosolve 3z =4 (mod 7) first find 3 (mod 7):
+—2:-3=—-6=1 (mod 7) = —2=3 (mod 7).
cx=3-4=—-2-4= —8satisfies 3x =4 (mod 7).

e Does a always exist?

e Can you solve 2x = 1 (mod 4)?

©2.0=2-2=0 (mod 4)and 2-1 =2-3 =2 (mod 4).

e What about 2z =1 (mod 2n)?

e What about 2 modulo 37

e When does a exist? Is it unique? How can we find it?



Inverse Modulo m

e Theorem. If a, m are relatively prime integers and
m > 1 then there exists a unique inverse of @ modulo
m denoted as a.

e Proof.

-ds,t e Zst. as+mt =1
- = as =1 (mod m) = s is an inverse modulo m

- Since an inverse is a solution to ax = 1 (mod m)
uniqueness was already proved.

e Cor. a is given by the extended Euclid algorithm.

e - Example: ged(3,7) =1 = 33 modulo 7
- 7=2-341= —-2-3+7=1=3= -2 (mod 7).



The Chinese Remainder Theorem

e Fxample. Pick an integer n € [0, 104].

- Tell me its remainders modulo 3, 5, and 7 (r3, 75, 17).
- Let me “guess”: n = 70r3 + 21r; + 15r7 mod 105.

e Def. my,...,m, are pairwise relatively prime if V7, 7,
ged(my,my) = 1.
e Theorem. Let mq,...,m, € N be pairwise rela-
tively prime. The set of equations
r=a; (modm;) 1=1,2...n (2)
has a unique solution modulo M =[]} m;.

e Comments:

- If x is a solution then so is x + kM for any k € Z.

- There exists a unique solution z € NN [0, M — 1].
e Eixample: a solution to

cx =13 (mod 3),x =15 (mod 5), z = r; (mod 7)

-is x = 70r3 + 21r5 + 1577 mod 105.

- The key:

- 70mod 3=1,70 mod 5 =0, 70 mod 7 =0

-21lmod3=0,21mod5=1,2l mod 7=0

- 15mod 3=0,15mod 5=0, I5mod 7 =1
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Proof of the CRT

e Proof. A solution exists if dx;, ¢ =1,...,n s.t.
r; =1 (mod m;) (3)
r; =0 (mod m;) Vj #q.
- Indeed, x := > a;x; satisfies
T = Z a;(x; mod m;) = Z a;d;; = a; (mod my).
J=1 j=1

- We prove (3) constructively: let s; = M /m,.
- Then, s; = [[;,;m; =0 (mod my) for j # i.
- §; has an inverse modulo m;, S;
. ...since ged(my, s;) = 1. Let x; := s;5;.
- Fori=1,...,n, x; satisfies (3).
- In our example: s3=5-7=35, §3 =2
S5 =3-7=21,8;=1
s7=3-5=15,s7, =1
- Uniqueness: suppose x and y satisfy (2).
= r—y=0 (mod m;) fori=1,...,n.
- The next lemma completes the proof:

- Lemma. If m; € N7 are pairwise relatively prime
and m; | s fori=1,...,n then [[{ m; | s.
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Proof of the CRT cont.

e Lemma. If m; € NT are pairwise relatively prime
and m; | sfori=1,... nthen [[{m; | s.

e Proof. By induction on n.

- For n = 1 the statement is trivial.

- Assuming it holds for n = N we want to prove it
forn =N+ 1.

- Let a := Hi\f m; and let b = mpy_1.
-dle Zst. s=la

- ... by the inductive hypothesis a | s.
b|s=0b]1

- ... because a and b are relatively prime.
.= dk € Zst. | = bk.

= s=ual =abk = ab | s.



Computer Arithmetic with Large
Integers

e Want to work with very large integers.
e Choose myq, ..., m, pairwise relatively prime.
e To compute Ny + Ny or Ny - No:
N; «— (N; mod myq, ..., N; mod m,)
N1+ Ny «—— (N7 + Ny mod my, ..., Ny + Ny mod m,,)
Ny Ny «—— (N7 - Ny mod my, ..., Ny- Ny mod my,)

e The lhs of the last two equation can readily be com-
puted component wise.

e Requires efficient transition:
N «— (N mod my, ..., N mod m,).
e Advantages:

- Allows arithmetic with very large integers.
- Can be readily parallelized.

e Example. The following are pairwise relatively prime.
{m; )2 ={2% — 1,2 —1,2% — 1,29 —1,2% — 1}

e We can add and multiply positive integers up to
M = Hi) m; > 2184,



Fermat’s Little Theorem

o If pisaprime and pta € Z then a? ! =1 (mod p).
Moreover, for any a € Z, a”? = a (mod p).

e Proof. Let A={1,2,...,p— 1}, and let

- B ={la mod p,2a mod p,...,(p— 1)a mod p}.
-0¢ Bso B C A.

-|Al=p—1s0if |B|=p—1then A= B.

cLet 1 <i=#£ 45 <p-—1, then

- 1a mod p # ja mod p

- <= ia Z ja (mod p)

- <= pfali—J)

= A=D.

p—1
= (p—1)! = H(ia, mod p) = a? *(p—1)!  (mod p).
i=1
= a"t =1 (mod p)
.since ged((p — 1), p) = 1.
- In partlcular, a’ = a (mod p).

- The latter clearly holds for a s.t. p | a as well.



Private Key Cryptography

e Alice (aka A) wants to send an encrypted message to

Bob (aka B).

e A and B might share a private key known only to
them.

e The same key serves for encryption and decryption.
e Example: Caesar’s cipher f(m) = m + 3 mod 26.

- ABCDEFGHI JKLMNOPQRSTUVWXYZ
- WKH EXWOHU GLG LW
- THE BUTLER DID IT
- Note that f(m) — 3 mod 26 = m

e Slightly more sophisticated: f(m) = am + b mod 26

- Example: f(m) = 4m + 1 mod 26
-...oops f(0)= f(13) = 1.

- Decryption: solve for m, (am + b) mod 26 = ¢, or
am = c—b (mod 26).

- Need da, or ged(a, 26) = 1.

- Weakness of this cipher: suppose the triplet QMB is
much more popular than all other triplets. ..
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Private Key cont.

e However, some private key systems are totally im-
mune to non-physical attacks:

- A and B share the only two copies of a long list of
random integers s; forv=1,..., V.

- A sends B the message {m,}?_; encrypted as:

cc; =m;+ Sy, mod 26 fore =1,...,n.

- A also sends the key K and deletes s 11, ..., Skin.

- B decrypts A’s message by computing

- ¢; — Sk 4+ mod 26.

- Upon decryption B also deletes sgi1,...,SKkin.

- Pros: bullet proof cryptography system

- Cons: horrible logistics
e Cons (any private key system):

- Only predetermined users can exchange messages
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Public Key Encryption

e A uses B’s public encryption key to send an encrypted
message to B.

e Only B has the decryption key that allows decoding
of messages encrypted with his public key:.

e BIG advantage: A need not know nor trust B.
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RSA

e GGenerating the keys.

- Choose two very large (hundreds of digits) primes
D, q.
- Let n = pq.
- Choose e € N relatively prime to (p — 1)(g — 1).
- Compute d, the inverse of e modulo (p—1)(g—1).
e Publish the modulos n and the encryption key e.
e Keep the decryption key d to yourself.

e Encryption protocol.

- The message is divided into blocks each represented
as M € NN[0,n—1]. Each block M is encrypted:

C'=M° (mod n).
e [xample. Encrypt “stop” using e = 13 and n = 2537:

st op+«— 18 19 14 15 «—— 1819 1415

- 18195 mod 2537 = 2081 and
141513 mod 2537 = 2182 so

- 2081 2182 is the encrypted message.
- We did not need to know p = 43, ¢ = 59 for that.
- By the way, ged (13,42 - 58) = 1.
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RSA cont.

e Decryption: compute C¢ mod n.
e Claim. C? mod n = M.

e Lemma Suppose p is prime. Then for a € Z
-ptaand k=0 (mod p—1) = a* =1 (mod p).
-m=1 (mod p—1) = a" =a (mod p).

e Proof of Claim.
ced=1 (mod p—1)and ed =1 (mod ¢ — 1)
-...since ed =1 (mod (p —1)(¢ — 1))
= M“ = M (mod p), and M = M (mod q).
.= M“ =M (mod n).

.= M““modn =M.
. = C%mod n = [M¢ mod n]" mod n
= M* mod n
= M.
e Proof of lemma.
-k =1(p—1) for some [ € Z.
= af = (ap_l)l = (ap_l mod p)l =1 (mod p).
Ifpla,a™ =a (mod p) for any m.
Ifpta,usem—1=0 (mod p— 1) above.
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Probabilistic Primality Testing

e RSA requires really large primes.

e The popular way of testing primality is through prob-
abilistic algorithms.

e The procedure for randomized testing of n’s primality
is based on a readily computable test T(b,n): is b €
Z: ={1,...,n— 1} a “witness” for n’s primality.

e Example. Is 0" ' =1 (mod n)?

e The answer is always positive if n is prime.

e Unfortunately, the answer might be positive even if n
is composite: 2% =1 (mod 341) and 341 = 11 - 31.

e The probability that a randomly chosen b will be a
witness to the “primality” of the composite n, de-
pends on T.

e Machine Learning: false positive rate of T onn, FP(n).

e Need to control the overall FP rate of T establish a
lower bound ¢, on the probability of a false witness
for any n.

e [f m randomly chosen bs have all testified that n is
prime then the probability that n is composite < ¢™.
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Probabilistic Primality Testing cont

IsPrime(n, ¢, [T, ¢q|): Primality Testing
Input: n € N7 - the prime suspect

e € (0,1) - probability of false classification

T - a particular prime test

FPr - a lower bound on Prob(false witness)
Output: “yes, with probability > 1 —&”, or “no”

Pr=1
while Pr > ¢
randomly draw b € Z) = {1,2...,n — 1}
if T(b,n)
Pr .= Pr-FPr
else
return “no’
return “yes, with probability > 1 — &”

e For a given €, the complexity clearly depends on FPr,
the false positive rate of T'.

e How many false witnesses b can there possibly be?
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Fermat’s Pseudoprimes

e Def. If n is a composite and 5"t =1 (mod n) then
n is a Fermat pseudoprime to the base b.

e Let T be the Fermat test and assume n is composite.

e 1 is a Fermat pseudoprime to the base b if and only
if Tp(b,n) is a FP.

e What is the probability, ¢, that Tp(b,n) yields a FP
for a randomly chosen b € Z; = {1,2,...,n —1}7?
olf k=1|{be Z :Tgr(bn)is positive}|, for k out of

the n — 1 possible bs, Tp(b,n) gives a FP.
e Since each of the bs is equally likely to be drawn,
qn=Fk/(n—1).

e Are there composites n which are Fermat pseudo-
primes to relatively many bases b?
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Carmichael numbers

e Def. A composite n which is a Fermat pseudoprime
for any b with ged(n, b) = 1is a Carmichael number.

e Eixample. n = 561 is a Carmichael number.
- Suppose b € Z; with ged(b,n) = 1.
- o= p1pap3 with p1 =3, po = 11, p3 = 17.
+ Check: n —1=0 (mod p; — 1) fori = 1,2, 3.
= b""1=1 (mod p;) fori =1,2,3
- ...since p; 1 b.
= b1 =1 (mod n).
e T'x can perform miserably on Carmichael numbers: it
will yield a FP for most bs.

e Example. If n = pipops is a Carmichael numbers then

n —1 n —1 n — 1
/pl n /p2 n /pg

1_Qn§

n—1 n—1 n—1
1 1 1

<+ —+—
P1 D2 P3

e Aside: Use of a Carmichael number instead of a prime
factor in the modulus of an RSA cryptosystem is likely
to make the system fatally vulnerable - Pinch (97).
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The Rabin-Miller Test

e Input:
-n =2+ 1 where t is odd and s € N
-bel;
e Trni: Does exactly one of the following hold?
b =1 (mod n) or
b= —1 (mod n) forone 0 < j < s — 1.
e Claim. If n is prime, Trys(b, n) is positive Vb € Z .
e Fact. If n is composite the FP rate is at most 1/4.

e The probability that a composite n will survive m
tests Tras(b, n) with randomly chosen bs is < 47™.

e The claim is a corollary of the following lemma.

e Lemma. If p # 2 is prime and p | 6% — 1 then p
divides exactly one factor in

1= — )+ D 1) (0 1),
e Note that in our case p = 2°t 4+ 1 so for b relatively
prime to p, p | b** — 1 by Fermat’s theorem.

e Sketch of lemma’s proof.
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- Induction on s, base is trivial.

p | —1=p | (BT =)+ 1),

- But p cannot divide both factors since then
| ) (1) =2
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Pseudorandom Numbers

e For the randomized algorithms we need a random
number generator.

e Most languages provide you with a function “rand”.
e There is nothing random about such a function. ..

e Being deterministic it creates pseudorandom numbers.
e Eixample. The linear congruential method.

. Choose a modulus m € NT.

- a multiplier a € {2,3,...,m — 1} and

- an increment ¢ € Z,, :== {0,1,...,m — 1}.

- Choose a seed z¢ € Z,, (time is typically used).
- Compute x,41 = ax, + ¢ (mod m).

e Warning: a poorly implemented rand(), such as in C,
can wreak havoc on Monte Carlo simulations.
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Database 101

e Problem: How can we efficiently store, retrieve and
delete records from a large database?

e For example, students records.

e Fach record has a unique key (e.g. student ID).
e Shall we keep an array sorted by the key?

e Fasy retrieval but difficult insertion and deletion.

e How about a table with an entry for every possible
key?

e Often infeasible, almost always wastetul.
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Hashing

e Store the records in an array of size V.

e /V should be somewhat bigger than the expected num-
ber of records.

e The location of a record is given by h(k) where k is
the key and A is the hashing function which maps
the space of keys to Zy.

e Fixample: h(k) :== k mod N.
e A collision occurs when h(ky) = h(ks) and ky # k.

e To minimize collisions makes sure N is sufficiently
large.

e You can re-hash the data if the table gets too full.

e A good hashing function should distribute the images
of the possible set of keys fairly evenly over Zy.

e [deally, P(h(k) =1) =1/N for any ¢ € Zy.

e When collisions occur there are mechanisms to resolve
them (buckets, next empty cell, etc.)
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Tentative Prelim Coverage

IMPORTANT: The only type of calculator that you can
bring with you to the prelim is one without any mem-
ory or programming capability. If you have any doubt
about whether or not your calculator qualifies it probably
doesn’t but feel free to ask one of the professors.

e Chapter 0:
- Sets

* Set builder notation

x Operations: union, intersection, complementa-
tion, set difference

- Relations:

x reflexive, symmetric, transitive, equivalence re-
lations

x transitive closure
- Functions
x Injective, surjective, bijective
x Inverse function
- Important functions and how to manipulate them:
x exponent, logarithms, ceiling, floor, mod, poly-

nomials
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- Summation and product notation

- Matrices (especially how to multiply them)

- Proot and logic concepts
* logical notions (=, =, )
x Proofs by contradiction

e Chapter 1

- You do not have to write algorithms in their nota-
tion

- You must be able to read algorithms in their no-
tation

e Chapter 2

- induction vs. strong induction
- guessing the right inductive hypothesis
- inductive (recursive) definitions
e Number Theory - everything we covered in class in-
cluding
- Fundamental Theorem of Arithmetic
- ged, lem
- Euclid’s Algorithm and its extended version

- Modular arithmetics, linear congruences, modular
Inverse
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- CRT

- Fermat’s little theorem

- RSA

- Probabilistic primality testing
e Chapter 4:

- Section 4.1, 4.2, 4.3

- Sum and product rule
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