Elementary number theory

- Why bother? When you hear the word Amazon do you think of a river in Brazil or of the internet commerce giant?
- Def. For $a, b \in \mathbb{Z}$, $a \neq 0$, a divides b (denoted a | b), if $\exists c \in \mathbb{Z}$ s.t. $b = ca$.
- More nomenclature: a is a factor of b , b is a multiple of $a, a \nmid b$.
- The integers divided by $d \in \mathbb{N}^+$ form a lattice $d\mathbb{Z}$:

- Q: How many integers in $[1, n]$ are divided by d ?
- A: $|n/d|$.

Useful elementary result

• Theorem. For $a, b, c \in \mathbb{Z}$ we have:

- 1. $a \mid b$ and $a \mid c \Rightarrow a \mid (b + c)$
- 2. $a | b \Rightarrow a | (bc)$
- 3. $a \mid b$ and $b \mid c \Rightarrow a \mid c$

• Proof of 1.

$$
a | b \Rightarrow \exists k \in \mathbb{Z} \text{ s.t. } b = ak
$$

$$
a | c \Rightarrow \exists m \in \mathbb{Z} \text{ s.t. } c = am
$$

$$
\Rightarrow b + c = ak + am = a(k + m)
$$

$$
\Rightarrow a | b + c.
$$

Primes

- Def. $p \in \mathbb{N}$ is prime if $p > 1$ and $a \mid p$ implies $a = 1$ or $a = p$.
- $p > 1$ is prime if its only factors are 1 and itself.
- Def. $k \in \mathbb{N}$ is *composite* if $k > 1$ and k is not prime.
- If k is composite then $\exists a \in \mathbb{N}, 1 < a < k$ s.t. $a \mid k$.
- Primes: $2, 3, 5, 7, 11, 13, \ldots$
- Composites: $4, 6, 8, 9, \ldots$
- Primality testing. How can we tell if $n \in \mathbb{N}$ is prime?
- The naive approach: check if $k \mid n$ for every $1 \leq k \leq$ $\,n_{\cdot}$
- The complexity of this approach is *exponential* in the size of the input:
	- \cdot It takes $\log_2 n$ bits to describe n.
	- Checking if $k \mid n$ for any $k \in [2, n-1]$ requires $n-2=2^{\log_2 n}-2$ such tests.
- We can do significantly better.

Prime Factorization I

- Theorem. Any $n \in \mathbb{N}^+$ can be represented as a product of primes.
- Examples: $54 = 2 \cdot 3^3$, $100 = 2^2 \cdot 5^2$, $15 = 3 \cdot 5$.
- Comments:
	- · This representation is in fact unique up to...
	- · The uniqueness statement is the harder part of the fundamental theorem of arithmetic.
	- · The product might be empty or have only one element.

Prime Factorization I

- Theorem. Any $n \in \mathbb{N}^+$ can be represented as a product of primes.
- **Proof.** By induction on n .
	- · The base of the induction is hidden in the aforementioned comments.
	- \cdot Assuming any $k \leq n$ can be presented as a product of primes we want to factor $n + 1$.
	- \cdot If $n + 1$ is prime then there is nothing to prove.
	- Otherwise, $n + 1 = ab$ with $a, b \in \mathbb{N}$ and $1 <$ $a, b < n + 1.$
	- \cdot Thus, there exist primes p_1, \ldots, p_i and q_1, \ldots, q_j s.t.
	- $\cdot a = p_1 \dots p_i$ and $b = q_1 \dots q_j$ and
	- $\cdot n + 1 = p_1 \dots p_i q_1 \dots q_j$

A better primality test

- Claim. If n is a composite integer then n has a prime divisor $p \leq \sqrt{n}$. $^{\iota}$ ∴
- **Proof.** $n = ab$ with $a, b \in \mathbb{N}$ and $1 < a, b < n$.
	- Clearly, $a \leq$ √ \overline{n} or $b \leq$ √ \overline{n} .
	- \cdot WLOG (without loss of generality) $a \leq$ √ \overline{n} . √
	- \cdot $a = p_1 \dots p_i$ where $p_j \le a \le$ \overline{n} are primes. √

 $\cdot p_1 \mid a$ and $a \mid n$ so $p_1 \mid n$ and $p_1 \leq \sqrt{n}$.

- Corollary. To test whether n is prime we only need to test if $k \mid n$ for any $2 \leq k \leq \sqrt{n}$. $^{\sim}$ ່
- The number of "is factor?" tests are now reduced to The number of is factor: $\frac{1}{k}$ roughly \sqrt{n} . Is it significant?
- Depends: $\sqrt{n} = 2^{0.5 \log_2 n}$.
- In fact, we only need to test if $p \mid n$ for every prime $p \leq \sqrt{n}$. √ ∪
∕
- Does the last statement strike you as odd?
- Still, we can establish 101 is prime since 2, 3, 5 and 7 do not divide 101.

Prime Factorization II

 $PF(n)$: A prime factorization procedure $\textbf{Input:} \,\, n \in \mathbb{N}^+$ **Output:** PFS - a list of n 's prime factors $PFS := [n]$ $f \circ f = [n]$
for $i = 2 : \sqrt{n}$ if $i \mid n$ $PFS := [i]$. $PF(n/i)$ break return PFS

- Example: $PF(7007) = [7, PF(1001)] = [7, 7, PF(143)]$ $=[7, 7, 11, PF(13)] = [7, 7, 11, 13].$
- Can you identify a small (technical) bug in the program?
- Complexity wise, testing primality is easy (polynomial) in the size of the input data) while prime factorization is difficult (it better be!).

The division algorithm

- Theorem. For $a \in \mathbb{Z}$ and $d \in \mathbb{N}$, $d > 0$ there exist unique $q, r \in \mathbb{Z}$ s.t. $a = q \cdot d + r$ and $0 \le r < d$.
- $\cdot d$ is the divisor
	- \cdot *a* is the dividend
	- \cdot q is the quotient
	- \cdot r is the remainder: $r = a \mod d$
	- $\cdot d \mid a$ if and only if a mod $d = 0$.
- Example: dividing 101 by 11 gives a quotient of 9 and a remainder of 2 (101 mod $11 = 2$).
	- · Dividing 18 by 6 gives a quotient of 3 and a remainder of 0 (18 mod $6 = 0$).

• **Proof.** Let $q = [a/d]$ and define $r = a - q \cdot d$. Then

- $\cdot 0 \le a/d |a/d| < 1 \implies 0 \le a q \cdot d < d.$
- · So $a = q \cdot d + r$ with $q \in \mathbb{Z}$ and $0 \leq r < d$.
- Uniqueness: suppose $q \cdot d + r = q' \cdot d + r'$ with $q', r' \in \mathbb{Z}$ and $0 \leq r' < d$.
- · It folows that $(q'-q)d = (r r')$ with $-d <$ $r - r' < d$.
- \cdot The lhs is divisible by d so $r = r'$ and we're done.

How many primes are there?

- Suppose there was a finite number of primes: $p_1, \ldots p_n$.
- Let $N = 1 + \prod_{i=1}^{n} p_i$.
- For any $i, p_i \nmid N$ since N mod $p_i = 1$.
- \bullet Yet N has a prime factorization so there have to be more primes.
- Let $\pi(n)$ be the numbers or primes $\leq n$.
- The Prime Numbers Theorem. $\pi(n) \sim n/\log(n)$, that is,

$$
\lim_{n} \frac{\pi(n)}{n/\log(n)} = 1.
$$

• Note that $a_n/b_n \to 1$ is not the same as $a_n - b_n \to 0$.

Greatest Common Divisor (gcd)

- For $a \in \mathbb{Z}$ let $D(a) = \{k \in \mathbb{N} : k \mid a\}$ (divisors of a).
- Claim. $|D(a)| < \infty$ if (and only if) $a \neq 0$.
- Proof.
	- $\cdot k \in D(a)$ implies $a = kq$ for some $q \in \mathbb{Z}, q \neq 0$.

$$
\cdot k = |a/q| \le |a|.
$$

- For $a, b \in \mathbb{Z}$, let $CD(a, b) = D(a) \cap D(b)$ be the set of common divisors of a, b .
- Clearly $|CD(a, b)| < \infty$ if not both $a, b = 0$.
- Def. The greatest common divisor of a and b is: $gcd(a, b) = max CD(a, b).$
- This is a constructive definition. Examples:
	- \cdot gcd(6,9) = 3
	- \cdot gcd(13,100) = 1
	- \cdot gcd(4,9) = 1
- Efficient computation of $gcd(a, b)$ lies at the heart of commercial cryptography (in particular the internet).

Euclid's Algorithm

- Lemma. If for $a, b, q, r \in \mathbb{Z}$, $a = bq + r$, then $gcd(a, b) = gcd(b, r).$
- Proof of lemma.

 $k \in CD(a, b) \Rightarrow k \mid a - bq \Rightarrow k \mid r \Rightarrow k \in CD(b, r).$ $k \in CD(b, r) \Rightarrow k \mid bq+r \Rightarrow k \mid a \Rightarrow k \in CD(a, b).$ Thus,

$$
CD(a, b) = CD(b, r).
$$

- Corollary. $gcd(a, b) = gcd(b, a \mod b)$.
- Euclid's algorithm. Upon input $a, b \in \mathbb{N}$:
	- · Assuming $a \geq b$ and $a > 0$, let $r_0 = a$ and $r_1 = b$
	- · As long as $r_i > 0$ let $r_{i+1} = r_{i-1} \bmod r_i$
	- Return r_n , the last nonvanishing r_i .
- Spelled Out: $r_0 = r_1q_1 + r_2$ with $0 < r_2 < r_1$

$$
\cdot r_1 = r_2 q_2 + r_3 \text{ with } 0 < r_3 < r_2
$$
\n
$$
\vdots
$$

$$
\cdot r_{n-2} = q_{n-1}r_{n-1} + r_n \text{ with } 0 < r_n < r_{n-1}
$$

$$
\cdot r_{n-1} = r_n q_n
$$

Euclid's Algorithm cont.

• When we stop we have:

•
$$
gcd(a, b) = gcd(r_0, r_1) = \cdots = gcd(r_{n-1}, r_n) = r_n
$$

- Example. $gcd(662, 414)=?$
	- \cdot 662 = 414 \cdot 1 + 248
	- \cdot 414 = 248 \cdot 1 + 166
	- \cdot 248 = 166 \cdot 1 + 82
	- \cdot 166 = 82 \cdot 2 + 2
	- \cdot 82 = 2 \cdot 41
	- $\cdot \Rightarrow \gcd(662, 414) = 2$

```
recursive Euclid(a, b)Input: a \geq b \in \mathbb{N}, a > 0Output: gcd(a, b)if b = 0return a
else
   return recursive Euclid(b, a \mod b)
```
• What if $a < 0$ or $b < 0$?

Complexity of Euclid's Algorithm

- How do we know we will stop?
- The number of divisions is not more than $min{a, b}$.
- This is typically *exponential* in the number of bits required to descibe the input.
- Recall: $r_{i-1} = r_i q_i + r_{i+1}$ with $q_i \in \mathbb{Z}$ and $0 \leq r_{i+1}$ r_i .
- Either $r_{i+1} \le r_i/2$ or $r_{i+1} > r_i/2$.
- In the latter case, in $r_i = r_{i+1}q_{i+1} + r_{i+2}, q_{i+1} = 1$ and $r_{i+2} = r_i - r_{i+1} < r_i/2$.
- Either way, $r_{i+2} < r_i/2$, so every two steps reduce r_i by at least a factor of 2.
- The number of divisions is bounded by $2 \log_2 n + 1$.
- Linear complexity.

Euclid's Extended Algorithm

• Theorem. For $a, b \in \mathbb{N}$, not both 0, there exist $s, t \in \mathbb{Z}$ s.t.

$$
\gcd(a, b) = sa + tb.
$$

- Note that $gcd(a, b) | sa + tb$ for all $s, t \in \mathbb{Z}$.
	- · Example: $gcd(9, 4) = 1 = 1 \cdot 9 + (-2) \cdot 4$.
- **Proof.** We will prove by induction on $0 \leq k \leq n$ that $\exists s_k, t_k \in \mathbb{Z}$ s.t.

$$
s_k a + t_k b = r_k. \tag{1}
$$

- \cdot For $k = 0, 1$ this is obvious.
- · Assuming (1) holds for all $0 \leq k \leq m$ with $1 \leq$ $m < n$, we want to show it holds for $k = m + 1$.

$$
r_{m-1} = q_m r_m + r_{m+1}
$$

\n
$$
\Rightarrow (s_{m-1}a + t_{m-1}b) = q_m(s_ma + t_mb) + r_{m+1}
$$

\n
$$
\Rightarrow (s_{m-1} - q_m s_m)a + (t_{m-1} - q_m t_m)b = r_{m+1}
$$

\n
$$
\therefore \text{Let } s_{m+1} = s_{m-1} - q_m s_m \text{ and } t_{m+1} = t_{m-1} - q_m t_m.
$$

• Note that there is a recipe in the proof.

Corollaries

• Lemma 1. Let $a, b, c \in \mathbb{N}^+$ and suppose that $gcd(a, b) =$ 1 and that $a \mid bc$. Then $a \mid c$.

• Proof.

- $\cdot \exists s, t \in \mathbb{Z} \text{ s.t. } sa + tb = 1$
- $\cdot \Rightarrow$ sac + tbc = c
- $\cdot \Rightarrow a \mid c$.
- $a, b \in \mathbb{Z}$ for which $gcd(a, b) = 1$ are called *relatively* primes and they have no common prime factor.
- Example: 4 and 9 are relatively primes.
	- \cdot 6 | 4 \cdot 9 but 6 | 4 and 6 | 9 what's wrong?
- Lemma 2. **Lemma 2.** If p is a prime and if for $a_i \in \mathbb{Z}$, p | \overline{n} $\frac{n}{1}a_i$, then $p \mid a_i$ for some $1 \leq i \leq n$.
- **Proof.** By induction on $n(n = 1$ is trivial).
	- \cdot Assume the lemma holds for $1 \leq n \leq N$.
	- $\cdot p$ $\overline{\mathsf{T}^{N+1}}$ $\frac{N+1}{1}a_i \Rightarrow p \mid ($ \mathbf{T}^N $\int_{1}^{N} a_i) a_{N+1}.$
	- \cdot If $p \mid a_{N+1}$ we are done.
	- · Else, $gcd(p, a_{N+1}) = 1$.
	- \cdot Since $p \mid$ $\frac{(\mathbf{P})^{\alpha}}{\mathbf{P}}$ $\int_1^N a_i, p \mid a_i \text{ for some } 1 \leq i \leq N.$

Fundamental Theorem of Arithmetic

- Every $n \in \mathbb{N}^+$ can be represented uniquely as a product of increasing primes.
- **Proof.** Only uniqueness is left to prove.
	- Suppose $\exists n \in \mathbb{N}^+$ with two different prime factorizations.
	- \cdot $n =$ $\frac{1}{\sqrt{2}}$ שונ $\frac{s}{1} \, p_i =$ $\overline{\mathbf{T}}^r$ $_{1}^{r}\,q_{j}.$
	- \cdot WLOG $p_i \neq q_j$ for all i, j . $\frac{1}{\sqrt{1-r}}$
	- \cdot p_1 | $j_1^r q_j \Rightarrow p_i \mid q_j$ for some j.
	- · It follows that $p_1 = q_j$ which is a contradiction.
- Corollary. Suppose $a =$ $\mathbf{\overline{u}}^{n}$ $\frac{n}{1}p_i^{\alpha_i}$ $\frac{\alpha_i}{i}$ and $b =$ \Box^n $\frac{n}{1}\,p_i^{\beta_i}$ $\frac{\beta_i}{i},$ where p_i are primes and $\alpha_i, \beta_i \in \mathbb{N}$ (prime factorization). Then,

$$
\gcd(a, b) = \prod_{i=1}^n p_i^{\min(\alpha_i, \beta_i)}.
$$

• Proof. Clearly, $\exists \gamma_i \in \mathbb{N}$ s.t. $gcd(a, b) = \prod_1^n p_i^{\gamma_i}$ i $\mathbf{\overline{H}}$ ^N $_{n+1}^N\,p_i^{\gamma_i}$ $\frac{\gamma_i}{i} .$

- $\cdot \gcd(a, b) \mid a \Rightarrow \forall i, \gamma_i \leq \alpha_i, (\alpha_{n+1} = \cdots = 0).$
- Similarly, $\forall i \leq N, \gamma_i \leq \beta_i$, so $\gamma_i \leq \min(\alpha_i, \beta_i)$.
- Conversely, if $\exists i : \gamma_i < \min(\alpha_i, \beta_i)$ then $gcd(a, b)p_i | a$, $gcd(a, b)p_i | b \Rightarrow$ contradiction.

Least Common Multiple (lcm)

- Def. The least common multiple of $a, b \in \mathbb{N}^+$, lcm (a, b) , is the smallest $n \in \mathbb{N}^+$ s.t. $a \mid n$ and $b \mid n$.
- Examples: $lcm(4, 9) = 36$, $lcm(4, 10) = 20$.
- Claim. Let $a =$ $\frac{1}{\sqrt{2}}$ $\frac{n}{1}p_i^{\alpha_i}$ $\frac{\alpha_i}{i}$ and $b=$ $\overline{\mathbf{T}}^n$ $\frac{n}{1}\,p_i^{\beta_i}$ $\mu_i^{\beta_i}$ be the prime factorization of a, b. Then, lcm(a, b) = $\prod_{i=1}^{n} p_i^{\max(\alpha_i,\beta_i)}$ $\max_{i}(\alpha_i,\beta_i)$.
- Proof.
	- $\cdot \exists \delta_i \in \mathbb{N} \text{ s.t. } \text{lcm}(a, b) = \prod_{i=1}^n p_i^{\delta_i}$ i Π^N $_{n+1}^N\,p_i^{\delta_i}$ $\frac{o_i}{i}$.
	- \cdot a | lcm(a, b) \Rightarrow $\delta_i > \alpha_i$ ($\alpha_{n+1} = \cdots = 0$).
	- $\cdot b \mid \text{lcm}(a, b) \Rightarrow \delta_i \geq \beta_i \Rightarrow \delta_i \geq \text{max}(\alpha_i, \beta_i).$
	- Conversely, if $\exists 1 \leq i \leq N$ s.t $\delta_i > \max(\alpha_i, \beta_i)$ then ($\frac{15C_1}{\sqrt{2}}$ $\frac{n}{1} \frac{\delta_j}{p_j}$ $\binom{b}{j}/p_i$ would still be a multiple of a and of b contradicting the minimality of $lcm(a, b)$.
- Example. $lcm(95256, 432) = ?$
	- \cdot 432 = 2^43^2 , and $95256 = 2^33^57^2$
	- $\cdot \Rightarrow$ lcm(95256, 432) = $2^4 3^5 7^2 = 190512$.
- Do we really need to factor a and b ?

lcm and gcd

• Theorem. Let $a, b \in \mathbb{N}^+$.

$$
ab = \gcd(a, b) \cdot \operatorname{lcm}(a, b).
$$

- Example. $4 \cdot 10 = 2 \cdot 20 = \gcd(4, 10) \cdot \text{lcm}(4, 10)$.
- Proof.

 $min(\alpha, \beta) + max(\alpha, \beta) = \alpha + \beta.$

Congruence

- Def. Let $a, b \in \mathbb{Z}$ and $m \in \mathbb{N}^+$. a is congruent to b modulo m if $m \mid a - b$: $\mathbf{a} \equiv \mathbf{b} \pmod{\mathbf{m}}$.
- Also, a "equals" b modulo m, and $a \not\equiv b \pmod{m}$.

• **Examples**:
$$
17 \equiv 5 \pmod{6}
$$

 \cdot 24 $\not\equiv$ 14 (mod 6), but

 \cdot 24 \equiv 14 (mod 5)

• Claim. For $a, b \in \mathbb{Z}$ and $m \in \mathbb{N}^+$,

 $a \equiv b \pmod{m} \iff a \mod m = b \mod m$.

• Proof.

• There exist $q_a, r_a, q_b, r_b \in \mathbb{Z}$ s.t.

 $a = mq_a + r_a$ $0 \leq r_a < m$ $b = mq_b + r_b$ $0 \le r_b \le m$ $\cdot \Rightarrow a - b = m(q_a - q_b) + (r_a - r_b)$ $\cdot \Rightarrow m \mid a-b \iff m \mid r_a-r_b$ \cdot Since $-m < r_a - r_b < m$ $\cdot m \mid a-b \iff r_a - r_b = 0.$

Congruence cont.

- Corollary. $a \equiv (a \mod m) \pmod{m}$.
- **Proof.** $((a \bmod m) \bmod m) = (a \bmod m)$.
- Claim. Let $a, b \in \mathbb{Z}$ and $m \in \mathbb{N}^+$.

 $a \equiv b \pmod{m} \iff \exists k \in \mathbb{Z} : a = b + km.$

• Proof.

$$
a \equiv b \pmod{m} \iff m \mid a - b.
$$

Congruence Classes

- Def. The *congruence class* of a modulo m is $\{b :$ $b \equiv a \pmod{m}$.
- Example.
	- · The congruence class of 1 modulo 2 is. . . the set of odd numbers.
	- · The congruence class of 0 modulo 2 is the evens.
	- \cdot The two classes form a partition of \mathbb{Z} .
- More generally, for a fixed $m \in \mathbb{N}^+$ congruence modulo m is a relation on $\mathbb Z$ that is
	- · reflexive: $a \equiv a \pmod{m}$
	- symmetric: $a \equiv b \pmod{m} \iff b \equiv a \pmod{m}$
	- · transitive: $a \equiv b \pmod{m}$ and $b \equiv c \pmod{m}$ implies $a \equiv c \pmod{m}$.
	- The latter follows from $a c = (a b) + (b c)$.
- Thus, congruence mod m is an *equivalence relation*.
- An equivalence relation on S partitions S into equivalence classes.
- For the congruence relation these are the congruence classes.

Modular Arithmetics

- Arithmetics: $a = b$ and $c = d$ implies $a + c = b + d$.
- Do these manipulations hold for congruences?
- Theorem. Let $m \in \mathbb{N}^+$ and $a, b, c, d \in \mathbb{Z}$. If $a \equiv b$ (mod m) and $c \equiv d \pmod{m}$, then
	- $\cdot a + c \equiv b + d \pmod{m}$
	- \cdot $ac \equiv bd \pmod{m}$.
- Example. $7 \equiv 2 \pmod{5}$, and $11 \equiv 1 \pmod{5}$ $\cdot \Rightarrow 18 \equiv 3 \pmod{5}$, and $77 \equiv 2 \pmod{5}$.
- Proof. $\exists k, l \in \mathbb{Z}$ s.t.

$$
a = b + km, \text{ and } c = d + lm
$$

\n
$$
\Rightarrow a + c = b + d + m(k + l)
$$

\n
$$
\Rightarrow a + c \equiv b + d \pmod{m}.
$$

\nSimilarly, $ac = bd + m(kd + bl + klm)$
\n
$$
\Rightarrow ac \equiv bd \pmod{m}.
$$

• Corollary. For $m \in \mathbb{N}^+$, $a, b \in \mathbb{Z}$

 $ab \equiv (a \mod m)(b \mod m) \pmod{m}.$

Modular Arithmetics cont.

• Corollaries. For $m, k \in \mathbb{N}^+, a, b \in \mathbb{Z}$

- \cdot (ab mod $m) \equiv (a \mod m)(b \mod m) \pmod{m}$ $\overline{}$ $\frac{111}{2}$
- $\cdot a^{2^k} \bmod m =$ $a^{2^{k-1}} \bmod m$ $\mod m$

• Efficient modular exponentiation: $a^n, a \in \mathbb{Z}, n \in \mathbb{N}$.

• Let $n = (d_{p-1} \dots d_1 d_0)_2$ (binary representation).

$$
a^{n} = a^{\sum_{i=0}^{p-1} d_i 2^i} = \prod_{i=0}^{p-1} a^{d_i 2^i}.
$$

· Let

$$
x_k := \left(\prod_{i=0}^k a^{d_i 2^i} \right) \bmod m = \left(x_{k-1} \cdot a^{d_k 2^k} \right) \bmod m
$$

• With $x_{-1} := 1$, for $k = 0 \dots p-1$ compute

$$
x_k = \begin{pmatrix} x_{k-1} \\ x_{k-1} \\ 1 \end{pmatrix} \begin{cases} a^{2^k} \bmod m & \text{if } d_k = 1 \\ 1 & \text{if } d_k = 0 \end{cases} \bmod m,
$$

and (for $k \ge 1$)

$$
a^{2^k} \bmod m = \left(a^{2^{k-1}} \bmod m \right)^2 \bmod m.
$$

Modular Arithmetics cont.

• For $a, b, c \in \mathbb{Z}$ with $c \neq 0$,

$$
ac = bc \Rightarrow a = b.
$$

- Does it carry over to the modular world?
- Example: $2 \cdot 4 \equiv 3 \cdot 4 \pmod{4}$ but $2 \not\equiv 3 \pmod{4}$.
- But $4 \equiv 0 \pmod{4}$!
- Example: $3 \cdot 2 \equiv 1 \cdot 2 \pmod{4}$ but $3 \not\equiv 1 \pmod{4}$.
- Shall we give up?
- Theorem. Let $m \in \mathbb{N}^+$ and $a, b, c \in \mathbb{Z}$. If $gcd(c, m) =$ 1 then $ac \equiv bc \pmod{m} \Rightarrow a \equiv b \pmod{m}$.
- Proof.

$$
m \mid ac - bc \Rightarrow m \mid c(a - b) \Rightarrow m \mid (a - b).
$$