Elementary number theory

e Why bother? — When you hear the word Amazon
do you think of a river in Brazil or of the internet
commerce giant?

e Def. Fora,b € Z, a # 0, a divides b (denoted a | b),
if dc € Z s.t. b = ca.

e More nomenclature: a is a factor of b, b is a multiple

of a, a1b.
e The integers divided by d € N* form a lattice dZ:

e (): How many integers in [1, n] are divided by d?
o A: [n/d].



Useful elementary result

e Theorem. For a, b, c € Z we have:

lLLalbanda|c=al (b+c)
2.a|b=a| (bc)
3.albandb|c=a|c

e Proof of 1.

a|b=3dkeZst b=ak
a|c=3ImeZst. c=am
= b+ c=ak+am = a(k+m)
= a|b+ec.




Primes

e Def. p € Nis prime if p > 1 and a | p implies a = 1
or a = p.

e p > 1 is prime if its only factors are 1 and itself.

e Def. £ € Nis composite it kK > 1 and k is not prime.
o If k is composite then dJa € N, 1 <a < kst. a | k.
e Primes: 2,3,5,7,11,13,...

e Composites: 4,6,8,9, ...

e Primality testing. How can we tell if n € N is
prime?

e The naive approach: check if k | n for every 1 < k <
n.

e The complexity of this approach is exponential in the
size of the input:

- It takes log, n bits to describe n.
- Checking if k£ | n for any k& € |2,n — 1] requires
n — 2 =217 _ 9 such tests.

e We can do significantly better.



Prime Factorization 1

e Theorem. Any n € NT can be represented as a
product of primes.

e Examples: 54 =2-3%, 100 =2%-5%, 15 =3-5.
e Comments:

- This representation is in fact unique up to...

- The uniqueness statement is the harder part of the
fundamental theorem of arithmetic.

- The product might be empty or have only one el-
ement.



Prime Factorization 1

e Theorem. Any n € NT can be represented as a
product of primes.

e Proof. By induction on n.
- The base of the induction is hidden in the afore-

mentioned comments.

- Assuming any £ < n can be presented as a product
of primes we want to factor n 4+ 1.

- If n + 1 is prime then there is nothing to prove.

- Otherwise, n + 1 = ab with a,b € N and 1 <
a,b<n+41.

- Thus, there exist primes py,...,p; and ¢qi, ..., ¢,
s.t.

-a=mp;...pjand b =¢q...q; and
~n+1:p1...piq1...qj



A better primality test

e Claim. If nis a composite integer then n has a prime
divisor p < /n.

e Proof. n =abwitha,b € Nand 1 < a,b < n.
- Clearly, a < y/nor b < /n.
- WLOG (without loss of generality) a < /n.
-a =p;...p; where p; < a < \/n are primes.
-p1|aand a | nsop | nandp <4/n.

e Corollary. To test whether n is prime we only need
to test if k | n for any 2 < k < 4/n.

e 'The number of “is factor?” tests are now reduced to
roughly /n. Is it significant?

e Depends: /n = 20-°loe2n

e In fact, we only need to test if p | n for every prime
p <Vn.
e Does the last statement strike you as odd?

e Still, we can establish 101 is prime since 2, 3, 5 and 7
do not divide 101.



Prime Factorization 11

PF(n): A prime factorization procedure
Input: n € N*
Output: PES - a list of n’s prime factors

PFS := [n]
fori=2:+/n
ifi | n
PFS :=[i] . PF(n/q)
break
return PFS

o Example: PF(7007) = [7, PF(1001)] = [7, 7, PF(143)]
= [7,7, 11, PR(13)] = [7, 7, 11, 13].

e Can you identify a small (technical) bug in the pro-
oram’?

e Complexity wise, testing primality is easy (polynomial
in the size of the input data) while prime factorization
is difficult (it better bel).



The division algorithm

e Theorem. For a € Z and d € N, d > 0 there exist

unique ¢, 7 € Zst. a=q-d+rand 0 <r <d.

e - dis the divisor
- a 18 the dividend
- q 1s the quotient
- 7 18 the remainder: r = @ mod d
- d | a if and only if @ mod d = 0.

e - Example: dividing 101 by 11 gives a quotient of 9

and a remainder of 2 (101 mod 11 = 2).
- Dividing 18 by 6 gives a quotient of 3 and a re-
mainder of 0 (18 mod 6 = 0).

e Proof. Let ¢ = |a/d| and define r = a—q-d. Then
0<a/d—|a/d] <1 = 0<a—q-d<d
-Soa=q-d+rwithgeZand 0 <r <d.

- Uniqueness: suppose q -d +r = ¢ - d + r' with
¢, r"eZand 0 <71’ <d.

- It folows that (¢ — q)d = (r — ') with —d <
r—r <d.

- The lhs is divisible by d so r = " and we’re done.

8



How many primes are there?

e Suppose there was a finite number of primes: p1, ... p,.
e For any 7, p; 1 N since N mod p; = 1.

e Yet IV has a prime factorization so there have to be
more primes.

e Let m(n) be the numbers or primes < n.

e The Prime Numbers Theorem. 7w(n) ~ n/log(n),

that is,

mn) g

1.
n n/log(n)

e Note that a, /b, — 1 is not the same as a,, — b, — 0.



Greatest Common Divisor (gcd)

e Fora e Zlet D(a) ={k € N: k| a} (divisors of a).
e Claim. |D(a)| < oo if (and only if) a # 0.
e Proof.
- k € D(a) implies a = kq for some q € Z, q # 0.
k= la/ql < |a|
e For a,b € Z, let CD(a,b) = D(a) N D(b) be the set

of common divisors of a, b.
e Clearly |C'D(a,b)| < oo if not both a,b = 0.

e Def. The greatest common divisor of a and b is:
ged(a, b) = maxC'D(a, b).

e This is a constructive definition. Examples:

- ged(6,9) = 3
- ged(13,100) = 1
- ged(4,9) =1

e Efficient computation of ged(a, b) lies at the heart of
commercial cryptography (in particular the internet).
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Euclid’s Algorithm

e Lemma. If for a,b,q,r € Z, a = bq + r, then
gced(a, b) = ged(b, 7).
e Proof of lemma.
ke CD(a,b)=k|a—bg=k|r=FkeCD(D,r).

ke CD(b,r)=k|bg+r =k |a= ke CD(a,b).

Thus,
CD(a,b) = CD(b, 7).

e Corollary. ged(a,b) = ged(b, a mod b).
e Euclid’s algorithm. Upon input a,b € N:

- Assuming a > b and a > 0, let rg =a and r; = b
- As long as r; > 0 let r;;.1 = r;,_1 mod r;

- Return r,,, the last nonvanishing ;.
e Spelled Out: 79 = r1qp + 1o with 0 < ry < 1y

‘11 =T9qy + 173 With 0 < rg < 19

T = Qp-1Tn—1+ Tp, With 0 < r,, < r,_1

*Tn—1 = Tngn
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Euclid’s Algorithm cont.

e When we stop we have:
e ocd(a,b) = ged(rg,m) = -+ = ged(rp_1,71) =Ty
e Example. ged(662,414)="

662 = 414 - 1 + 248

- 414 =248 - 1 + 166

- 248 =166 - 1 + 82

- 166 =82-2+ 2

- 82=2-41

- = ged(662,414) = 2

recursive Euclid(a, b)
Input: a > b N, a>0
Output: ged(a, b)

iftb=0
return a
else
return recursive FEuclid(b, @ mod b)

e Whatifa < 0or b <07
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Complexity of Euclid’s Algorithm

e How do we know we will stop?
e The number of divisions is not more than min{a, b}.

e This is typically exponential in the number of bits
required to descibe the input.

e Recall: r,_; = riQ; + Ti+1 with ¢; € Z and 0 < Tiv1 <
;.

e Either 7.1 < r;/2 or iy > 1;/2.

e In the latter case, in r; = rj11qic1 + Tivo, g1 = 1
and ri0 =1 — 10 < 715/2.

e Fither way, 1,10 < 1;/2, so every two steps reduce r;
by at least a factor of 2.

e The number of divisions is bounded by 2log, n + 1.

e Linear complexity.
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Euclid’s Extended Algorithm

e Theorem. For a,b € N, not both 0, there exist
s,t € Z s.t.
gcd(a, b) = sa + tb.
e - Note that ged(a, b)|sa + tb for all s,t € Z.
- Example: ged(9,4) =1=1-9+(-2)-4.
e Proof. We will prove by induction on 0 < k£ < n
that dsy, t,. € Z s.t.
sipa + tb = 1. (1)

- For kK =0, 1 this is obvious.

- Assuming (1) holds for all 0 < k < m with 1 <
m < n, we want to show it holds for k = m + 1.

*Tim—1 = GmTm T Tm+1

c = (Sm_1a + tn_10) = gm(sma + tb) +

c = (Sme1 — GmSm)a + (tm_1 — @mtm)b = T

- Let Syi1 = Sm—1—GmSm and t,, 1 = ty-1— qmlm.

e Note that there is a recipe in the proof.
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Corollaries

e Lemma 1. Let a, b, c € NT and suppose that ged(a, b) =
1 and that a | bc. Then a | c.

e Proof.

-ds,t € Zst. sa+tbh=1
- = sac + thc = ¢
-=ac

e a,b € Z for which ged(a, b) = 1 are called relatively
primes and they have no common prime factor.

e - Example: 4 and 9 are relatively primes.

+6]4-9but 614 and 619 — what’s wrong?

e Lemma 2. If p is a prime and if for a; € Z, p |
[ 1 @i, then p | a; for some 1 <i < n.

e Proof. By induction on n (n =1 is trivial).

- Assume the lemma holds for 1 < n < N.

N N
- p | H1 o a; = p | <H1 i) aAN41-
If p | any1 we are done.

) Elsea ng(pa CLN_|_1> = 1.
- Since p | Hiva,i, p | a; for some 1 <i < N.
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Fundamental Theorem of Arithmetic

e Every n € N can be represented uniquely as a prod-
uct of increasing primes.

e Proof. Only uniqueness is left to prove.

. Suppose In € N with two different prime factor-
1zations.

-n=[Iipi=1Ig
- WLOG p; # ¢, for all 4, j.

-p1 | [11 95 = pi | q; for some j.
- It follows that p; = g; which is a contradiction.

e Corollary. Suppose a = [[{ p;" and b = H?p@&;

where p; are primes and «;, 3; € N (prime factoriza-
tion). Then,

gcd(a, b) = H mma,@

e Proof. Clearly, 3v; € Ns.t. ged(a,b) =[]} p,’ Hnﬂpzl.
cged(a,b) | a = Vi, v < oy, (g1 =---=0).
- Similarly, Vi < N, v; < ;, so v < min(aqy, 3;).
- Conversely, if 37 : 7; < min(q;, 8;) then
ged(a, b)p; | a , ged(a, b)p; | b = contradiction.
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Least Common Multiple (lcm)

e Def. The least common multiple of a,b € NV,
lem(a, ), is the smallest n € NT st. a | n and
b | n.

e Examples: lem(4,9) = 36, lem(4, 10) = 20.
e Claim. Let a =[] p;" and b = [[; p;" be the prime
factorization of a, b. Then, lem(a, b) = [ max(c. ;)

1=11"1

e Proof.
n 0; TTN 0;
- 36; € Nst. lem(a,b) = [ [, ;' [ 1.1 2"
- a | lem(a,b) = 0; > a; (apyr =+ =0).

b | lem(a,b) = 9; > B; = 9; > max(ay, 5;).
- Conversely, if 41 < i < N st §; > max(ay, 5;)

then (]} pjj ) /p; would still be a multiple of a and
of b contradicting the minimality of lem(a, b).

e Example. lem(95256,432) =7
- 432 = 232, and 95256 = 233°7?
- = lem (95256, 432) = 213°7% = 190512.

e Do we really need to factor a and b7
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lcm and gcd

e Theorem. Let a,b € N™.
ab = ged(a, b) - lem(a, b).

e Eixample. 4 - 10 = 2 - 20 = ged(4, 10) - lem(4, 10).
e Proof.

min(a, 3) + max(a, 8) = a + (.

18



Congruence

o Def. Let a,b € Z and m € NT. ais congruent to b
modulo m if m | a —b: a=b (mod m).

e Also, a “equals” b modulo m, and a Z b (mod m).
e - Examples: 17=5 (mod 6)

- 24 £ 14 (mod 6), but

24 = 14 (mod b5)
e Claim. For a,b € Z and m € N,

a=b (modm) <= amodm =bmodm.

e Proof.

- There exist q,, 74, qp, 7y € 2 S.%.

a=mgq,+r, 0<r,<m
b=mqy,+ 1 0<r,<m

c=a—b=m(q,— @)+ (ry — 1)
=>mla—b <= m|r,—n
-oince —m < rg,—1ry < m
m|a—b < r,—1r,=0.
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Congruence cont.

e Corollary. a = (a mod m) (mod m).
e Proof. ((a mod m) mod m) = (a mod m).

e Claim. Let a,b € Z and m € NT.

a=b (modm) <= JkeZ:a=b+km.

e Proof.

a=b (modm) <= m|a—0b.
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Congruence Classes

e Def. The congruence class of a modulo m is {b :
b=a (mod m)}.
e Eixample.
- The congruence class of 1 modulo 2 is. ..
the set of odd numbers.
- The congruence class of 0 modulo 2 is the evens.
- The two classes form a partition of Z.
e More generally, for a fixed m € NT congruence mod-
ulo m is a relation on Z that is
- reflexive: @ = a (mod m)
- symmetric: ¢ = b (mod m) <= b=a (mod m)
- transitive: ¢ = b (mod m) and b = ¢ (mod m)
implies a = ¢ (mod m).
- The latter follows from a — ¢ = (a — b) + (b — ¢).

e Thus, congruence mod m is an equivalence relation.

e An equivalence relation on S partitions S into equiv-
alence classes.

e For the congruence relation these are the congruence
classes.
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Modular Arithmetics

e Arithmetics: a = b and ¢ = d impliesa+c=b+ d.
e Do these manipulations hold for congruences?

e Theorem. Let m € N" and a,b,c,d € Z. f a=b
(mod m) and ¢ = d (mod m), then

ca+c=b+d (mod m)
- ac = bd (mod m).

e - Example. 7=2 (mod 5), and 11 =1 (mod 5)
- = 18 =3 (mod 5), and 77 = 2 (mod 5).

e Proof. dk,[ € Z s.t.

ca=b+km,andc=d+Im
-=>a+c=b+d+m(k+1)
= a+c=b+d (mod m).
- Similarly, ac = bd + m(kd + bl + klm)
- = ac = bd (mod m).

e Corollary. For m € N*, a,b € Z

ab = (a mod m)(b mod m) (mod m).
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Modular Arithmetics cont.

e Corollaries. For m,k e N". a,b € Z

- (@b mod m) = (a mod m)(b mod m) (mod m)
2
. a2 mod m = (an_l mod m) mod m
e Efficient modular exponentiation: a”, a € Z,n € N.

- Let n = (dp—1 . .. didp), (binary representation).

S 42 H d;2"
- Let
Tp = (H adizi) mod m = (xk_l : ad"f2k) mod m
1=0
-Withz_1:=1,for k=0...p— 1 compute
a? mod m if dp. =1
xr = | rp_1- . mod m,
1 if dk = ()
and (for k > 1)

9
k k—1
a’> mod m = (a2 mod m) mod m.
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Modular Arithmetics cont.

e For a,b,c € Z with ¢ # 0,

ac=bc = a =0b.

e Does it carry over to the modular world?

e Fixample: 2-4 =3-4 (mod 4) but 2 # 3 (mod 4).
e But 4 =0 (mod 4)!

e Example: 3-2=1-2 (mod 4) but 3% 1 (mod 4).
e Shall we give up?

e Theorem. Letm € N"and a,b,c € Z. If ged(c, m) =
1 then ac = bc (mod m) = a =b (mod m).

e Proof.

m|ac—bc = m|cla—b) = m]|(a—0Db).

24



