
Elementary number theory

• Why bother? – When you hear the word Amazon
do you think of a river in Brazil or of the internet
commerce giant?

• Def. For a, b ∈ Z, a 6= 0, a divides b (denoted a | b),
if ∃c ∈ Z s.t. b = ca.

• More nomenclature: a is a factor of b, b is a multiple
of a, a - b.

• The integers divided by d ∈ N+ form a lattice dZ:

• Q: How many integers in [1, n] are divided by d?

• A: bn/dc.
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Useful elementary result

• Theorem. For a, b, c ∈ Z we have:

1. a | b and a | c ⇒ a | (b + c)

2. a | b ⇒ a | (bc)

3. a | b and b | c ⇒ a | c
• Proof of 1.

a | b ⇒ ∃k ∈ Z s.t. b = ak

a | c ⇒ ∃m ∈ Z s.t. c = am

⇒ b + c = ak + am = a(k + m)

⇒ a | b + c.
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Primes

• Def. p ∈ N is prime if p > 1 and a | p implies a = 1
or a = p.

• p > 1 is prime if its only factors are 1 and itself.

• Def. k ∈ N is composite if k > 1 and k is not prime.

• If k is composite then ∃a ∈ N, 1 < a < k s.t. a | k.

• Primes: 2, 3, 5, 7, 11, 13, . . .

• Composites: 4, 6, 8, 9, . . .

• Primality testing. How can we tell if n ∈ N is
prime?

• The naive approach: check if k | n for every 1 < k <
n.

• The complexity of this approach is exponential in the
size of the input:

· It takes log2 n bits to describe n.

· Checking if k | n for any k ∈ [2, n − 1] requires
n− 2 = 2log2 n − 2 such tests.

• We can do significantly better.
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Prime Factorization I

• Theorem. Any n ∈ N+ can be represented as a
product of primes.

• Examples: 54 = 2 · 33, 100 = 22 · 52, 15 = 3 · 5.

• Comments:

· This representation is in fact unique up to...

· The uniqueness statement is the harder part of the
fundamental theorem of arithmetic.

· The product might be empty or have only one el-
ement.
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Prime Factorization I

• Theorem. Any n ∈ N+ can be represented as a
product of primes.

• Proof. By induction on n.

· The base of the induction is hidden in the afore-
mentioned comments.

· Assuming any k ≤ n can be presented as a product
of primes we want to factor n + 1.

· If n + 1 is prime then there is nothing to prove.

· Otherwise, n + 1 = ab with a, b ∈ N and 1 <
a, b < n + 1.

· Thus, there exist primes p1, . . . , pi and q1, . . . , qj

s.t.

· a = p1 . . . pi and b = q1 . . . qj and

· n + 1 = p1 . . . piq1 . . . qj
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A better primality test

• Claim. If n is a composite integer then n has a prime
divisor p ≤ √

n.

• Proof. n = ab with a, b ∈ N and 1 < a, b < n.

· Clearly, a ≤ √
n or b ≤ √

n.

· WLOG (without loss of generality) a ≤ √
n.

· a = p1 . . . pi where pj ≤ a ≤ √
n are primes.

· p1 | a and a | n so p1 | n and p1 ≤
√

n.

• Corollary. To test whether n is prime we only need
to test if k | n for any 2 ≤ k ≤ √

n.

• The number of “is factor?” tests are now reduced to
roughly

√
n. Is it significant?

• Depends:
√

n = 20.5 log2 n.

• In fact, we only need to test if p | n for every prime
p ≤ √

n.

• Does the last statement strike you as odd?

• Still, we can establish 101 is prime since 2, 3, 5 and 7
do not divide 101.
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Prime Factorization II

PF(n): A prime factorization procedure
Input: n ∈ N+

Output: PFS - a list of n’s prime factors

PFS := [n]
for i = 2 :

√
n

if i | n
PFS := [i] . PF(n/i)
break

return PFS

• Example: PF(7007) = [7, PF(1001)] = [7, 7, PF(143)]
= [7, 7, 11, PF(13)] = [7, 7, 11, 13].

• Can you identify a small (technical) bug in the pro-
gram?

• Complexity wise, testing primality is easy (polynomial
in the size of the input data) while prime factorization
is difficult (it better be!).
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The division algorithm

• Theorem. For a ∈ Z and d ∈ N, d > 0 there exist
unique q, r ∈ Z s.t. a = q · d + r and 0 ≤ r < d.

• · d is the divisor

· a is the dividend

· q is the quotient

· r is the remainder: r = a mod d

· d | a if and only if a mod d = 0.

• · Example: dividing 101 by 11 gives a quotient of 9
and a remainder of 2 (101 mod 11 = 2).

· Dividing 18 by 6 gives a quotient of 3 and a re-
mainder of 0 (18 mod 6 = 0).

• Proof. Let q = ba/dc and define r = a−q ·d. Then

· 0 ≤ a/d− ba/dc < 1 =⇒ 0 ≤ a− q · d < d.

· So a = q · d + r with q ∈ Z and 0 ≤ r < d.

· Uniqueness: suppose q · d + r = q′ · d + r′ with
q′, r′ ∈ Z and 0 ≤ r′ < d.

· It folows that (q′ − q)d = (r − r′) with −d <
r − r′ < d.

· The lhs is divisible by d so r = r′ and we’re done.
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How many primes are there?

• Suppose there was a finite number of primes: p1, . . . pn.

• Let N = 1 +
∏n

1 pi.

• For any i, pi - N since N mod pi = 1.

• Yet N has a prime factorization so there have to be
more primes.

• Let π(n) be the numbers or primes ≤ n.

• The Prime Numbers Theorem. π(n) ∼ n/ log(n),
that is,

lim
n

π(n)

n/ log(n)
= 1.

• Note that an/bn → 1 is not the same as an− bn → 0.
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Greatest Common Divisor (gcd)

• For a ∈ Z let D(a) = {k ∈ N : k | a} (divisors of a).

• Claim. |D(a)| < ∞ if (and only if) a 6= 0.

• Proof.

· k ∈ D(a) implies a = kq for some q ∈ Z, q 6= 0.

· k = |a/q| ≤ |a|.
• For a, b ∈ Z, let CD(a, b) = D(a) ∩D(b) be the set

of common divisors of a, b.

• Clearly |CD(a, b)| < ∞ if not both a, b = 0.

• Def. The greatest common divisor of a and b is:
gcd(a, b) = max CD(a, b).

• This is a constructive definition. Examples:

· gcd(6,9) = 3

· gcd(13,100) = 1

· gcd(4,9) = 1

• Efficient computation of gcd(a, b) lies at the heart of
commercial cryptography (in particular the internet).
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Euclid’s Algorithm

• Lemma. If for a, b, q, r ∈ Z, a = bq + r, then

gcd(a, b) = gcd(b, r).

• Proof of lemma.

k ∈ CD(a, b) ⇒ k | a−bq ⇒ k | r ⇒ k ∈ CD(b, r).

k ∈ CD(b, r) ⇒ k | bq+r ⇒ k | a ⇒ k ∈ CD(a, b).

Thus,
CD(a, b) = CD(b, r).

• Corollary. gcd(a, b) = gcd(b, a mod b).

• Euclid’s algorithm. Upon input a, b ∈ N:

· Assuming a ≥ b and a > 0, let r0 = a and r1 = b

· As long as ri > 0 let ri+1 = ri−1 mod ri

· Return rn, the last nonvanishing ri.

• Spelled Out: r0 = r1q1 + r2 with 0 < r2 < r1

· r1 = r2q2 + r3 with 0 < r3 < r2
...

· rn−2 = qn−1rn−1 + rn with 0 < rn < rn−1

· rn−1 = rnqn
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Euclid’s Algorithm cont.

• When we stop we have:

• gcd(a, b) = gcd(r0, r1) = · · · = gcd(rn−1, rn) = rn

• Example. gcd(662,414)=?

· 662 = 414 · 1 + 248

· 414 = 248 · 1 + 166

· 248 = 166 · 1 + 82

· 166 = 82 · 2 + 2

· 82 = 2 · 41

· ⇒ gcd(662,414) = 2

recursive Euclid(a, b)
Input: a ≥ b ∈ N, a > 0
Output: gcd(a, b)

if b = 0
return a

else
return recursive Euclid(b, a mod b)

• What if a < 0 or b < 0?
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Complexity of Euclid’s Algorithm

• How do we know we will stop?

• The number of divisions is not more than min{a, b}.
• This is typically exponential in the number of bits

required to descibe the input.

• Recall: ri−1 = riqi + ri+1 with qi ∈ Z and 0 ≤ ri+1 <
ri.

• Either ri+1 ≤ ri/2 or ri+1 > ri/2.

• In the latter case, in ri = ri+1qi+1 + ri+2, qi+1 = 1
and ri+2 = ri − ri+1 < ri/2.

• Either way, ri+2 < ri/2, so every two steps reduce ri

by at least a factor of 2.

• The number of divisions is bounded by 2 log2 n + 1.

• Linear complexity.
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Euclid’s Extended Algorithm

• Theorem. For a, b ∈ N, not both 0, there exist
s, t ∈ Z s.t.

gcd(a, b) = sa + tb.

• · Note that gcd(a, b)|sa + tb for all s, t ∈ Z.

· Example: gcd(9, 4) = 1 = 1 · 9 + (−2) · 4.

• Proof. We will prove by induction on 0 ≤ k ≤ n
that ∃sk, tk ∈ Z s.t.

ska + tkb = rk. (1)

· For k = 0, 1 this is obvious.

· Assuming (1) holds for all 0 ≤ k ≤ m with 1 ≤
m < n, we want to show it holds for k = m + 1.

· rm−1 = qmrm + rm+1

· ⇒ (sm−1a + tm−1b) = qm(sma + tmb) + rm+1

· ⇒ (sm−1 − qmsm)a + (tm−1 − qmtm)b = rm+1

· Let sm+1 = sm−1−qmsm and tm+1 = tm−1−qmtm.

• Note that there is a recipe in the proof.
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Corollaries

• Lemma 1. Let a, b, c ∈ N+ and suppose that gcd(a, b) =
1 and that a | bc. Then a | c.

• Proof.

· ∃s, t ∈ Z s.t. sa + tb = 1

· ⇒ sac + tbc = c

· ⇒ a | c.
• a, b ∈ Z for which gcd(a, b) = 1 are called relatively

primes and they have no common prime factor.

• · Example: 4 and 9 are relatively primes.

· 6 | 4 · 9 but 6 - 4 and 6 - 9 – what’s wrong?

• Lemma 2. If p is a prime and if for ai ∈ Z, p |∏n
1 ai, then p | ai for some 1 ≤ i ≤ n.

• Proof. By induction on n (n = 1 is trivial).

· Assume the lemma holds for 1 ≤ n ≤ N .

· p | ∏N+1
1 ai ⇒ p | (

∏N
1 ai)aN+1.

· If p | aN+1 we are done.

· Else, gcd(p, aN+1) = 1.

· Since p | ∏N
1 ai, p | ai for some 1 ≤ i ≤ N .
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Fundamental Theorem of Arithmetic

• Every n ∈ N+ can be represented uniquely as a prod-
uct of increasing primes.

• Proof. Only uniqueness is left to prove.

· Suppose ∃n ∈ N+ with two different prime factor-
izations.

· n =
∏s

1 pi =
∏r

1 qj.

· WLOG pi 6= qj for all i, j.

· p1 |
∏r

1 qj ⇒ pi | qj for some j.

· It follows that p1 = qj which is a contradiction.

• Corollary. Suppose a =
∏n

1 pαi
i and b =

∏n
1 pβi

i ,
where pi are primes and αi, βi ∈ N (prime factoriza-
tion). Then,

gcd(a, b) =

n∏
i=1

p
min(αi,βi)
i .

• Proof. Clearly, ∃γi ∈ N s.t. gcd(a, b) =
∏n

1 pγi
i

∏N
n+1 pγi

i .

· gcd(a, b) | a ⇒ ∀i, γi ≤ αi, (αn+1 = · · · = 0).

· Similarly, ∀i ≤ N , γi ≤ βi, so γi ≤ min(αi, βi).

· Conversely, if ∃i : γi < min(αi, βi) then

gcd(a, b)pi | a , gcd(a, b)pi | b ⇒ contradiction.
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Least Common Multiple (lcm)

• Def. The least common multiple of a, b ∈ N+,
lcm(a, b), is the smallest n ∈ N+ s.t. a | n and
b | n.

• Examples: lcm(4, 9) = 36, lcm(4, 10) = 20.

• Claim. Let a =
∏n

1 pαi
i and b =

∏n
1 pβi

i be the prime

factorization of a, b. Then, lcm(a, b) =
∏n

i=1 p
max(αi,βi)
i .

• Proof.

· ∃δi ∈ N s.t. lcm(a, b) =
∏n

i=1 pδi
i

∏N
n+1 pδi

i .

· a | lcm(a, b) ⇒ δi ≥ αi (αn+1 = · · · = 0).

· b | lcm(a, b) ⇒ δi ≥ βi ⇒ δi ≥ max(αi, βi).

· Conversely, if ∃1 ≤ i ≤ N s.t δi > max(αi, βi)

then (
∏n

1 p
δj

j )/pi would still be a multiple of a and
of b contradicting the minimality of lcm(a, b).

• Example. lcm(95256, 432) =?

· 432 = 2432, and 95256 = 233572

· ⇒ lcm(95256, 432) = 243572 = 190512.

• Do we really need to factor a and b?
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lcm and gcd

• Theorem. Let a, b ∈ N+.

ab = gcd(a, b) · lcm(a, b).

• Example. 4 · 10 = 2 · 20 = gcd(4, 10) · lcm(4, 10).

• Proof.

min(α, β) + max(α, β) = α + β.
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Congruence

• Def. Let a, b ∈ Z and m ∈ N+. a is congruent to b
modulo m if m | a− b: a ≡ b (mod m).

• Also, a “equals” b modulo m, and a 6≡ b (mod m).

• · Examples: 17 ≡ 5 (mod 6)

· 24 6≡ 14 (mod 6), but

· 24 ≡ 14 (mod 5)

• Claim. For a, b ∈ Z and m ∈ N+,

a ≡ b (mod m) ⇐⇒ a mod m = b mod m.

• Proof.

· There exist qa, ra, qb, rb ∈ Z s.t.

a = mqa + ra 0 ≤ ra < m

b = mqb + rb 0 ≤ rb < m

· ⇒ a− b = m(qa − qb) + (ra − rb)

· ⇒ m | a− b ⇐⇒ m | ra − rb

· Since −m < ra − rb < m

· m | a− b ⇐⇒ ra − rb = 0.
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Congruence cont.

• Corollary. a ≡ (a mod m) (mod m).

• Proof. ((a mod m) mod m) = (a mod m).

• Claim. Let a, b ∈ Z and m ∈ N+.

a ≡ b (mod m) ⇐⇒ ∃k ∈ Z : a = b + km.

• Proof.

a ≡ b (mod m) ⇐⇒ m | a− b.
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Congruence Classes

• Def. The congruence class of a modulo m is {b :
b ≡ a (mod m)}.

• Example.

· The congruence class of 1 modulo 2 is. . .
the set of odd numbers.

· The congruence class of 0 modulo 2 is the evens.

· The two classes form a partition of Z.

• More generally, for a fixed m ∈ N+ congruence mod-
ulo m is a relation on Z that is

· reflexive: a ≡ a (mod m)

· symmetric: a ≡ b (mod m) ⇐⇒ b ≡ a (mod m)

· transitive: a ≡ b (mod m) and b ≡ c (mod m)
implies a ≡ c (mod m).

· The latter follows from a− c = (a− b) + (b− c).

• Thus, congruence mod m is an equivalence relation.

• An equivalence relation on S partitions S into equiv-
alence classes.

• For the congruence relation these are the congruence
classes.
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Modular Arithmetics

• Arithmetics: a = b and c = d implies a + c = b + d.

• Do these manipulations hold for congruences?

• Theorem. Let m ∈ N+ and a, b, c, d ∈ Z. If a ≡ b
(mod m) and c ≡ d (mod m), then

· a + c ≡ b + d (mod m)

· ac ≡ bd (mod m).

• · Example. 7 ≡ 2 (mod 5), and 11 ≡ 1 (mod 5)

· ⇒ 18 ≡ 3 (mod 5), and 77 ≡ 2 (mod 5).

• Proof. ∃k, l ∈ Z s.t.

· a = b + km, and c = d + lm

· ⇒ a + c = b + d + m(k + l)

· ⇒ a + c ≡ b + d (mod m).

· Similarly, ac = bd + m(kd + bl + klm)

· ⇒ ac ≡ bd (mod m).

• Corollary. For m ∈ N+, a, b ∈ Z
ab ≡ (a mod m)(b mod m) (mod m).
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Modular Arithmetics cont.

• Corollaries. For m, k ∈ N+, a, b ∈ Z
· (ab mod m) ≡ (a mod m)(b mod m) (mod m)

· a2k
mod m =

(
a2k−1

mod m
)2

mod m

• Efficient modular exponentiation: an, a ∈ Z, n ∈ N.

· Let n = (dp−1 . . . d1d0)2 (binary representation).

an = a
∑p−1

i=0 di2
i
=

p−1∏
i=0

adi2
i
.

· Let

xk :=
( k∏

i=0

adi2
i)

mod m =
(
xk−1 · adk2k)

mod m

· With x−1 := 1, for k = 0 . . . p− 1 compute

xk =

(
xk−1 ·

{
a2k

mod m if dk = 1

1 if dk = 0

)
mod m,

and (for k ≥ 1)

a2k
mod m =

(
a2k−1

mod m
)2

mod m.
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Modular Arithmetics cont.

• For a, b, c ∈ Z with c 6= 0,

ac = bc ⇒ a = b.

• Does it carry over to the modular world?

• Example: 2 · 4 ≡ 3 · 4 (mod 4) but 2 6≡ 3 (mod 4).

• But 4 ≡ 0 (mod 4)!

• Example: 3 · 2 ≡ 1 · 2 (mod 4) but 3 6≡ 1 (mod 4).

• Shall we give up?

• Theorem. Let m ∈ N+ and a, b, c ∈ Z. If gcd(c,m) =
1 then ac ≡ bc (mod m) ⇒ a ≡ b (mod m).

• Proof.

m | ac− bc ⇒ m | c(a− b) ⇒ m | (a− b).
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