Elementary number theory

- Why bother? When you hear the word Amazon do you think of a river in Brazil or of the internet commerce giant?
- **Def.** For $a, b \in \mathbb{Z}$, $a \neq 0$, a divides b (denoted $a \mid b$), if $\exists c \in \mathbb{Z}$ s.t. b = ca.
- More nomenclature: a is a *factor* of b, b is a *multiple* of $a, a \nmid b$.
- The integers divided by $d \in \mathbb{N}^+$ form a lattice $d\mathbb{Z}$:

- Q: How many integers in [1, n] are divided by d?
- A: $\lfloor n/d \rfloor$.

Useful elementary result

• **Theorem.** For $a, b, c \in \mathbb{Z}$ we have:

- 1. $a \mid b$ and $a \mid c \Rightarrow a \mid (b + c)$
- 2. $a \mid b \Rightarrow a \mid (bc)$
- 3. $a \mid b$ and $b \mid c \Rightarrow a \mid c$

• Proof of 1.

$$a \mid b \Rightarrow \exists k \in \mathbb{Z} \text{ s.t. } b = ak$$

$$a \mid c \Rightarrow \exists m \in \mathbb{Z} \text{ s.t. } c = am$$

$$\Rightarrow b + c = ak + am = a(k + m)$$

$$\Rightarrow a \mid b + c.$$

Primes

- **Def.** $p \in \mathbb{N}$ is *prime* if p > 1 and $a \mid p$ implies a = 1 or a = p.
- p > 1 is prime if its only factors are 1 and itself.
- **Def.** $k \in \mathbb{N}$ is *composite* if k > 1 and k is not prime.
- If k is composite then $\exists a \in \mathbb{N}, 1 < a < k \text{ s.t. } a \mid k$.
- Primes: $2, 3, 5, 7, 11, 13, \ldots$
- Composites: $4, 6, 8, 9, \ldots$
- **Primality testing.** How can we tell if $n \in \mathbb{N}$ is prime?
- The naive approach: check if $k \mid n$ for every 1 < k < n.
- The complexity of this approach is *exponential* in the size of the input:
 - It takes $\log_2 n$ bits to describe n.
 - Checking if $k \mid n$ for any $k \in [2, n-1]$ requires $n-2 = 2^{\log_2 n} 2$ such tests.
- We can do significantly better.

Prime Factorization I

- **Theorem.** Any $n \in \mathbb{N}^+$ can be represented as a product of primes.
- Examples: $54 = 2 \cdot 3^3$, $100 = 2^2 \cdot 5^2$, $15 = 3 \cdot 5$.
- Comments:
 - \cdot This representation is in fact unique up to...
 - The uniqueness statement is the harder part of the fundamental theorem of arithmetic.
 - \cdot The product might be empty or have only one element.

Prime Factorization I

- **Theorem.** Any $n \in \mathbb{N}^+$ can be represented as a product of primes.
- **Proof.** By induction on *n*.
 - \cdot The base of the induction is hidden in the aforementioned comments.
 - Assuming any $k \leq n$ can be presented as a product of primes we want to factor n + 1.
 - If n + 1 is prime then there is nothing to prove.
 - Otherwise, n + 1 = ab with $a, b \in \mathbb{N}$ and 1 < a, b < n + 1.
 - Thus, there exist primes p_1, \ldots, p_i and q_1, \ldots, q_j s.t.
 - $\cdot a = p_1 \dots p_i$ and $b = q_1 \dots q_j$ and
 - $\cdot n + 1 = p_1 \dots p_i q_1 \dots q_j$

A better primality test

- Claim. If n is a composite integer then n has a prime divisor $p \leq \sqrt{n}$.
- **Proof.** n = ab with $a, b \in \mathbb{N}$ and 1 < a, b < n.
 - · Clearly, $a \leq \sqrt{n}$ or $b \leq \sqrt{n}$.
 - WLOG (without loss of generality) $a \leq \sqrt{n}$.
 - $\cdot a = p_1 \dots p_i$ where $p_j \leq a \leq \sqrt{n}$ are primes.
 - $\cdot p_1 \mid a \text{ and } a \mid n \text{ so } p_1 \mid n \text{ and } p_1 \leq \sqrt{n}.$
- Corollary. To test whether n is prime we only need to test if $k \mid n$ for any $2 \leq k \leq \sqrt{n}$.
- The number of "is factor?" tests are now reduced to roughly \sqrt{n} . Is it significant?
- Depends: $\sqrt{n} = 2^{0.5 \log_2 n}$.
- In fact, we only need to test if $p \mid n$ for every prime $p \leq \sqrt{n}$.
- Does the last statement strike you as odd?
- Still, we can establish 101 is prime since 2, 3, 5 and 7 do not divide 101.

Prime Factorization II

PF(n): A prime factorization procedure Input: $n \in \mathbb{N}^+$ Output: PFS - a list of n's prime factors PFS := [n]for $i = 2 : \sqrt{n}$ if $i \mid n$ PFS := $[i] \cdot PF(n/i)$ break return PFS

- Example: PF(7007) = [7, PF(1001)] = [7, 7, PF(143)]= [7, 7, 11, PF(13)] = [7, 7, 11, 13].
- Can you identify a small (technical) bug in the program?
- Complexity wise, testing primality is easy (polynomial in the size of the input data) while prime factorization is difficult (it better be!).

The division algorithm

- **Theorem.** For $a \in \mathbb{Z}$ and $d \in \mathbb{N}$, d > 0 there exist unique $q, r \in \mathbb{Z}$ s.t. $a = q \cdot d + r$ and $0 \leq r < d$.
- $\cdot d$ is the divisor
 - $\cdot a$ is the dividend
 - $\cdot \; q$ is the quotient
 - $\cdot r$ is the remainder: $r = \underline{a \mod d}$
 - $\cdot d \mid a \text{ if and only if } a \mod d = 0.$
- • Example: dividing 101 by 11 gives a quotient of 9 and a remainder of 2 (101 mod 11 = 2).
 - Dividing 18 by 6 gives a quotient of 3 and a remainder of 0 (18 mod 6 = 0).

• **Proof.** Let $q = \lfloor a/d \rfloor$ and define $r = a - q \cdot d$. Then

- $\cdot 0 \le a/d \lfloor a/d \rfloor < 1 \implies 0 \le a q \cdot d < d.$
- So $a = q \cdot d + r$ with $q \in \mathbb{Z}$ and $0 \le r < d$.
- Uniqueness: suppose $q \cdot d + r = q' \cdot d + r'$ with $q', r' \in \mathbb{Z}$ and $0 \le r' < d$.
- · It follows that (q' q)d = (r r') with -d < r r' < d.
- The lhs is divisible by d so r = r' and we're done.

How many primes are there?

- Suppose there was a finite number of primes: $p_1, \ldots p_n$.
- Let $N = 1 + \prod_{i=1}^{n} p_i$.
- For any $i, p_i \nmid N$ since $N \mod p_i = 1$.
- Yet N has a prime factorization so there have to be more primes.
- Let $\pi(n)$ be the numbers or primes $\leq n$.
- The Prime Numbers Theorem. $\pi(n) \sim n/\log(n)$, that is,

$$\lim_{n} \frac{\pi(n)}{n/\log(n)} = 1.$$

• Note that $a_n/b_n \to 1$ is not the same as $a_n - b_n \to 0$.

Greatest Common Divisor (gcd)

- For $a \in \mathbb{Z}$ let $D(a) = \{k \in \mathbb{N} : k \mid a\}$ (divisors of a).
- Claim. $|D(a)| < \infty$ if (and only if) $a \neq 0$.
- Proof.
 - $\cdot k \in D(a)$ implies a = kq for some $q \in \mathbb{Z}, q \neq 0$.

$$\cdot k = |a/q| \le |a|.$$

- For $a, b \in \mathbb{Z}$, let $CD(a, b) = D(a) \cap D(b)$ be the set of common divisors of a, b.
- Clearly $|CD(a, b)| < \infty$ if not both a, b = 0.
- **Def.** The greatest common divisor of a and b is: gcd(a, b) = max CD(a, b).
- This is a constructive definition. Examples:
 - $\cdot \gcd(6,9) = 3$
 - $\cdot \gcd(13,100) = 1$
 - $\cdot \gcd(4,9) = 1$
- Efficient computation of gcd(a, b) lies at the heart of commercial cryptography (in particular the internet).

Euclid's Algorithm

- Lemma. If for $a, b, q, r \in \mathbb{Z}$, a = bq + r, then gcd(a, b) = gcd(b, r).
- Proof of lemma.

 $k \in CD(a, b) \Rightarrow k \mid a - bq \Rightarrow k \mid r \Rightarrow k \in CD(b, r).$ $k \in CD(b, r) \Rightarrow k \mid bq + r \Rightarrow k \mid a \Rightarrow k \in CD(a, b).$ Thus,

$$CD(a,b) = CD(b,r).$$

- Corollary. $gcd(a, b) = gcd(b, a \mod b)$.
- Euclid's algorithm. Upon input $a, b \in \mathbb{N}$:
 - Assuming $a \ge b$ and a > 0, let $r_0 = a$ and $r_1 = b$
 - · As long as $r_i > 0$ let $r_{i+1} = r_{i-1} \mod r_i$
 - Return r_n , the last nonvanishing r_i .
- Spelled Out: $r_0 = r_1 q_1 + r_2$ with $0 < r_2 < r_1$

•
$$r_1 = r_2 q_2 + r_3$$
 with $0 < r_3 < r_2$
:

$$r_{n-2} = q_{n-1}r_{n-1} + r_n$$
 with $0 < r_n < r_{n-1}$

$$\cdot r_{n-1} = r_n q_n$$

Euclid's Algorithm cont.

• When we stop we have:

•
$$gcd(a,b) = gcd(r_0,r_1) = \cdots = gcd(r_{n-1},r_n) = r_n$$

- Example. gcd(662,414) = ?
 - $\cdot 662 = 414 \cdot 1 + 248$
 - $\cdot 414 = 248 \cdot 1 + 166$
 - $\cdot 248 = 166 \cdot 1 + 82$
 - $\cdot \ 166 = 82 \cdot 2 + 2$
 - $\cdot \ 82 = 2 \cdot 41$
 - $\cdot \Rightarrow \gcd(662,414) = 2$

```
recursive_Euclid(a, b)
Input: a \ge b \in \mathbb{N}, a > 0
Output: gcd(a, b)

if b = 0
return a
else
return recursive_Euclid(b, a \mod b)
```

• What if a < 0 or b < 0?

Complexity of Euclid's Algorithm

- How do we know we will stop?
- The number of divisions is not more than $\min\{a, b\}$.
- This is typically *exponential* in the number of bits required to describe the input.
- Recall: $r_{i-1} = r_i q_i + r_{i+1}$ with $q_i \in \mathbb{Z}$ and $0 \le r_{i+1} < r_i$.
- Either $r_{i+1} \le r_i/2$ or $r_{i+1} > r_i/2$.
- In the latter case, in $r_i = r_{i+1}q_{i+1} + r_{i+2}$, $q_{i+1} = 1$ and $r_{i+2} = r_i - r_{i+1} < r_i/2$.
- Either way, $r_{i+2} < r_i/2$, so every two steps reduce r_i by at least a factor of 2.
- The number of divisions is bounded by $2\log_2 n + 1$.
- Linear complexity.

Euclid's Extended Algorithm

• **Theorem.** For $a, b \in \mathbb{N}$, not both 0, there exist $s, t \in \mathbb{Z}$ s.t.

$$gcd(a,b) = sa + tb.$$

- • Note that gcd(a, b)|sa + tb for all $s, t \in \mathbb{Z}$.
 - Example: $gcd(9,4) = 1 = 1 \cdot 9 + (-2) \cdot 4$.
- **Proof.** We will prove by induction on $0 \le k \le n$ that $\exists s_k, t_k \in \mathbb{Z}$ s.t.

$$s_k a + t_k b = r_k. \tag{1}$$

- For k = 0, 1 this is obvious.
- Assuming (1) holds for all $0 \le k \le m$ with $1 \le m < n$, we want to show it holds for k = m + 1.

$$\cdot r_{m-1} = q_m r_m + r_{m+1} \cdot \Rightarrow (s_{m-1}a + t_{m-1}b) = q_m(s_m a + t_m b) + r_{m+1} \cdot \Rightarrow (s_{m-1} - q_m s_m)a + (t_{m-1} - q_m t_m)b = r_{m+1} \cdot \text{Let } s_{m+1} = s_{m-1} - q_m s_m \text{ and } t_{m+1} = t_{m-1} - q_m t_m$$

• Note that there is a recipe in the proof.

Corollaries

• Lemma 1. Let $a, b, c \in \mathbb{N}^+$ and suppose that gcd(a, b) = 1 and that $a \mid bc$. Then $a \mid c$.

• Proof.

- $\cdot \exists s, t \in \mathbb{Z} \text{ s.t. } sa + tb = 1$
- $\cdot \Rightarrow sac + tbc = c$
- $\cdot \Rightarrow a \mid c.$
- $a, b \in \mathbb{Z}$ for which gcd(a, b) = 1 are called *relatively* primes and they have no common prime factor.
- • Example: 4 and 9 are relatively primes.
 - $\cdot 6 \mid 4 \cdot 9$ but $6 \nmid 4$ and $6 \nmid 9$ what's wrong?
- Lemma 2. If p is a prime and if for $a_i \in \mathbb{Z}$, $p \mid \prod_{i=1}^{n} a_i$, then $p \mid a_i$ for some $1 \leq i \leq n$.
- **Proof.** By induction on n (n = 1 is trivial).
 - Assume the lemma holds for $1 \le n \le N$.
 - $\cdot p \mid \prod_{1}^{N+1} a_i \Rightarrow p \mid (\prod_{1}^{N} a_i) a_{N+1}.$
 - If $p \mid a_{N+1}$ we are done.
 - Else, $gcd(p, a_{N+1}) = 1$.
 - Since $p \mid \prod_{i=1}^{N} a_i, p \mid a_i$ for some $1 \leq i \leq N$.

Fundamental Theorem of Arithmetic

- Every $n \in \mathbb{N}^+$ can be represented uniquely as a product of increasing primes.
- **Proof.** Only uniqueness is left to prove.
 - Suppose $\exists n \in \mathbb{N}^+$ with two different prime factorizations.
 - $\cdot n = \prod_{i=1}^{s} p_i = \prod_{i=1}^{r} q_j.$
 - WLOG $p_i \neq q_j$ for all i, j.
 - $\cdot p_1 \mid \prod_{i=1}^r q_j \Rightarrow p_i \mid q_j \text{ for some } j.$
 - It follows that $p_1 = q_j$ which is a contradiction.
- Corollary. Suppose $a = \prod_{i=1}^{n} p_i^{\alpha_i}$ and $b = \prod_{i=1}^{n} p_i^{\beta_i}$, where p_i are primes and $\alpha_i, \beta_i \in \mathbb{N}$ (prime factorization). Then,

$$gcd(a,b) = \prod_{i=1}^{n} p_i^{\min(\alpha_i,\beta_i)}$$

• **Proof.** Clearly, $\exists \gamma_i \in \mathbb{N}$ s.t. $gcd(a, b) = \prod_{i=1}^{n} p_i^{\gamma_i} \prod_{n+1}^{N} p_i^{\gamma_i}$.

- $\cdot \operatorname{gcd}(a,b) \mid a \Rightarrow \forall i, \gamma_i \leq \alpha_i, (\alpha_{n+1} = \cdots = 0).$
- Similarly, $\forall i \leq N, \gamma_i \leq \beta_i$, so $\gamma_i \leq \min(\alpha_i, \beta_i)$.
- Conversely, if $\exists i : \gamma_i < \min(\alpha_i, \beta_i)$ then $\gcd(a, b)p_i \mid a, \ \gcd(a, b)p_i \mid b \Rightarrow \text{contradiction.}$

Least Common Multiple (lcm)

- **Def.** The *least common multiple* of $a, b \in \mathbb{N}^+$, lcm(a, b), is the smallest $n \in \mathbb{N}^+$ s.t. $a \mid n$ and $b \mid n$.
- Examples: lcm(4, 9) = 36, lcm(4, 10) = 20.
- Claim. Let $a = \prod_{i=1}^{n} p_i^{\alpha_i}$ and $b = \prod_{i=1}^{n} p_i^{\beta_i}$ be the prime factorization of a, b. Then, $\operatorname{lcm}(a, b) = \prod_{i=1}^{n} p_i^{\max(\alpha_i, \beta_i)}$.
- Proof.
 - $\cdot \exists \delta_i \in \mathbb{N} \text{ s.t. } \operatorname{lcm}(a, b) = \prod_{i=1}^n p_i^{\delta_i} \prod_{n+1}^N p_i^{\delta_i}.$
 - $\cdot a \mid \operatorname{lcm}(a, b) \Rightarrow \delta_i \ge \alpha_i \ (\alpha_{n+1} = \cdots = 0).$
 - $\cdot b \mid \operatorname{lcm}(a, b) \Rightarrow \delta_i \ge \beta_i \Rightarrow \delta_i \ge \max(\alpha_i, \beta_i).$
 - Conversely, if $\exists 1 \leq i \leq N$ s.t $\delta_i > \max(\alpha_i, \beta_i)$ then $(\prod_{j=1}^{n} p_j^{\delta_j})/p_i$ would still be a multiple of a and of b contradicting the minimality of lcm(a, b).
- Example. lcm(95256, 432) = ?
 - $\cdot 432 = 2^4 3^2$, and $95256 = 2^3 3^5 7^2$
 - $\cdot \Rightarrow \text{lcm}(95256, 432) = 2^4 3^5 7^2 = 190512.$
- Do we really need to factor a and b?

lcm and gcd

• Theorem. Let $a, b \in \mathbb{N}^+$.

$$ab = \gcd(a, b) \cdot \operatorname{lcm}(a, b).$$

- Example. $4 \cdot 10 = 2 \cdot 20 = \gcd(4, 10) \cdot \operatorname{lcm}(4, 10)$.
- Proof.

 $\min(\alpha,\beta) + \max(\alpha,\beta) = \alpha + \beta.$

Congruence

- **Def.** Let $a, b \in \mathbb{Z}$ and $m \in \mathbb{N}^+$. a is congruent to b modulo m if $m \mid a b$: $\mathbf{a} \equiv \mathbf{b} \pmod{\mathbf{m}}$.
- Also, a "equals" b modulo m, and $a \not\equiv b \pmod{m}$.

• • Examples:
$$17 \equiv 5 \pmod{6}$$

 $\cdot 24 \not\equiv 14 \pmod{6}$, but

 $\cdot 24 \equiv 14 \pmod{5}$

• Claim. For $a, b \in \mathbb{Z}$ and $m \in \mathbb{N}^+$,

 $a \equiv b \pmod{m} \iff a \mod m = b \mod m.$

• Proof.

• There exist $q_a, r_a, q_b, r_b \in \mathbb{Z}$ s.t.

 $a = mq_a + r_a \qquad 0 \le r_a < m$ $b = mq_b + r_b \qquad 0 \le r_b < m$ $\cdot \Rightarrow a - b = m(q_a - q_b) + (r_a - r_b)$ $\cdot \Rightarrow m \mid a - b \iff m \mid r_a - r_b$ $\cdot \text{ Since } -m < r_a - r_b < m$

 $\cdot m \mid a - b \iff r_a - r_b = 0.$

Congruence cont.

- Corollary. $a \equiv (a \mod m) \pmod{m}$.
- **Proof.** $((a \mod m) \mod m) = (a \mod m).$
- Claim. Let $a, b \in \mathbb{Z}$ and $m \in \mathbb{N}^+$.

 $a \equiv b \pmod{m} \iff \exists k \in \mathbb{Z} : a = b + km.$

• Proof.

$$a \equiv b \pmod{m} \iff m \mid a - b.$$

Congruence Classes

- **Def.** The congruence class of a modulo m is $\{b : b \equiv a \pmod{m}\}$.
- Example.
 - \cdot The congruence class of 1 modulo 2 is. . . the set of odd numbers.
 - \cdot The congruence class of 0 modulo 2 is the evens.
 - \cdot The two classes form a partition of \mathbb{Z} .
- More generally, for a fixed $m \in \mathbb{N}^+$ congruence modulo m is a relation on \mathbb{Z} that is
 - \cdot reflexive: $a \equiv a \pmod{m}$
 - \cdot symmetric: $a \equiv b \pmod{m} \iff b \equiv a \pmod{m}$
 - transitive: $a \equiv b \pmod{m}$ and $b \equiv c \pmod{m}$ implies $a \equiv c \pmod{m}$.
 - The latter follows from a c = (a b) + (b c).
- Thus, congruence mod m is an *equivalence relation*.
- An equivalence relation on S partitions S into equivalence classes.
- For the congruence relation these are the congruence classes.

Modular Arithmetics

- Arithmetics: a = b and c = d implies a + c = b + d.
- Do these manipulations hold for congruences?
- **Theorem.** Let $m \in \mathbb{N}^+$ and $a, b, c, d \in \mathbb{Z}$. If $a \equiv b \pmod{m}$ and $c \equiv d \pmod{m}$, then
 - $\cdot a + c \equiv b + d \pmod{m}$
 - $\cdot ac \equiv bd \pmod{m}$.
- • Example. $7 \equiv 2 \pmod{5}$, and $11 \equiv 1 \pmod{5}$ • $\Rightarrow 18 \equiv 3 \pmod{5}$, and $77 \equiv 2 \pmod{5}$.
- **Proof.** $\exists k, l \in \mathbb{Z}$ s.t.

$$\cdot a = b + km, \text{ and } c = d + lm \cdot \Rightarrow a + c = b + d + m(k + l) \cdot \Rightarrow a + c \equiv b + d \pmod{m}. \cdot \text{Similarly, } ac = bd + m(kd + bl + klm) \cdot \Rightarrow ac \equiv bd \pmod{m}.$$

• Corollary. For $m \in \mathbb{N}^+$, $a, b \in \mathbb{Z}$

 $ab \equiv (a \mod m)(b \mod m) \pmod{m}.$

Modular Arithmetics cont.

• Corollaries. For $m, k \in \mathbb{N}^+, a, b \in \mathbb{Z}$

- $\cdot \ (ab \bmod m) \equiv (a \bmod m)(b \bmod m) \pmod{m}$
- $\cdot a^{2^k} \mod m = \left(a^{2^{k-1}} \mod m\right)^2 \mod m$

• Efficient modular exponentiation: $a^n, a \in \mathbb{Z}, n \in \mathbb{N}$.

• Let $n = (d_{p-1} \dots d_1 d_0)_2$ (binary representation).

$$a^{n} = a^{\sum_{i=0}^{p-1} d_{i}2^{i}} = \prod_{i=0}^{p-1} a^{d_{i}2^{i}}.$$

• Let

$$x_k := \left(\prod_{i=0}^k a^{d_i 2^i}\right) \mod m = \left(x_{k-1} \cdot a^{d_k 2^k}\right) \mod m$$

• With $x_{-1} := 1$, for $k = 0 \dots p - 1$ compute

$$x_{k} = \left(x_{k-1} \cdot \begin{cases} a^{2^{k}} \mod m & \text{if } d_{k} = 1 \\ 1 & \text{if } d_{k} = 0 \end{cases} \mod m,$$

and (for $k \ge 1$)
$$a^{2^{k}} \mod m = \left(a^{2^{k-1}} \mod m \right)^{2} \mod m.$$

Modular Arithmetics cont.

• For $a, b, c \in \mathbb{Z}$ with $c \neq 0$,

$$ac = bc \Rightarrow a = b.$$

- Does it carry over to the modular world?
- Example: $2 \cdot 4 \equiv 3 \cdot 4 \pmod{4}$ but $2 \not\equiv 3 \pmod{4}$.
- But $4 \equiv 0 \pmod{4}!$
- Example: $3 \cdot 2 \equiv 1 \cdot 2 \pmod{4}$ but $3 \not\equiv 1 \pmod{4}$.
- Shall we give up?
- **Theorem.** Let $m \in \mathbb{N}^+$ and $a, b, c \in \mathbb{Z}$. If gcd(c, m) = 1 then $ac \equiv bc \pmod{m} \Rightarrow a \equiv b \pmod{m}$.
- Proof.

$$m \mid ac - bc \quad \Rightarrow \quad m \mid c(a - b) \quad \Rightarrow \quad m \mid (a - b).$$