/

We can see that time required to search/sort grows with size of

input. How do space/time needs of program grow with input size?
Let us focus on execution time. Space analysis is similar.

Execution time: count number of operations as function of input

size

¢ Basic operation: arithmetic/logical operation counts as 1
operation

e Assignment: counts as 1 operation (operation count of
righthand side expression is determined separately)

e Loop: number of operations/iteration * number of loop
iterations

e Method invocation: number of operations executed between

when a method is invoked and when invocation returns

- J

a N

Asymptotic Complexity

4 N

Example: matrix multiplication

for (i = 0; i < n; i++)
for (j = 0; j < nj; j++)
for (k = 0; k < n; k++)
Clil[3j]1 = c[i1[j] + A[il[x] + B[k1[j];

Problem size: n

Each execution of innermost assignment statement does 2 floating-point
operations, 3 loads, 1 store, and some integer operations to index into
the arrays.

Statement is executed n® times.

So total number of operations = a * n®+bxn’+cxn+d (for some

a,b,c,d)

Asymptotic complexity: O(n?)

- J

4)

Asymptotic complexity:

In most cases, we are only interested in the most significant
(fastest-growing) term in the expression for execution time as a

function of input size.
Asymptotic complexity:
e express required number of operations as a function of input
size
e drop all terms except leading term, and ignore constant
multiplier
Example: f(x) = 13*n + 8
f(x) = O(n)

- J

Formal definition of O() notation:

Let f(n) and g(n) be functions. We say that f(n) is of order g(n),
written O(g(n)) if there is a constant ¢ > 0 such that for all but a
finite number of positive values of n,

f(n) < exg(n)

In other words, g(n) sooner or later overtakes f(n) as n gets large.
Example: f(n) =n+5,g(n) = n. We show that f(n) = O(g(n)).
Choose ¢ = 6:

f(n) =n+5<6x%nforall n>0.

Example: f(n) = 17n,g(n) = 3n?. We show that f(n) = O(g(n)).
Choose ¢ = 6:

f(n) =17n < 6 % 3n? for all n > 0.

\ J

a N

Subtlety: operation count might depend not only on size of input
but also on the value of the input (look at linear search or binary

search). For big-O determination, use worst-case scenario.

~

- A

Asymptotic complexity gives an idea of how rapidly space/time

requirements grow as problem size grows.

Suppose we have a computing device that can execute 1000
operations per second. Here is the size of the problem that can be
solved in a second, a minute and an hour by algorithms of different

asymptotic complexity.

Complexity 1 second 1 minute lhour

n 1000 60,000 3,600,000
n log n 140 4893 200,000
n? 31 244 1897

3n? 18 144 1096

n? 10 39 153

o 9 15 21

- J

4)

A graphical view of big-O notation

c*g(n)

f(n) f(n) = O(g(n))

n

To prove that f(n) = O(g(n)), find an n0 and ¢ such that
f(n) < cxg(n) for all n > n0.

- J

//’k

Example: selection sort

~

public static void selectionSort(Comparable[] a) { <-- array of
for (int i = 0; i < a.length; i++) {

int MinPos = i;

<-- n iterations

for (int j = i+l; j < a.length; j++) { <-- n-i-1 iterations
if (a[j].compareTo(a[MinPos]) < 0)
MinPos = j;}

<-- comparison

Comparable temp = al[il;
al[i] = a[MinPos];
a[MinPos] = temp;}}

Total number of comparisons = (n-1) + (n-2) + ... + 1 = n(n-1)/2

Complexity: O(n?)

_

/

10

a N

For searching and sorting algorithms, you can usually determine

big-O complexity by counting comparisons.

Reason: you usually end up doing some fixed number of

arithmetic/logical operations per comparison.

size n

~

public static boolean binarySearch(Comparable[] a, Object v) {

Analysis of binary search is a little more difficult.

while (left <= right){ <-- how many times does this loop exec]
middle = (left + right)/2;
int test = a[middle].compareTo(v); <-- comparison
if (test < 0) left = middle+i;
else
if (test == 0) {
return true;
}
else right = middle-1;
}
//if we reach here, we didn’t find the object
return false;
\ J

12

-

Example: linear search

~

public static boolean linearSearch(Comparable[] a, Object v) {

return false;

Number of times while loop executes depends not only on size of input
array a but on the values in it and the value of v.

Big-O complexity: worst-case scenario

For linear search, worst-case scenario is that all array elements are

examined.

So complexity of linear search = O(n) where n is size of input array.

\

/

11

int i = 0;

while (i < a.length) <-- How many times does this loop execute?
if (a[i].compareTo(v) == 0) return true; <-- comparison
else it++;

ute?

777

-~

Analysis of merge-sort:

~

public static Comparable[] mergeSort(Comparable[] A, int low, i
if (low < high - 1) //at least three elements
{int mid = (low + high)/2;
Comparable[] Al
Comparable[] A2 = mergeSort(A, mid +1, high); <-- comparis|

mergeSort (A, low, mid); <-- comparisons

return merge(A1,A2);} <-- comparisons in method

c(1)
c(n)

0c(2) =1
2c(n/2) + n

It can be shown that c(n) = O(nloga(n)).

mt high) {

in method

ons in method

- J

14

4 N

Number of iterations of while loop depends on values in array and
value of v.

OK, let’s make worst case estimates: if array is of size n, what is

the worst case number of iterations you make?

Easy to see that if size of array is n, first iteration cuts the size of
the interval you need to look at to at most ceiling((n-1)/2). So if

c¢(n) is worst-case number of comparisons,
c(1) =1 c(2) =2
c(n) =1 + c(ceiling((n-1)/2))

It can be shown that ¢(n) = O(log2(n))

Note: any time you have a procedure whose complexity is less than O(n),

/

it means intuitively that procedure does not examine all of the input.

\

13

Why is this wrong?

- J

16

~

/Analysis of quicksort: tricky

public static void quickSort(Comparable[] A, int 1, int h) {
if (1 < h)
{int p = partition(A,1+1,h,A[1]); <--- comparisons
//move pivot into its final resting place
//swap A[p-1] and A[1]
Comparable temp = A[p-1];
Alp-11 = A[1];
A[1] = temp;
quickSort(A,1,p-1); <-- comparisons
quickSort(A,p,h);}} <-- comparisons

Incorrect attempt:

c(l) =1c(2) =1
c(n) = (n-1) + 2c(n/2)
partition sorting the two partitioned arrays

N /

15

4 N

Programs for the same problem can vary enormously in asymptotic

efficiency.

fib(n) = fib(n-1) + fib(n-2)
fib(1) = 1

fib(2) =1

Here is a recursive program:

static int fib(int n) {
if (n <= 2) return 1;
else return fib(n-1) + fib(n-2);

_ /

18

Worst-case for quicksort: one of the partitioned array is empty, and
the other has (n-1) elements!

So actual recurrence relation is

c(1)
c(n)

1c¢c(2) =1
(n-1) + c(n-1)

partition sorting the two partitioned arrays
It can be shown that c(n) = O(n?)

On the average (not worst-case), quick-sort runs in n * logz(n) time,
which is why it is usually preferred in practice.

One approach to avoiding worst-case behavior: pick pivot carefully so it
partitions array in half. Many heuristics for doing this, but none of them

17

Remember: big-O is worst-case complexity. \

/

Iterative Fibonnacci Code

fib (n) = fib(n-1) + fib(n-2) [n> 2

dad=1

granddad = 1

current = 1;

for (i=3;i<=n;i++) {
granddad = dad;
dad = current;
current = dad +granddad;

}

printf("answer is" + current);

Number of timesloop is executed is bounded by n.

=> Time complexity of algorithm = O(n).

_

Each iteration does some constant amount of work.

20
fib(5)
fib(3) fib2) fib(2) fib(1)
ﬁ&g/\\7Ea)

c(n) =c(n-1) + c(n-2) + 2

=1 c1)=1

exponential in the size of the input!

can guarantee that worst-case behavior will not show up. J

\

It can be shown that ¢(n) = O(2™). Cost of computing value is

/

e A

In CS 211, you are expected to know the complexity of the
algorithms we discuss in class.

You are also expected to know how to determine informally the
asymptotic complexity (in closed-form) of toy recursive programs

similar to merge-sort or binary search.

- J

22

a N

Cheat Sheet for closed-form expressions

Recurrence relation Closed-form Example

c(1) =1 c(n) = 0(n) Linear search
c(n) =1 + c(n-1)

c(1) =1

c(@) =n + c(n-1) c(n) = 0(n"2) Quicksort
c(1) =1

c(n) =1+ c(n/2) c(n) = 0(log(n)) Binary search
(1) =1

c(n) =n + c(n/2) c(n) = 0(n)

c(1) =1

c(n) =n + 2c(n/2) c(n) = O(n*log(n)) Mergesort
c(1) =c(2 =1 Fibonacci
c(n) = c(n-1)+c(n-2)+1 c(n) = 0(2°n)

N /

21

