
�
�

�
�

Asymptotic Complexity

�

�
�

�
�

We can see that time required to search�sort grows with size of

input� How do space�time needs of program grow with input size�

Let us focus on execution time� Space analysis is similar�

Execution time� count number of operations as function of input

size
� Basic operation� arithmetic�logical operation counts as �

operation

� Assignment� counts as � operation �operation count of

righthand side expression is determined separately�

� Loop� number of operations�iteration � number of loop

iterations

� Method invocation� number of operations executed between

when a method is invoked and when invocation returns

�

�
�

�
�

Asymptotic complexity�

In most cases	 we are only interested in the most signi
cant

�fastest�growing� term in the expression for execution time as a

function of input size�

Asymptotic complexity�

� express required number of operations as a function of input

size

� drop all terms except leading term	 and ignore constant

multiplier

Example� f�x� � ��n � �

f�x� � O�n�

�

�
�

�
�

Example� matrix multiplication

for �i � �� i � n� i���

for �j � �� j � n� j���

for �k � �� k � n� k���

C�i	�j	 � C�i	�j	 � A�i	�k	 � B�k	�j	�

Problem size� n

Each execution of innermost assignment statement does � �oating�point

operations� � loads� � store� and some integer operations to index into

the arrays�

Statement is executed n� times�

So total number of operations 	 a � n� 
 b � n� 
 c � n
 d �for some

a�b�c�d�

Asymptotic complexity� O�n��

�



�
�

�
�

Subtlety� operation count might depend not only on size of input

but also on the value of the input �look at linear search or binary

search�� For big�O determination	 use worst�case scenario�

�

�
�

�
�

Formal de
nition of O�� notation�

Let f�n� and g�n� be functions� We say that f�n� is of order g�n�	

written O�g�n�� if there is a constant c � � such that for all but a


nite number of positive values of n	

f�n� � c � g�n�

In other words	 g�n� sooner or later overtakes f�n� as n gets large�

Example� f�n� � n� �� g�n� � n� We show that f�n� � O�g�n���

Choose c � ��

f�n� � n� � � � � n for all n � ��

Example� f�n� � ��n� g�n� � n�� We show that f�n� � O�g�n���

Choose c � ��

f�n� � ��n � � � n� for all n � ��
�

�
�

�
�

n

f(n)

A graphical view of big-O notation

n

c*g(n)

0

f(n) = O(g(n))
To prove that f�n� � O�g�n��	 
nd an n� and c such that

f�n� � c � g�n� for all n � n��

�

�
�

�
�

Asymptotic complexity gives an idea of how rapidly space�time

requirements grow as problem size grows�

Suppose we have a computing device that can execute ����

operations per second� Here is the size of the problem that can be

solved in a second	 a minute and an hour by algorithms of di�erent

asymptotic complexity�

Complexity � second � minute �hour

n ���� ��	��� 	���	���

n log n ��� ��� ���	���

n� � ��� ����

n� �� ��� ����

n� �� � ��

�n � �� ��
�



�
�

�
�

For searching and sorting algorithms	 you can usually determine

big�O complexity by counting comparisons�

Reason� you usually end up doing some 
xed number of

arithmetic�logical operations per comparison�

	

�
�

�
�

Example� selection sort

public static void selectionSort�Comparable�	 a� 
 ��� array of size n

for �int i � �� i � a�length� i��� 
 ��� n iterations

int MinPos � i�

for �int j � i�� j � a�length� j��� 
 ��� n�i� iterations

if �a�j	�compareTo�a�MinPos	� � �� ��� comparison

MinPos � j��

Comparable temp � a�i	�

a�i	 � a�MinPos	�

a�MinPos	 � temp���

Total number of comparisons 	 �n��� 
 �n��� 
 ��� 
 � 	 n�n����

Complexity� O�n��

�


�
�

�
�

Example� linear search

public static boolean linearSearch�Comparable�	 a� Object v� 


int i � ��

while �i � a�length� ��� How many times does this loop execute���

if �a�i	�compareTo�v� �� �� return true� ��� comparison

else i���

return false�

Number of times while loop executes depends not only on size of input

array a but on the values in it and the value of v�

Big�O complexity� worst�case scenario

For linear search� worst�case scenario is that all array elements are

examined�

So complexity of linear search 	 O�n� where n is size of input array�

��

�
�

�
�

Analysis of binary search is a little more di�cult�

public static boolean binarySearch�Comparable�	 a� Object v� 


������

while �left �� right�
 ��� how many times does this loop execute�

middle � �left � right����

int test � a�middle	�compareTo�v�� ��� comparison

if �test � �� left � middle��

else

if �test �� �� 


return true�

�
else right � middle��

�
��if we reach here� we didn�t find the object

return false�

�

��



�
�

�
�

Number of iterations of while loop depends on values in array and

value of v�

OK	 let�s make worst case estimates� if array is of size n	 what is

the worst case number of iterations you make�

Easy to see that if size of array is n	 
rst iteration cuts the size of

the interval you need to look at to at most ceiling��n������� So if

c�n� is worst�case number of comparisons	

c�� �  c��� � �

c�n� �  � c�ceiling��n������

It can be shown that c�n� 	 O�log��n��

Note� any time you have a procedure whose complexity is less than O�n��

it means intuitively that procedure does not examine all of the input�

��

�
�

�
�

Analysis of merge�sort�

public static Comparable�	 mergeSort�Comparable�	 A� int low� int high� 


if �low � high � � ��at least three elements


int mid � �low � high����

Comparable�	 A � mergeSort�A� low� mid�� ��� comparisons in method

Comparable�	 A� � mergeSort�A� mid �� high�� ��� comparisons in method

return merge�A�A���� ��� comparisons in method

����

c�� � � c��� � 

c�n� � �c�n��� � n

It can be shown that c�n� 	 O�nlog��n���

��

�
�

�
�

Analysis of quicksort� tricky

public static void quickSort�Comparable�	 A� int l� int h� 


if �l � h�


int p � partition�A�l��h�A�l	�� ���� comparisons

��move pivot into its final resting place

��swap A�p�	 and A�l	

Comparable temp � A�p�	�

A�p�	 � A�l	�

A�l	 � temp�
quickSort�A�l�p��� ��� comparisons

quickSort�A�p�h���� ��� comparisons

Incorrect attempt�

c�� �  c��� � 

c�n� � �n�� � �c�n���

����� ������

partition sorting the two partitioned arrays

��

�
�

�
�

Why is this wrong�

��



�
�

�
�

Remember� big�O is worst�case complexity�

Worst�case for quicksort� one of the partitioned array is empty	 and

the other has �n��� elements�

So actual recurrence relation is

c�� �  c��� � 

c�n� � �n�� � c�n��

����� ������

partition sorting the two partitioned arrays

It can be shown that c�n� 	 O�n��

On the average �not worst�case�� quick�sort runs in n � log��n� time�

which is why it is usually preferred in practice�

One approach to avoiding worst�case behavior� pick pivot carefully so it

partitions array in half� Many heuristics for doing this� but none of them

can guarantee that worst�case behavior will not show up�

��

�
�

�
�

Programs for the same problem can vary enormously in asymptotic

e�ciency�

fib�n� � fib�n��� � fib�n���

fib��� � �

fib��� � �

Here is a recursive program�

static int fib�int n� 


if �n �� �� return �

else return fib�n�� � fib�n����

�

��

�
�

�
�

fib(5)

fib(4) fib(3)

fib(3) fib(2) fib(2) fib(1)

fib(2) fib(1)

c(n) = c(n-1) + c(n-2) + 2

c(2) = 1     c(1) = 1

It can be shown that c�n� � O��n�� Cost of computing value is

exponential in the size of the input�
�	

�
�

�
�

for (i = 3; i <= n; i++) {

    granddad = dad;

    dad   = current;

    current = dad +granddad;

  }
printf("answer is " + current);

fib (n) = fib(n-1) + fib(n-2) | n > 2

Iterative Fibonnacci Code

dad = 1

granddad = 1

Number of times loop is executed is bounded by n. 

Each iteration does some constant amount of work. 

=> Time complexity of algorithm = O(n). 

current = 1;

�




�
�

�
�

Cheat Sheet for closed�form expressions

Recurrence relation Closed�form Example

������������������� ����������� �������

c��� � � c�n� � O�n� Linear search

c�n� � � � c�n���

c��� � �

c�n� � n � c�n��� c�n� � O�n��� Quicksort

c��� � �

c�n� � � � c�n	�� c�n� � O�log�n�� Binary search

��� � �

c�n� � n � c�n	�� c�n� � O�n�

c��� � �

c�n� � n � �c�n	�� c�n� � O�n
log�n�� Mergesort

c��� � c��� � � Fibonacci

c�n� � c�n����c�n����� c�n� � O���n�

��

�
�

�
�

In CS ���	 you are expected to know the complexity of the

algorithms we discuss in class�

You are also expected to know how to determine informally the

asymptotic complexity �in closed�form� of toy recursive programs

similar to merge�sort or binary search�

��


