
Training Structural SVMs when Exact Inference is Intractable

Thomas Finley tomf@cs.cornell.edu
Thorsten Joachims tj@cs.cornell.edu

Cornell University, Department of Computer Science, Upson Hall, Ithaca, NY 14853 USA

Abstract

While discriminative training (e.g., CRF,
structural SVM) holds much promise for ma-
chine translation, image segmentation, and
clustering, the complex inference these ap-
plications require make exact training in-
tractable. This leads to a need for ap-
proximate training methods. Unfortunately,
knowledge about how to perform efficient and
effective approximate training is limited. Fo-
cusing on structural SVMs, we provide and
explore algorithms for two different classes of
approximate training algorithms, which we
call undergenerating (e.g., greedy) and over-
generating (e.g., relaxations) algorithms. We
provide a theoretical and empirical analysis
of both types of approximate trained struc-
tural SVMs, focusing on fully connected pair-
wise Markov random fields. We find that
models trained with overgenerating methods
have theoretic advantages over undergener-
ating methods, are empirically robust rela-
tive to their undergenerating brethren, and
relaxed trained models favor non-fractional
predictions from relaxed predictors.

1. Introduction

Discriminative training methods like conditional ran-
dom fields (Lafferty et al., 2001), maximum-margin
Markov networks (Taskar et al., 2003), and struc-
tural SVMs (Tsochantaridis et al., 2004) have substan-
tially improved prediction performance on a variety
of structured prediction problems, including part-of-
speech tagging (Altun et al., 2003), natural language
parsing (Tsochantaridis et al., 2005), sequence align-
ment (Yu et al., 2007), and classification under multi-
variate loss functions (Joachims, 2005). In the context

Preliminary work. Under review. Do not distribute.

of structural SVMs, in all these problems, both the in-
ference problem (i.e., computing a prediction) and the
separation oracle required in the cutting-plane training
algorithm can be solved exactly. This leads to theoret-
ical guarantees of training procedure convergence and
solution quality.

However, in many important problems (e.g., cluster-
ing (Culotta et al., 2007; Finley & Joachims, 2005),
multi-label classification, image segmentation, ma-
chine translation) exact inference and the separation
oracle are computationally intractable. Unfortunately,
use of approximations in these settings abandons many
of the existing theoretical guarantees of structural
SVM training, and relatively little is known about dis-
criminative training using approximations.

This paper explores training structural SVMs on prob-
lems where exact inference is intractable. A pairwise
fully connected Markov random field (MRF) serves
as a representative class of intractable models. This
class includes natural formulations of models for multi-
label classification, image segmentation, and cluster-
ing. We identify two classes of approximation algo-
rithms for the separation oracle in the structural SVM
cutting-plane training algorithm, namely undergener-
ating and overgenerating algorithms, and we adapt
loopy belief propagation (LBP), greedy search, and
linear-programming and graph-cut relaxations to this
problem. We provide a theoretical and empirical anal-
ysis of using these algorithms with structural SVMs.

We find substantial differences between different ap-
proximate algorithms in training and inference. In
particular, much of the existing theory holds for
overgenerating though not undergenerating methods.
In experimental results, intriguingly, our structural
SVM formulations using the overgenerating linear-
programming and graph-cut relaxations successfully
learn models in which relaxed inference is “easy” (i.e.,
the relaxed solution is mostly integral), leading to ro-
bust and accurate models. We conclude that the relax-
ation formulations are preferable over the formulations
involving LBP and greedy search.

Training Structural SVMs when Exact Inference is Intractable

Algorithm 1 Cutting plane algorithm to solve OP 1.
1: Input: (x1,y1), . . . , (xn,yn), C, ε
2: Si ← ∅ for all i = 1, . . . , n
3: repeat
4: for i = 1, . . . , n do
5: H(y) ≡ ∆(yi,y)+wT Ψ(xi,y)−wT Ψ(xi,yi)
6: compute ŷ = argmaxy∈Y H(y)
7: compute ξi = max{0,maxy∈Si H(y)}
8: if H(ŷ) > ξi + ε then
9: Si ← Si ∪ {ŷ}

10: w← optimize primal over
⋃

i Si

11: end if
12: end for
13: until no Si has changed during iteration

2. Structured Output Prediction

Several discriminative structural learners were pro-
posed in recent years, including conditional ran-
dom fields (CRFs) (Lafferty et al., 2001), Perceptron
HMMs (Collins, 2002), max-margin Markov networks
(M3Ns) (Taskar et al., 2003), and structural SVMs
(SSVMs) (Tsochantaridis et al., 2004). Notational
differences aside, these methods all learn (kernelized)
linear discriminant functions, but differ in how they
choose model parameters.

2.1. Structural SVMs

Structural SVMs minimize a particular trade-off be-
tween model complexity and empirical risk. Based
on a training set S = ((x1,y1), . . . , (xn,yn)), an
SSVM learns a hypothesis h : X → Y to map inputs
x ∈ X to outputs y ∈ Y. Hypotheses take the form
h(x) = argmaxy∈Y f(x,y) with discriminant function
f : X × Y → R, where f(x,y) = wT Ψ(x,y). The
Ψ combined feature vector function relates inputs and
outputs, and w contains parameters adjusted during
training. We also define a loss function ∆ : Y×Y → R
indicating how bad output h(xi) is w.r.t. true output
yi. To find w balancing model complexity and empir-
ical risk R∆

S (h) = 1
n

∑n
i=1 ∆(yi, h(xi)), SSVMs solve

the following quadratic program (QP) for the case of
the margin-rescaling hinge loss (Tsochantaridis et al.,
2004):

Optimization Problem 1. (Structural SVM)

min
w,ξ≥0

1
2
‖w‖2 +

C

n

n∑
i=1

ξi (1)

∀i,∀y∈Y\yi: wTΨ(xi,yi) ≥ wTΨ(xi,y)+∆(yi,y)−ξi (2)

Introducing a constraint for every wrong output is typ-
ically intractable. However, OP 1 can be solved by the

cutting plane algorithm in Algorithm 1. This itera-
tively constructs a sufficient subset

⋃
i Si of constraints

and solves the QP only over this subset (line 10). The
algorithm employs a separation oracle to find the next
constraint to include (line 6). It finds the currently
most violated constraint (or, a constraint that is vi-
olated by at least the desired precision ε). If such a
separation oracle exists and can be computed in poly-
nomial time, OP 1 and Algorithm 1 have three theo-
retical guarantees (Tsochantaridis et al., 2005):

Polynomial Time Termination: Algorithm 1 ter-
minates in a polynomial number of iterations, and
thus overall polynomial time.

Correctness: Algorithm 1 solves OP 1 accurate to
a desired precision ε, since Algorithm 1 terminates
only when all constraints in OP 1 are respected
within ε (lines 8 and 13).

Empirical Risk Bound: Since each ξi upper
bounds training loss ∆(yi, h(xi)), 1

n

∑n
i=1 ξi upper

bounds empirical risk.

Unfortunately, proofs of these properties rely on the
separation oracle (line 6) being exactly solvable, and
do not necessarily hold with approximations. We will
later analyze which of the approximate training algo-
rithms retain which properties.

2.2. Markov Random Fields in SSVMs

A special case of structural SVM that we will examine
throughout this paper is M3N (Taskar et al., 2003). In
this, Ψ(x,y) is constructed from an MRF

f(x,y) =
∑

k∈cliques(G)

φk(y{k}) (3)

with graph structure G = (V,E) and the loss func-
tion is restricted to be linearly decomposable in the
cliques, i.e., ∆(y, ŷ) =

∑
k∈cliques(G) δk(y{k}, ŷ{k}).

Here, y is the value assignment to variables, δk are
sub-component local loss functions, and φk are po-
tential functions representing the fitness of variable
assignment y{k} to clique k. The network potential
f(x,y) serves as a discriminant function representing
the variable assignment y in the structural SVM, and
h(x) = argmaxy∈Y f(x,y) serves as the maximum a
posteriori (MAP) prediction.

OP 1 requires we express (3) in the form
f(x,y) = wT Ψ(x,y). First express potentials
as φk(y{k}) = wTψ(x, y{k}). The feature vec-
tor functions ψk relate x and label assignments
y{k}. Then, f(x,y) = wT Ψ(x,y) where Ψ(x,y) =∑

k∈cliques(G)
ψk(x, y{k}).

Training Structural SVMs when Exact Inference is Intractable

In the following, we use a particular linearly decompos-
able loss function that simply counts the proportion of
different labels in y and ŷ, i.e., ∆(y, ŷ) = ‖y−ŷ‖0/|V |.
Further, in our applications, labels are binary (i.e.,
each yu ∈ B = {0, 1}), and we allow only φu(1) and
φuv(1, 1) potentials to be non-zero. This latter restric-
tion may seem onerous, but any pairwise binary MRF
with non-zero φu(0), φuv(0, 0), φuv(0, 1), φuv(1, 0) has
an equivalent MRF where these potentials are zero.

To use Algorithm 1 for MRF training and prediction,
one must solve two argmax problems:

Prediction: argmaxy∈Y wT Ψ(x,y)

Separation Oracle: argmaxy∈Y wT Ψ(x,y)+∆(yi,y)

The prediction problem is equivalent to MAP infer-
ence. Also, the separation oracle can be reduced
to a MAP inference problem. Taking the MRF we
would use to solve argmaxy∈Y wT Ψ(x,y), we include
∆(yi,y) in the argmax by incrementing the node po-
tential φu(y) by 1/|V | for each wrong value y of u,
since each wrong variable assignment increases loss by
1/|V |. Thus, we may express the separation oracle as
MAP inference.

3. Approximate Inference

Unfortunately, MAP inference is #P -complete for gen-
eral MRFs. Fortunately, a variety of approximate in-
ference methods exist. For prediction and the separa-
tion oracle, we explore two general classes of approxi-
mate inference methods, which we call undergenerat-
ing and overgenerating approximations.

3.1. Undergenerating Approximations

Undergenerating methods approximate argmaxy∈Y by
argmaxy∈Y , where Y ⊆ Y. We consider the following
undergenerating methods in the context of MRFs:

Greedy iteratively changes the single variable value
yu that would increase network potential most.

LBP is loopy belief propagation (Pearl, 1988).
Combine picks the assignment y with the highest

network potential from both greedy and LBP.

We now attempt to theoretically characterize under-
generating learning and prediction. Due to space con-
straints, provided proofs are proof skeletons.

Since undergenerating approximations can be arbi-
trarily poor, we must restrict our consideration to a
subclass of undergenerating approximations to make
meaningful theoretical statements. This analysis fo-
cuses on ρ-approximation algorithms, with ρ ∈ (0, 1].
What is a ρ-approximation? In our case, for predic-

tive inference, if y∗ = argmaxy wT Ψ(x,y) is the true
optimum and y′ the ρ-approximation output, then

ρ ·wT Ψ(x,y∗) ≤ wT Ψ(x,y′) (4)

Similarly, for our separation oracle, for y∗ =
argmaxy wT Ψ(x,y) + ∆(yi,y) as the true optimum,
and if y′ corresponds to the constraint found by our
ρ-approximation, we know

ρ
[
wTΨ(x,y∗)+∆(yi,y∗)

]
≤wTΨ(x,y′)+∆(yi,y′) (5)

For simplicity, this analysis supposes S contains ex-
actly one training example (x0,y0). To generalize
these results, one may view n training examples as
1 example, where inference consists of n separate pro-
cesses with combined outputs, etc. Fortunately, com-
bined outputs from multiple ρ-approximations may be
viewed as output from a single ρ-approximation.
Theorem 1. (Polynomial Time Termination) If
R̄ = maxi,y∈Y ‖Ψ(xi,y)‖, ∆̄ = maxi,y∈Y ‖∆(yi,y)‖
are finite, an undergenerating learner terminates after
adding at most ε−2(C∆̄2R̄2 + n∆̄) constraints.

Proof. The original proof still holds as it does not de-
pend upon separation oracle quality.

Lemma 1. After line 6 in Algorithm 1, let w be
the current model, ŷ the constraint found with the
ρ-approximation separation oracle, and ξ̂ = H(ŷ)
the slack associated with ŷ. Then, w and slack
ξ̂ + 1−ρ

ρ

[
wT Ψ(x0, ŷ) + ∆(y0, ŷ)

]
is feasible in OP 1.

Proof. If we knew the true most violated constraint
y∗, we would know the minimum ξ∗ such that w, ξ∗

was feasible in OP 1. The proof upper bounds ξ∗.

Theorem 2. When iteration ceases with the result
w, ξ, if ŷ was the last found most violated constraint,
we know that the optimum objective function value v∗

for OP 1 lies in the interval
1
2‖w‖

2 + Cξ ≤ v∗ ≤
1
2‖w‖

2+C
[
1
ρ

[
wTΨ(x0,ŷ)+∆(y0,ŷ)

]
−wTΨ(x0,y0)

]
Proof. Lemma 1 applied to the last iteration.

The intuitive lesson of these proofs is that, even with
ρ-approximate separation oracles, one may bound how
far off a final solution is from solving OP 1. Sensibly,
the better the approximation, i.e., as ρ approaches 1,
the tighter the solution.

The last result concerns empirical risk. The SVM mar-
gin attempts to ensure that high-loss outputs have a
low discriminant function value, and ρ-approximations
produce outputs within a certain factor of optimum.

Training Structural SVMs when Exact Inference is Intractable

Theorem 3. (ρ-Approximate Empirical Risk)
For w, ξ feasible in OP 1 from training with single ex-
ample (x0,y0), the empirical risk using ρ-approximate
prediction has upper bound (1− ρ)wT Ψ(x0,y0) + ξ.

Proof. Take the y′ = h(x0) associated constraint, then
apply known bounds to its wT Ψ(x0,y′) term.

If also using undergenerating ρ-approximate training,
one may employ Theorem 2 to get a feasible ξ.

3.2. Overgenerating Approximations

Overgenerating methods approximate argmaxy∈Y by
argmaxy∈Y , where Y ⊇ Y. We consider the following
overgenerating methods:

LProg is an expression of the inference problem as a
relaxed integer linear program (Boros & Hammer,
2002). We first add yuv ∈ B values indicating if
yu = yv = 1 to linearize the program:

maxy

∑
u∈{1..|V |}

yuφu(1) +
∑

u,v∈{1..|V |}

yuvφuv(1, 1) (6)

s.t. ∀u, v. yu ≥ yuv yv ≥ yuv (7)
yu + yv ≤ 1 + yuv yu, yuv ∈ B(8)

We then relax “∈ B” to “∈ [0, 1]” to admit fractional
solutions. Importantly, there is always some optimal
solution where all yu, yuv ∈ {0, 1

2 , 1} (Hammer et al.,
1984).

Cut is quadratic pseudo-Boolean optimization using
a graph-cut (Kolmogorov & Rother, 2004). This is
a different relaxation where, instead of y ∈ B|V |, we
have y ∈ {0, 1,∅}|V |.

The LProg and Cut approximations share two im-
portant properties (Boros & Hammer, 2002; Hammer
et al., 1984): Equivalence says that maximizing so-
lutions of the Cut and LProg formulations are trans-
mutable. One proof defines this transmutation proce-
dure, where ∅ (in cuts optimization) and 1

2 (in LP
optimization) variable assignments are interchange-
able (Boros & Hammer, 2002). The important practi-
cal implication of equivalence is both approximations
return the same solutions. Persistence says unambigu-
ous labels (i.e., not fractional or ∅) are optimal labels.

As a final detail, in the case of LProg,
∆(y, ŷ) = 1

|V |
∑

u∈{1..|V |} |yu − ŷu| and Ψ(x,y) =∑
u∈{1..|V |} yuψu(1) +

∑
u,v∈{1..|V |} yuvψuv(1, 1).

Cut’s functions have similar formulations.

Theorem 4. (Polynomial Time Termination) If
R̄ = maxi,y∈Y ‖Ψ(xi,y)‖, ∆̄ = maxi,y∈Y ‖∆(yi,y)‖
are finite (Y replacing Y in the overgenerating case),

an overgenerating learner terminates after adding at
most ε−2(C∆̄2R̄2 + n∆̄) constraints.

Proof. The original proof holds as an overgenerating
learner is a straightforward structural learning prob-
lem on a modified output range Y.

Theorem 5. (Correctness) An overgenerating Al-
gorithm 1 terminates with w, ξ feasible in OP 1.

Proof. The learner considers a superset of outputs Y ⊇
Y, so constraints in OP 1 are respected within ε.

With these “extra” constraints from overgenerating
inference, Algorithm 1’s solution may be suboptimal
w.r.t. the original OP 1. Further, for undergenerat-
ing methods correctness does not hold, as Algorithm 1
may not find violated constraints present in OP 1.

Theorem 6. (Empirical Risk Bound) If prediction
and the separation oracle use the same overgenerating
algorithm, Algorithm 1 terminates with 1

n

∑
i ξi upper

bounding empirical risk R∆
S (h).

Proof. Similar to the proof of Theorem 4.

3.3. Related Work

In prior work on discriminative training using approx-
imate inference, structural SVMs have learned mod-
els for correlation clustering, utilizing both greedy and
LP relaxed approximations (Finley & Joachims, 2005).
For M3Ns, Anguelov et al. (Anguelov et al., 2005) pro-
posed to directly fold a linear relaxation into OP 1.
This leads to a very large QP, and is inapplicable to
other inference methods like LBP or cuts. Further-
more, we will see below that the linear-program re-
laxation is the slowest method. With CRFs, likeli-
hood training requires computing the partition func-
tion in addition to MAP inference. Therefore, the par-
tition function is approximated (Culotta et al., 2007;
He et al., 2004; Kumar & Hebert, 2003; Vishwanathan
et al., 2006), or the model is simplified to make the par-
tition function tractable (Sutton & McCallum, 2005),
or CRF max-likelihood training is replaced with Per-
ceptron training (Roth & Yih, 2005). Prior theoreti-
cal analysis has examined LBP and LP-relaxation ap-
proximations for MRF structural learning (Kulesza &
Pereira, 2007). Our results differ in that this does not
analyze a particular learning problem or method.

4. Experiments: Approximate Inference

Before we move into learning experiments, it helps to
understand the runtime and quality performance char-

Training Structural SVMs when Exact Inference is Intractable

 1e-05

 0.0001

 0.001

 0.01

 0.1

 1

 10

 100

 0 10 20 30 40 50 60 70 80 90 100

se
co

nd
s

problem size

LProg
Cut

LBP
Greedy

Exact

number of nodes

Figure 1. Runtime comparison. Average MAP inference
time for different methods on random problems of different
sizes.

 1

 4

 16

 64

 256

 1024

 0 200 400 600 800 1000

nu
m

be
r

of
 s

up
er

io
r

la
be

lin
gs

experiment

Combined
Cut/LProg

Greedy
LBP

Figure 2. Quality comparison. Inference on 1000 random
18 label problems. Lower curves are better.

acteristics of our MAP inference algorithms.

For runtime, Figure 1 illustrates each approximate in-
ference method’s average time to solve a single pair-
wise fully connected MRF with random potentials
as the number of nodes increases.1 Note that cuts
are substantially faster than LBP, and several orders
of magnitude faster than the linear relaxation while
maintaining equivalence.

For evaluating solution quality, we generate 1000 ran-
dom problems, ran the inference methods, and exhaus-
tively count how many labelings with higher discrim-
inant value exist. The resulting curve for 10-node
MRFs is shown in Figure 2. For cut, ∅ labels are
randomly assigned to 0 or 1. The lower the curve,

1Implementation details: The methods
were C-language Python extension mod-
ules. LProg was implemented in GLPK (see
http://www.gnu.org/software/glpk/glpk.html). Cut
was implemented with Maxflow software (Boykov &
Kolmogorov, 2004). Other methods are home-spun.
Experiments were run on a 2.6 GHz P4 Linux box.

the better the inference method. LBP finds “perfect”
labelings more often than Greedy, but also tends to
fall into horrible local maxima. Combined does much
better than either alone; apparently the strengths of
Greedy and LBP are complimentary.

Finally, note the apparent terrible performance of Cut,
which is due to assigning many ∅ labels. At first
glance, persistence is an attractive property since we
know unambiguous labels are correct, but on the other
hand, classifying only when it is certain leads it to
leave many labels ambiguous.

5. Experiments: Approximate Learning

Our goal in the following experiments is to gain insight
about how different approximate MRF inference meth-
ods perform in SSVM learning and classification. Our
evaluation uses multi-label classification using pairwise
fully connected MRFs as an example application.

Multi-label classification bears similarity to multi-class
classification, except classes are not mutually exclu-
sive, e.g., a news article may be about both “Iraq”
and “oil.” Often, incorporating inter-label dependen-
cies into the model can improve performance (Cesa-
Bianchi et al., 2006; Elisseeff & Weston, 2002).

How do we model this labeling procedure as an MRF?
For each input x, we construct a single MRF, with a
vertex for each possible label, with possible values from
B = {0, 1} (value 1 indicates x has the corresponding
label), and an edge for each vertex pair (i.e., complete
graph MRF).

What are our potential functions? In these problems,
inputs x ∈ Rm are feature vectors. Each of the `
possible labels u is associated with a weight vector
wu ∈ Rm. The resulting vertex potentials are φu(1) =
wu

T x. Edge potentials φuv(1, 1) come from individual
values in w, one for each label pair. Thus, the overall
parameter vector w ∈ R`m+(`

2) has `m weights for the
` different w1,w2, . . . ,w` sub-component weight vec-
tors, and

(
`
2

)
parameters for edge potentials. In terms

of ψ functions, ψu(x, 1) vectors contain an offset ver-
sion of x to “select out” wu from w, and ψuv(x, 1, 1)
vectors have a single 1 entry to “select” the appropri-
ate element from the end of w.

5.1. Datasets and Model Training Details

We use six multi-label datasets to evaluate perfor-
mance. Table 1 contains statistics on these datasets.
Four real datasets, Scene (Boutell et al., 2004),
Yeast (Elisseeff & Weston, 2002), Reuters (the
RCV1 subset 1 data set) (Lewis et al., 2004), and Me-

Training Structural SVMs when Exact Inference is Intractable

Table 1. Basic statistics for the datasets, including number
of labels, training and test set sizes, number of features,
and parameter vector w size, and performance on baseline
trained methods and a default model.

Dataset Labels Train Test Feats. w Size Baseline Default
Scene 6 1211 1196 294 1779 11.43±.29 18.10
Yeast 14 1500 917 103 1533 20.91±.55 25.09

Reuters 10 2916 2914 47236 472405 4.96±.09 15.80
Mediamill 10 29415 12168 120 1245 18.60±.14 25.37

Synth1 6 471 5045 6000 36015 8.99±.08 16.34
Synth2 10 1000 10000 40 445 9.80±.09 10.00

diamill (Snoek et al., 2006), came from the LIBSVM
multi-label dataset collection (Chang & Lin, 2001).
Synth1 is a synthetic dataset of 6 labels. Labels fol-
low a simple probabilistic pattern: label i is on half the
time label i − 1 is on and never otherwise, and label
1 is always on. Also, each label has 1000 related bi-
nary features (the learner does not know a priori which
feature belong to each label): if i is on, a random 10
of its 1000 are set to 1. This hypothesis is learnable
without edge potentials, but exploiting label depen-
dency structure may result in better models. Synth2
is a synthetic dataset of 10 labels. In this case, each
example has exactly one label on. There are also 40
features. For an example, if label i is on, 4i randomly
chosen features are set to 1. Only models with edge
potentials can learn this concept.

We used 10-fold cross validation to choose
C from a population of 14 possible values
{1·10−2, 3·10−2, 1·10−1, . . . , 3·104}. This C was
then used when training a model on all training
data. A separate C was chosen for each dataset and
separation oracle.

5.2. Results and Analysis

Table 2 reports loss on the test set followed by stan-
dard error. For each dataset, we present losses for
each combination of separation oracle used in learning
(the rows) and of predictive inference procedure used
in classification (the columns). This lets us distinguish
badly learned models from bad inference procedures as
explanations for inferior performance.

We also employ three additional methods as a point of
comparison. Our Baseline is an MRF with no edge
potentials, and our Default classifier always predicts
the best-performing single labeling; results for these
appear in Table 1. The Exact classifier is one which
exhaustively searches for the argmax; to enable com-
parisons on Reuters and Mediamill, we pruned these
datasets to the 10 most frequent labels.

Cut is omitted from Table 2. Its equivalence to LProg
means the two are interchangeable and always produce
the same results, excepting Cut’s superior speed.

Table 3. Percentage of “ambiguous” labels in relaxed infer-
ence. Columns represent different data sets. Rows repre-
sent different methods used as separation oracles in train-
ing.

Scene Yeast Reuters Mediamill Synth1 Synth2
Greedy 0.43% 17.02% 31.28% 20.81% 0.00% 31.17%

LBP 0.31% 0.00% 0.00% 0.00% 0.00% 0.00%
Combine 2.90% 91.42% 0.44% 4.27% 0.00% 29.11%

Exact 0.95% 84.30% 0.67% 65.58% 0.00% 27.92%
LProg 0.00% 0.43% 0.32% 1.30% 0.00% 1.48%

In all datasets, some edged model always exceeds the
performance of the edgeless model. On Mediamill and
Reuters, selecting only the 10 most frequent labels robs
the dataset of many dependency relationships, which
may explain the relatively lackluster performance.

5.2.1. The Sorry State of LBP, but Relax

Let’s first examine the diagonal entries in Table 2.
Models trained with LBP separation oracles yield gen-
erally poor performance. What causes this? LBP’s
tendency to fall into horrible local maxima (as seen
in Section 4) misled Algorithm 1 to believe its most
violated constraint was not violated, leading it to
early termination, mirroring the result in (Kulesza &
Pereira, 2007). The combined method remedies some
of these problems; however, LProg still gives signifi-
cantly better/worse performance on 3 vs. 1 datasets.

How does LProg training compare against exact train-
ing? Table 3 shows that both methods give similar
performance. Exact-trained models significantly out-
perform relaxed-trained models on two datasets, but
they also lose on two datasets.

5.2.2. Relaxation in Learning and Prediction

Observe that relaxation used in prediction performs
well when applied to models trained with relaxation.
However, on models trained with non-relaxed meth-
ods (i.e., models that do not constrain fractional solu-
tions), relaxed inference often performs quite poorly.
The most ludicrous examples appear in Yeast, Reuters,
Mediamill, and Synth2. Table 3 suggests an explana-
tion for this effect. The table lists the percentage of
ambiguous labels from the relaxed classifier (fractional
in LProg, ∅ in Cut). Ignoring degenerate LBP-trained
models, the relaxed predictor always has the fewest
ambiguous judgments. Apparently, SSVMs with re-
laxed separation oracles produce models that disfavor
non-integer solutions. In retrospect this is unsurpris-
ing: ambiguous labels always incur loss during train-
ing. Minimizing loss during training therefore not only
reduces training error, but also encourages parame-
terizations that favor integral (i.e., exact) solutions.
Undergenerating and exact training do not control for

Training Structural SVMs when Exact Inference is Intractable

Table 2. Multi-labeling loss on six datasets. Results are grouped by dataset. Rows indicate separation oracle method.
Columns indicate classification inference method.

Greedy LBP Combine Exact LProg Greedy LBP Combine Exact LProg
Scene Dataset Mediamill Dataset

Greedy 10.67±.28 10.74±.28 10.67±.28 10.67±.28 10.67±.28 23.39±.16 25.66±.17 24.32±.17 24.92±.17 27.05±.18
LBP 10.45±.27 10.54±.27 10.45±.27 10.42±.27 10.49±.27 22.83±.16 22.83±.16 22.83±.16 22.83±.16 22.83±.16

Combine 10.72±.28 11.78±.30 10.72±.28 10.77±.28 11.20±.29 19.56±.14 20.12±.15 19.72±.14 19.82±.14 20.23±.15
Exact 10.08±.26 10.33±.27 10.08±.26 10.06±.26 10.20±.26 19.07±.14 27.23±.18 19.08±.14 18.75±.14 36.83±.21
LProg 10.55±.27 10.49±.27 10.49±.27 10.49±.27 10.49±.27 18.50±.14 18.26±.14 18.26±.14 18.21±.14 18.29±.14

Yeast Dataset Synth1 Dataset
Greedy 21.62±.56 21.77±.56 21.58±.56 21.62±.56 24.42±.61 8.86±.08 8.86±.08 8.86±.08 8.86±.08 8.86±.08

LBP 24.32±.61 24.32±.61 24.32±.61 24.32±.61 24.32±.61 13.94±.12 13.94±.12 13.94±.12 13.94±.12 13.94±.12
Combine 22.33±.57 37.24±.77 22.32±.57 21.82±.56 42.72±.81 8.86±.08 8.86±.08 8.86±.08 8.86±.08 8.86±.08

Exact 23.38±.59 21.99±.57 21.06±.55 20.23±.53 45.90±.82 6.89±.06 6.86±.06 6.86±.06 6.86±.06 6.86±.06
LProg 20.47±.54 20.45±.54 20.47±.54 20.48±.54 20.49±.54 8.94±.08 8.94±.08 8.94±.08 8.94±.08 8.94±.08

Reuters Dataset Synth2 Dataset
Greedy 5.32±.09 13.38±.21 5.06±.09 5.42±.09 16.98±.26 7.27±.07 27.92±.20 7.27±.07 7.28±.07 19.03±.15

LBP 15.80±.25 15.80±.25 15.80±.25 15.80±.25 15.80±.25 10.00±.09 10.00±.09 10.00±.09 10.00±.09 10.00±.09
Combine 4.90±.09 4.57±.08 4.53±.08 4.49±.08 4.55±.08 7.90±.07 26.39±.19 7.90±.07 7.90±.07 18.11±.15

Exact 6.36±.11 5.54±.10 5.67±.10 5.59±.10 5.62±.10 7.04±.07 25.71±.19 7.04±.07 7.04±.07 17.80±.15
LProg 6.73±.12 6.41±.11 6.38±.11 6.38±.11 6.38±.11 5.83±.05 6.63±.06 5.83±.05 5.83±.05 6.29±.06

this, leading to relaxed inference yielding many am-
biguous labelings.

On the other hand, observe that models trained with
the relaxed separation oracle have relatively consistent
performance, irrespective of the classification inference
procedure; even LBP never shows the catastrophic fail-
ure it does with other training approximations and
even exact training (e.g., Mediamill, Synth2). Why
might this occur? Recall the persistence property from
Section 3: unambiguous labels are optimal labels. In
some respects this property is attractive, but Section 4
revealed its dark side: relaxation predictors are very
conservative, delivering unambiguous labels only when
they are certain. By making things “obvious” for the
relaxed predictors (which are the most conservative
w.r.t. what they label), it appears they simultaneously
make things obvious for all predictors, explaining the
consistent performance of relaxed-trained models re-
gardless of prediction method.

SSVM’s ability to train models to “adapt” to the weak-
ness of overgenerating predictors is an interesting com-
plement with Searn structural learning (Daumé III
et al., 2006), which trains models to adapt to the weak-
nesses of undergenerating search based predictors.

5.2.3. Known Approximations

How robust is SSVM training to an increasingly poor
approximate separation oracle? To evaluate this, we
built an artificial ρ-approximation separation oracle:
for example (xi,yi) we exhaustively find the optimal
y∗ = argmaxy∈Y w

T Ψ(xi,y)+∆(yi,y), but we return
the labeling ŷ such that f(x, ŷ) ≈ ρf(x,y∗). In this
way, we build an approximate undergenerating MRF
inference method with known quality.

Table 4 details these results. The first column indi-
cates the approximation factor used in training each
model for each dataset. The remaining columns show
train and test performance using exact inference.

What is promising is that test performance does not
drop precipitously as we use increasingly worse ap-
proximations. For most problems, the performance
remains reasonable even for approximation factors as
high as 0.1.

6. Conclusion

This paper theoretically and empirically analyzed two
classes of methods for training structural SVMs on
models where exact inference is intractable. Focus-
ing on completely connected Markov random fields,
we explored how greedy search, loopy belief propa-
gation, a linear-programming relaxation, and graph-
cuts can be used as approximate separation oracles in
structural SVM training. In addition to a theoreti-
cal comparison of the resulting algorithms, we empir-
ically compared performance on multi-label classifica-
tion problems. Relaxation approximations distinguish
themselves as preserving key theoretical properties of
structural SVMs, as well as learning robust predictive
models. Most significantly, structural SVMs appear
to train models to avoid relaxed inference methods’
tendency to yield fractional, ambiguous solutions.

References

Altun, Y., Tsochantaridis, I., & Hofmann, T. (2003). Hid-
den Markov support vector machines. ICML (pp. 3–10).

Anguelov, D., Taskar, B., Chatalbashev, V., Koller, D.,
Gupta, D., Heitz, G., & Ng, A. (2005). Discriminative
learning of Markov random fields for segmentation of 3D
scan data. CVPR. IEEE Computer Society.

Training Structural SVMs when Exact Inference is Intractable

Table 4. Known ρ-approximations table, showing performance change as we use increasingly inferior separation oracles.

ρ Approx. Scene Yeast Reuters Mediamill Synth1 Synth2
Factor Train Test Train Test Train Test Train Test Train Test Train Test

1.000 4.97 10.06 18.91 20.23 4.30 5.59 17.65 18.75 0.00 6.86 4.57 7.04
0.990 4.36 10.87 19.35 21.06 4.01 5.39 17.19 18.13 0.00 8.61 5.20 7.36
0.975 3.95 11.45 19.27 20.56 3.55 4.99 17.68 18.40 3.64 12.72 4.43 6.76
0.950 9.06 10.72 19.90 20.98 3.97 5.68 18.09 19.66 0.32 6.64 5.35 7.90
0.900 3.96 10.74 18.72 20.14 3.90 5.51 17.10 17.84 2.55 13.19 6.21 8.84
0.850 5.67 11.32 20.04 21.35 3.88 5.21 18.15 19.97 1.45 9.08 6.74 8.57
0.800 5.15 10.59 19.37 21.04 4.93 6.41 19.25 20.86 2.72 14.09 8.83 11.02
0.700 6.32 11.08 24.24 26.26 5.22 6.28 29.24 30.01 0.60 8.69 9.56 11.57
0.600 19.01 20.00 19.00 20.80 4.44 5.44 19.57 20.26 4.21 15.23 12.90 15.48
0.500 10.83 12.28 21.09 22.31 4.65 5.69 29.89 30.42 4.07 10.92 11.85 13.68
0.000 71.80 71.00 45.78 45.36 58.48 58.65 33.00 34.75 36.62 36.84 49.38 50.01

Boros, E., & Hammer, P. L. (2002). Pseudo-boolean opti-
mization. Discrete Appl. Math., 123, 155–225.

Boutell, M. R., Luo, J., Shen, X., & Brown, C. M. (2004).
Learning multi-label scene classification. Pattern Recog-
nition, 37, 1757–1771.

Boykov, Y., & Kolmogorov, V. (2004). An experimental
comparison of min-cut/max-flow algorithms for energy
minimization in vision. PAMI, 26, 1124–1137.

Cesa-Bianchi, N., Gentile, C., & Zaniboni, L. (2006). Hi-
erarchical classification: combining Bayes with SVM.
ICML. Pittsburgh, Pennsylvanias.

Chang, C.-C., & Lin, C.-J. (2001). LIBSVM : A
library for support vector machines. Software at
http://www.csie.ntu.edu.tw/~cjlin/libsvm.

Collins, M. (2002). Discriminative training methods for
hidden Markov models: theory and experiments with
perceptron algorithms. ACL-EMNLP.

Culotta, A., Wick, M., & McCallum, A. (2007). First-order
probabilistic models for coreference resolution. NAACL-
HLT (pp. 81–88).

Daumé III, H., Langford, J., & Marcu, D. (2006). Searn in
practice. Tech Report.

Elisseeff, A., & Weston, J. (2002). A kernel method for
multi-labelled classification. NIPS.

Finley, T., & Joachims, T. (2005). Supervised clustering
with support vector machines. ICML. Bonn, Germany.

Hammer, P. L., Hansen, P., & Simeone, B. (1984). Roof-
duality, complementation, and persistency in quadratic
0–1 optimization. Math. Program., 28, 121–155.

He, X., Zemel, R. S., & Carreira-Perpinan, M. A. (2004).
Multiscale conditional random fields for image labeling.
cvpr, 02, 695–702.

Joachims, T. (2005). A support vector method for mul-
tivariate performance measures. ICML (pp. 377–384).
New York, NY, USA: ACM Press.

Kolmogorov, V., & Rother, C. (2004). Minimizing non-
submodular functions with graph cuts – a review. PAMI,
26, 147–159.

Kulesza, A., & Pereira, F. (2007). Structured learning with
approximate inference. NIPS.

Kumar, S., & Hebert, M. (2003). Discriminative fields for
modeling spatial dependencies in natural images. NIPS.

Lafferty, J., McCallum, A., & Pereira, F. (2001). Condi-
tional random fields: Probabilistic models for segment-
ing and labeling sequence data. ICML.

Lewis, D. D., Yang, Y., Rose, T. G., & Li, F. (2004). Rcv1:
A new benchmark collection for text categorization re-
search. J. Mach. Learn. Res., 5, 361–397.

Pearl, J. (1988). Probabilistic reasoning in intelligent sys-
tems: networks of plausible inference. San Francisco,
CA, USA: Morgan Kaufmann Publishers Inc.

Roth, D., & Yih, W. (2005). Integer linear programming
inference for conditional random fields. Proc. of the In-
ternational Conference on Machine Learning (ICML).

Snoek, C. G. M., Worring, M., van Gemert, J. C., Geuse-
broek, J.-M., & Smeulders, A. W. M. (2006). The chal-
lenge problem for automated detection of 101 semantic
concepts in multimedia. ACM-MULTIMEDIA.

Sutton, C., & McCallum, A. (2005). Fast, piecewise train-
ing for discriminative finite-state and parsing models
(Technical Report IR-403). Center for Intelligent In-
formation Retrieval.

Taskar, B., Guestrin, C., & Koller, D. (2003). Max-margin
Markov networks. In NIPS 16.

Tsochantaridis, I., Hofmann, T., Joachims, T., & Altun,
Y. (2004). Support vector machine learning for interde-
pendent and structured output spaces. ICML.

Tsochantaridis, I., Joachims, T., Hofmann, T., & Altun,
Y. (2005). Large margin methods for structured and
interdependent output variables. JMLR, 6, 1453–1484.

Vishwanathan, S. V. N., Schraudolph, N. N., Schmidt,
M. W., & Murphy, K. P. (2006). Accelerated training of
conditional random fields with stochastic gradient meth-
ods. ICML.

Yu, C.-N., Joachims, T., Elber, R., & Pillardy, J. (2007).
Support vector training of protein alignment models.
RECOMB.

