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Abstract

In many settings agents participate in multiple different
auctions that are not necessarily implemented simulta-
neously. Future opportunities affect strategic consider-
ations of the players in each auction, introducing ex-
ternalities. Motivated by this consideration, we study
a setting of a market of buyers and sellers, where each
seller holds one item, bidders have combinatorial valu-
ations and sellers hold item auctions sequentially.

Our results are qualitatively different from those
of simultaneous auctions, proving that simultaneity is
a crucial aspect of previous work. We prove that
if sellers hold sequential first price auctions then for
unit-demand bidders (matching market) every subgame
perfect equilibrium achieves at least half of the optimal
social welfare, while for submodular bidders or when
second price auctions are used, the social welfare can
be arbitrarily worse than the optimal. We also show
that a first price sequential auction for buying or selling
a base of a matroid is always efficient, and implements
the VCG outcome.

An important tool in our analysis is studying first
and second price auctions with externalities (bidders
have valuations for each possible winner outcome),
which can be of independent interest. We show that
a Pure Nash Equilibrium always exists in a first price
auction with externalities.

1 Introduction

The first and second price auctions for a single item, and
their corresponding strategically equivalent ascending
versions are some of the most commonly used auctions
for selling items. Their popularity has been mainly due
to the fact that they combine simplicity with efficiency:
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the auctions have simple rules and in many settings lead
to efficient allocation.

The simplicity and efficiency tradeoff is more diffi-
cult when auctioning multiple items, especially so when
items to be auctioned are possibly owned by different
sellers. The most well-known auction is the truthful
VCG auction, which is efficient, but is not simple: it
requires coordination among sellers, requires the sellers
to agree on how to divide the revenue, and in many situ-
ations requires solving computationally hard problems.
In light of these issues, it is important to design simple
auctions with good performance, it is also important to
understand properties of simple auction designs used in
practice.

Several recent papers have studied properties of
simple item-bidding auctions, such as using simultane-
ous second price auctions for each item [7, 4], or simul-
taneous first price auction [14, 16]. Each of these papers
study the case when all the items are auctioned simulta-
neously, a property essential for all of their results. The
simplest, most natural, and most common way to auc-
tion items by different owners is to run individual single
item auctions (e.g., sell each item separately on eBay).
No common auction environment is running simultane-
ous auctions (first price or second price) for large sets
of items. To evaluate to what extent is the simultaneity
important for the good properties of the above simple
auctions [7, 4, 14], it is important to understand the
sequential versions of item bidding auctions.

There is a large body of work on online auctions (see
[27] for a survey), where players have to make strategic
decisions without having any information about the fu-
ture. In many auctions participants have information
about future events, and engage in strategic thinking
about the upcoming auctions. Here we take the oppo-
site view from online auctions, and study the full infor-
mation version of this game, when the players have full
information about all upcoming auctions.

Driven by this motivation we study sequential sim-
ple auctions from an efficiency perspective. Sequen-
tial auctions are very different from their simultaneous
counterparts. For example, it may not be dominated
to bid above the actual value of an item, as the out-
come of this auction can have large effect for the player



in future auctions beyond the value of this item. We
focus on two different economic settings. In the first
set of results we study the case of a market of buyers
and sellers, where each seller holds one item and each
bidder has a combinatorial valuation on the items. In
the second setting we study the case of procuring a base
of a matroid from a set of bidders, each controlling an
element of the ground set.

For item auctions, we show that subgame perfect
equilibrium always exists, and study the quality of the
resulting outcome. While the equilibrium is not unique
in most cases, in some important classes of games,
the quality of any equilibrium is close to the quality
of the optimal solution. We show that in the widely
studied case of matching markets [29, 8, 20], i.e. when
bidders are unit-demand, the social welfare achieved
by a subgame perfect equilibrium of a sequential first
price auction is at least half of the optimal. Thus in a
unit-demand setting sequential implementation causes
at most a factor of 2 loss in social welfare. On the
other hand, we also show that the welfare loss due to
sequential implementation is unbounded when bidders
have arbitrary submodular valuations, or when the
second price auction is used, hence in these cases the
simultaneity of the auctions is essential for achieving
the positive results [7, 4, 14].

For the setting of auctioning a base of a matroid to
bidders that control a unique element of the ground set,
we show that a natural sequential first price auction has
unique outcome, that achieves the same allocation and
price outcome as Vcg.

An important building block in all of our results is a
single item first or second price auction in a setting with
externalities, i.e., when players have different valuations
for different winner outcomes. Many economic settings
might give rise to such externalities among the bidders
of an auction:

• We are motivated by externalities that arise in se-
quential auctions. In this setting, bidders might
know of future auctions, and realize that their sur-
plus in the future auction depends on who wins the
current auction. Such consideration introduces ex-
ternalities, as players can have a different expected
future utility according to the winner of the current
auction.

To illustrate how externalities arise in sequential
auction, consider the following example of a sequen-
tial auction with two items and two players and
with valuations: v1(1) = v1(2) = 5, v1(1, 2) = 10
for player 1, and v2(1) = v2(2) = v2(1, 2) = 4 for
player 2. Player 1 has higher value for both item.
However, if she wins item 1 then she has to pay 4 for

the second item, while by allowing player 2 to win
the first item, results in a price of 0 for the second
item. We can summarize this by saying that his
value for winning the first item is 6 (value 5 for the
first item itself, and an additional expected value
of 1 for subsequently winning the second item at a
price 4), while her value for player 2 winning the
first item is 5 (for subsequently winning the second
item for free).

• Bidders might want to signal information through
their bids so as to threat or inform other bidders
and hence affect future options. This is the cause
of the inefficiency in our example of sequential
second price auction. Such phenomena have been
observed at Federal Communication Commission
(FCC) auctions where players were using the lower
digits of their bids to send signals discouraging
other bidders to bid on a particular license (see
chapter 1 of Milgrom [25]).

• If bidders are competitors or collaborators in a
market then it makes a difference whether your
friend or your enemy wins. One very vivid por-
trayal of such an externality is an auction for nu-
clear weapons [19].

The properties of such an auction are of independent
interest outside of the sequential auction scope.

1.1 Our Results

Existence of equilibrium. In section 2 we show that
the first price single item auction always has a pure
Nash equilibrium that survives iterated elimination of
dominated strategies, even in the presence of arbitrary
externalities, strengthening the result in [17, 10].

In section 3 we use such external auction to show
that sequential first price auctions have pure subgame
perfect Nash equilibria for any combinatorial valuations.
This is in contrast to simultaneous first price auctions
that may not have pure equilibria even for very simple
valuations.

Quality of outcomes in sequential first price

item auctions. Next we study the quality of outcome
of sequential first price auctions in various settings.
Our main result is that with unit demand bidders the
price of anarchy is bounded by 2. In contrast, when
valuations are submodular, the price of anarchy can be
arbitrarily high. This differentiates sequential auctions
from simultaneous auctions, where pure Nash equilibria
are socially optimal [14].

These results extend to sequential auctions, where
multiple items are sold at each stage using independent
first price auctions. Further, the efficiency guarantee



degrades smoothly as we move away from unit demand.
Moreover, the results also carry over to mixed strategies
with a factor loss of 2. Unfortunately, the existence of
pure equilibria is only guaranteed when auctioning one
item at-a-time.

Sequential second price auctions. Our positive
results depend crucially on using the first price auction
format. In the appendix, we show that sequential sec-
ond price auctions can lead to unbounded inefficiency,
even for additive valuations, while for additive valua-
tions sequential first price, or simultaneous first or sec-
ond price auctions all lead to efficient outcomes.

Sequential Auctions for selling basis of a

matroid. In section 4 we consider matroid auctions,
where bidders each control a unique element of the
ground set, and we show that a natural sequential
first price auction achieves the same allocation and
price outcome as Vcg. Specifically, motivated by
the greedy spanning tree algorithm, we propose the
following sequential auction: At each iteration pick a cut
of the matroid that doesn’t intersect previous winners
and run a first price auction among the bidders in the
cut. This auction is a more distributed alternative
to the ascending auction proposed by Bikhchandani
et al [5]. For the interesting case of a procurement
auction for buying a spanning tree of a network from
local constructors, our mechanism takes the form of a
geographically local and simple auction.

We also study the case where bidders control several
elements of the ground set but have a unit-demand val-
uation. This problem is a common generalization of the
matroid problem, and the unit demand auction prob-
lem considered in the previous section. We show that
the bound of 2 for the price of anarchy of any subgame
perfect equilibrium extends also to this generalization.

1.2 Related Work

Externalities. The fact that one player might in-
fluence the other without direct competition has been
long studied in the economics literature. The textbook
model is due to Meade [24] in 1952, and the concept
has been studied in various contexts. To name a few
recent ones: [19] study it in the context of weapon
sales, [12, 13] in the context of AdAuctions, and [21]
in the context of combinatorial auctions. Our external-
ities model is due to Jehiel and Moldovanu [17]. They
show that a pure Nash equilibrium exists in a full in-
formation game of first price auction with externalities,
but use dominated strategies in their proof. Funk [10]
shows the existence of an equilibrium after one round
of elimination of dominated strategies, but argues that
this refinement alone is not enough for ruling out unnat-
ural equilibria - and gives a very compelling example of

this fact. Iterative elimination of dominated strategies
would eliminate the unnatural equilibria in his exam-
ple, but instead of analyzing it, Funk analyzes a differ-
ent concept: locally undominated strategies, which he
defines in the paper. We show the existence of an equi-
librium surviving any iterated elimination of dominated
strategies - our proof is based on a natural ascending
price auction argument, that provides more intuition on
the structure of the game. Our first price auction equi-
librium is also an equilibrium in a second price auction.
Previous work studying second price auctions include
Jehiel and Moldovanu [18], who study a simple case of
second price auctions with two buyers and externalities
between the buyers, derive equilibrium bidding strate-
gies, and point out the various effects caused by pos-
itive and negative externalities, while in [15] the same
authors study a simple case of second price auction with
two types of buyers.

Sequential Auctions. A lot of the work in the
economic literature studies the behavior of prices in
sequential auctions of identical items where bidders
participate in all auctions. Weber [30] and Milgrom
and Weber [26] analyze first and second price sequential
auctions with unit-demand bidders in the Bayesian
model of incomplete information and show that in the
unique symmetric Bayesian equilibrium the prices have
an upward drift. Their prediction was later refuted by
empirical evidence (see e.g. [1]) that show a declining
price phenomenon. Several attempts to describe this
“declining price anomaly” have since appeared such as
McAfee and Vincent [23] that attribute it to risk averse
bidders. Although we study full information games with
pure strategy outcomes, we still observe declining price
phenomena in our sequential auction models without
relying to risk-aversion. Boutilier el al [6] studies
first price auction in a setting with uncertainty, and
gives a dynamic programming algorithm for finding
optimal auction strategies assuming the distribution
of other bids is stationary in each stage, and shows
experimentally that good quality solutions do emerge
when all players use this algorithm repeatedly.

The multi-unit demands case has been studied
under the complete information model as well. Several
papers (e.g. [11, 28]) study the case of two bidders. In
the case of two bidders they show that there is a unique
subgame perfect equilibrium that survives the iterated
elimination of weakly dominated strategies, which is not
the case for more than two bidders. Bae et al. [3, 2]
study the case of sequential second price auctions of
identical items to two bidders with concave valuations
on homogeneous items. They show that the unique
outcome that survives the iterated elimination of weakly
dominated strategies is inefficient, but achieves a social



welfare at least 1−e−1 of the optimal. Here we consider
more than two bidders, which makes our analysis more
challenging, as the uniqueness argument of the Bae et al.
[3, 2] papers depends heavily on having only two players:
when there are only two players, the externalities that
naturally arise due to the sequential nature of the
auction can be modeled by standard auction with no
externalities using modified valuations.

Item Auctions. Recent work from the Algorith-
mic Game Theory community tries to propose the study
of outcomes of simple mechanisms for multi-item auc-
tions. Christodoulou, Kovacs and Schapira [7] and
Bhawalkar and Roughgarden [4] study the case of run-
ning simultaneous second price item auctions for combi-
natorial auction settings. Christodoulou et al. [7] prove
that for bidders with submodular valuations and incom-
plete information the Bayes-Nash Price of Anarchy is 2.
Bhawalkar and Roughgarden [4] study the more general
case of bidders with subadditive valuations and show
that under complete information the Price of Anarchy
of any Pure Nash Equilibrium is 2 and under incom-
plete information the Price of Anarchy of any Bayes-
Nash Equilibrium is at most logarithimic in the number
of items. Hassidim et al. [14] and Immorlica et al [16]
study the case of simultaneous first price auctions and
show that the set of pure Nash equilibria of the game
correspond to exactly the Walrasian equilibria. Has-
sidim et al. [14] also show that mixed Nash equilibria
have a price of anarchy of 2 for submodular bidders and
logarithmic, in the number of items, for subadditive val-
uations.

Unit Demand Bidders. Auctions with unit
demand bidders correspond to the classical matching
problem in optimization. They have been studied
extensively also in the context of auctions, starting
with the classical papers of Shapley and Shubik [29]
and Demange, Gale, and Sotomayor [8]. The most
natural application of unit demand bidders is the case
of a buyer-seller network market. A different interesting
application where sequential auction is also natural, is in
the case of scheduling jobs with deadlines. Suppose we
have a set of jobs with different start and end times (that
are commonly known) and each has a private valuation
for getting the job done, not known to the auctioneer.
Running an auction for each time slot sequentially is
natural since, for example, it doesn’t require for a job
to participate in an auction before its start time.

Matroid Auctions. The most recent and related
work on Matroid Auctions is that of Bikhchandani et
al [5] who propose a centralized ascending auction for
selling bases of a Matroid that results in the Vcg
outcome. In their model each bidder has a valuation
for several elements of the matroid and the auctioneer

is interested in selling a base. Kranton and Minehart
[20] studied the case of a buyer-seller bipartite network
market where each buyer has a private valuation and
unit-demand. They also propose an ascending auction
that simulates the Vcg outcome. Their setting can be
viewed as a matroid auction, where the matroid is the
set of matchable bidders in the bipartite network. Under
this perspective their ascending auction is a special case
of that of Bikhchandani et al. [5]. We study a sequential
version of this matroid basis auction game, but consider
only the case when bidders are interested in a specific
element of the matroid, and show that the sequential
auction also implements the VCG outcome.

2 Auctions with Externalities

In this section we consider a single-item auction with
externalities, and analyze a simple first price auction
for this case. Variations on the same concept of
externalities can be found, in Jehiel and Moldovanu
[17], Funk [10] and in Bae et al [2] - the last one
also motivated by sequential auctions, but considered
auctions with two players only. Here we show that pure
Nash equilibrium exists using strategies that survives
the iterated elimination of dominated strategies. The
single-item auction with externalities will be used as the
main building block in the study of sequential auctions.

Definition 2.1. A first-price single-item auction

with externalities with n players is a game such that
the type of player i is a vector [v1i , v

2
i , . . . , v

n
i ] and the

strategy set is [0,∞). Given bids b = (b1, . . . , bn)
the first price auction allocates the item to the highest
bidder, breaking ties using some arbitrary fixed rule,
and makes the bidder pay his bid value. If player i is
allocated, then experienced utilities are ui = vii − bi and
uj = vij for all j 6= i.

For technical reasons, we allow a player do bid x
and x+ for each real number x ≥ 0. The bid bi = x+
means a bid that is infinitesimally larger than x. This
is essential for the existence of equilibrium in first-price
auctions. Alternatively, one could consider limits of ǫ-
Nash equilibria (see Hassidim et al [14] for a discussion).

Next, we present a natural constructive proof of
the existence of equilibrium that survives iterated elim-
ination of weakly-dominated strategies. See the for-
mal definition concept of iterated elimination of weakly-
dominated strategies we use in Appendix A. Our proof
is based on ascending auctions.

Theorem 2.1. Each instance of the first-price single-
item auction with externalities has a pure Nash equi-
librium that survives iterated elimination of weakly-
dominated strategies.



Proof. For simplicity we assume that all vji are multiples
of ǫ. Further, we may assume without loss of generality
that v ≥ 0 and minj v

j
i = 0. We say that an item is

toxic, if vii < vji for all i 6= j. If the item is toxic, then
bi = 0 for all players and player 1 getting the item is an
equilibrium. If not, assume v11 ≥ v21 .

Let 〈i, j, p〉 denote the state of the game where
player i wins for price p and j is the price setter, i.e.,
bi = p+, bj = p, bk = 0 for k 6= i, j. The idea of
the proof is to define a sequence of states which have
the following invariant property: p ≤ γi, p ≤ γj and

vii − p ≥ vji , where γi = maxj v
i
i − vji . We will define

the sequence, such that states don’t appear twice on
the sequence (so it can’t cycle) and when the sequence
stops, we will have reached an equilibrium.

Start from the state 〈1, 2, 0〉, which clearly satisfies
the conditions. Now, if we are in state 〈i, j, p〉, if there is
no k such that vkk−p > vik then we are at an equilibrium
satisfying all conditions. If there is such k, move to
the state 〈k, i, p〉 if this state hasn’t appeared before in
the sequence, and otherwise, move to 〈k, i, p + ǫ〉. We
need to check that the new states satisfy the invariant
conditions: first vkk−(p+ǫ) ≥ vik. Now, we need to check
the two first conditions: p + ǫ ≤ vkk − vik ≤ γk. Now,
the fact that i is not overbidding is trivial for 〈k, i, p〉,
since i wasn’t overbidding in 〈i, j, p〉. If, 〈k, i, p〉 already
appeared in this sequence, it means that i took the item
from player j, so: vii − p > vji so: p < vii − vji ≤ γi so
p+ ǫ ≤ γi.

Now, notice this sequence can’t cycle, and prices are
bounded by valuations, so it must stop somewhere and
there we have an equilibrium. To show the existence of
an equilibrium surviving iterative elmination of weakly
dominated strategies, we need a more careful argument:
we refer to appendix A for a proof.

It is not hard to see that any equilibrium of the first-
price auction with externalities is also an equilibrium in
the second-price version. The subclass of second-price
equilibria that are equivalent to a first-price equilibria
(producing same price and same allocation), are the
second-price equilibria that are envy-free, i.e., no
player would rather be the winner by the price the
winner is actually paying. So, an alternative way of
looking at our results for first price is to see them as
outcomes of second-price when we believe that envy-
free equilibria are selected at each stage.

3 Sequential Item Auctions

Assume there are n players and m items and each player
has a monotone (free-disposal) combinatorial valuation
vi : 2[m] → R+. We will consider sequential auctions.
First assume that at each time step only a single item

is being auctioned off: item t is auctioned in step t. We
define the sequential first (second) price auction for this
case as follows: in time step t = 1 . . .m we ask for bids
bi(t) from each agent for the item being considered in
this step, and run a first (second) price auction to sell
this item. Generally, we assume that after each round,
the bids of each agent become common knowledge, or
at least the winner and the winning price become public
knowledge. The agents can naturally choose their bid
in time t as a function of the past history. We will also
consider the natural extension of these games, when
each round can have multiple items on sale, bidders
submit bids for each item on sale, and we run a separate
first (second) price auction for each item.

This setting is captured by extensive form games

(see Appendix B for a formal definition and [9] for a
more comprehensive treatment). The strategy of each
player is an adaptive bidding policy: the policy specifies
what a player bids when the tth item (or items) is
auctioned, depending on the bids and outcomes of the
previous t − 1 items. More formally a strategy for
player i is a bidding function βi(·) that associates a
bid βi({bτi }i,τ<t) ∈ R+ with each sequence of previous
bidding profiles {bτi }i,τ<t.

Utilities are calculated in the natural way: utility
for the set of items won, minus the sum of the payments
from each round. In each round the player with largest
bid wins the item and pays the first (second) price.
We are interested in the subgame perfect equilibria

(Spe) of this game: which means that the profile of
bidding policies is a Nash equilibrium of the original
game and if we arbitrarily fix what happens in the
first t rounds, the policy profile also remains a Nash
equilibrium of this induced game.

Our goal is to measure the Price of Anarchy,
which is the worse possible ratio between the optimal
welfare achievable (by allocating the items optimally)
and the welfare in a subgame perfect equilibrium.
Again, we invite the reader to Appendix B for formal
definitions.

3.1 First Price Auctions: existence of pure

equilibria First we show that sequential first price sin-
gle item auctions have pure equilibria for all valuations.

Theorem 3.1. Sequential first price auction when each
round a single item is auctioned has a Spe that doesn’t
use dominated strategies, and in which bids in each node
of the game tree depend only on who got the item in the
previous rounds.

We use backwards induction, and apply our result
on the existence of Pure Nash Equilibria in first price
auctions with externalities to show the theorem. Given



outcomes of the game starting from stage k+1 define a
game with externalities for stage k, and by Theorem 2.1
this game has a pure Nash equilibrium. It interesting
to notice that we have existence of a pure equilibrium
for arbitrary combinatorial valuation. In contrast,
the simultaneous item bidding auctions, don’t always
possess a pure equilibrium even for subadditive bidders
([14]).

In the remainder of this section we consider three
classes of valuations: additive, unit-demand and sub-
modular. For additive valuations, the sequential first-
price auction always produces the optimal outcome.
This is in contrast to second price auctions, as we show
in Appendix D.

In the next two subsections we consider unit-
demand bidders, and prove a bound of 2 for the Price
of Anarchy, and then show that for submodular valu-
ations the price of anarchy is unbounded (while in the
simultaneous case, the price of anarchy is bounded by 2
[14]).

3.2 First Price Auction for Unit-Demand Bid-

ders We assume that there is free disposal, and hence
say that a player i is unit-demand if, for a bundle
S ⊆ [m], vi(S) = maxj∈S vij , where vij is the valua-
tion of player i for item j.

To see that inefficient allocations are possible, con-
sider the example given in Figure 1. There is a sequen-
tial first price auction of three items among four players.
Player b prefers to loose the first item, anticipating that
he might get a similar item for a cheaper price later.
This gives an example where the Price of Anarchy is
3/2. Notice that this is the only equilibrium using non-
dominated strategies.

Theorem 3.2. For unit-demand bidders, the PoA of
pure subgame perfect equilibria of Sequential First Price
Auctions of individual items is bounded by 2, while for
mixed equilibria it is at most 4.

Proof. Consider the optimal allocation and a subgame
perfect equilibrium, and let Opt denote the social
value of the optimum, and Spe the social value of the
subgame perfect equilibrium. LetN be the set of players
allocated in the optimum. For each i ∈ N , let j∗(i) be
the element it was allocated to in the optimal, and let
j(i) be the element he was allocated in the subgame
perfect equilibrium and let vi,j(i) be player i’s value for
this element (if player i got more than one element,
let j(i) be his most valuable element). If player i
wasn’t allocated at all, let vi,j(i) be zero. Let p(j(i))
be the price for which item j(i) was sold in equilibrium.
Consider three possibilities:

1. i gets j∗(i), then clearly vi,j(i) ≥ vi,j∗(i)

A

B B

C C C C

A C B

va = ǫ vb = α vc = α vd = α− ǫ

b wins
ub = α− ǫ

a wins
ua = ǫ

c wins d wins c wins d wins

—
ua = 0
ub = α− ǫ
uc = ǫ
ud = 0

c wins
ua = 0
ub = α− ǫ
uc = α
ud = α− ǫ

b wins
ua = ǫ
ub = α
uc = ǫ
ud = 0

b or c wins
ua = ǫ
ub = 0
uc = 0
ud = α− ǫ

Figure 1: Sequential Multi-unit Auction generating
PoA 3/2: there are 4 players {a, b, c, d} and three items
that are auctioned first A, then B and then C. The
optimal allocation is b → A, c → C, d → B with value
3α − ǫ. There is a Spe that has value 2α + ǫ. In the
limit when ǫ goes to 0 we get PoA = 3/2.

2. i gets j(i) after j∗(i) or doesn’t get allocated at all,
then vi,j(i) ≥ vi,j∗(i) − p(j∗(i)), otherwise he could
have improved his utility by winning j∗(i)

3. i gets j(i) before j∗(i), then either vi,j(i) ≥ vi,j∗(i)
or he can’t improve his utility by getting j∗(i), so it
must be the case that his marginal gain from j∗(i)
was smaller than the maximum bid in j∗(i), i.e.
p(j∗(i)) ≥ vi,j∗(i) − vi,j(i)

Therefore, in all the cases, we got p(j∗(i)) ≥ vi,j∗(i) −
vi,j(i). Summing for all players i ∈ N , we get:

Opt =
∑

i

vi,j∗(i) ≤
∑

i

vi,j(i) + p(j∗(i)) ≤ 2Spe

where in the last inequality is due to individual ratio-
nality of the players.

Next we prove the bound of 4 for the mixed case.
We focus of a player i and let j = j∗(i) denote item
assigned to i in the optimal matching. In the case
of mixed Nash equilibria, the price p(j) is a random
variable, as well as Ai the set of items player i wins
in the auction. Consider a node n of the extensive
form game, where j is up for auction, i.e., a possible



history of play up to j being auctioned. Let Pn−
i be

the expected value of the total price i paid till this
point in the game, and let Pn(j) = E [p(j)|n] be the
expected price for item j at this node n, and note
that P (j) = E [p(j)] = E [Pn(j)], where the right
expectation is over the induced distribution on nodes
n where j is being auctioned.

Player i deviating by offering price 2Pn(j) at every
node n that j comes up for auction, and then dropping
out of the auction, gets him utility at least 1/2(vi(j)−
2Pn(j)) − Pn−

i , as he wins item j with probability at
least 1/2 and paid Pn−

i to this point. Using the Nash
inequality we get

E [vi(Ai)]− Pi ≥ E
[

1/2(vi(j)− 2Pn(j))− Pn−
i

]

,

where Pi is the expected payment of player i, and the
expectation on the right hand side is over the induced
distribution on the the nodes of the game tree where j is
being auctioned. Note that the proposed deviation does
not effect the play before item j is being auctioned, so
the expected value of E

[

Pn−
i

]

over the nodes n is at
least the expected payment Pi of player i, and that the
expected value of Pn

j over the nodes u is the expected
price P (j) of item j. Using these we get

E [vi(Ai)] ≥
1

2
vi(j)− P (j).

Now summing over all players, and using that
∑

j P (j) ≤
∑

iE [vi(Ai)] due to individual rationality,
we get the claimed bound of 4.

The proof naturally extends to sequential auctions
when in each round multiple items are being auctioned.
We can also generalize the above positive result to any
class of valuation functions that satisfy the property
that the optimal matching allocation is close to the
optimal allocation.

Theorem 3.3. Let OptM be the optimal matching al-
location and Opt the optimal allocation of a Sequential
First Price Auction. If Opt ≤ γOptM then the PoA is
at most 2γ for pure equilibria and at most 4γ for mixed
Nash, even if each round multiple items are auctioned
in parallel (using separate first price auctions).

Proof. Let j∗(i) be the item of bidder i in the optimal
matching allocation and Ai his allocated set of items in
the Spe. Let A−

i be the items that bidder i wins prior or
concurrent to the auction of j∗(i) and A+

i the ones that
he wins after. Consider a bidder i that has not won his
item in the optimal matching allocation. Bidder i could
have won this item when it appeared by bidding above

its current price pj∗(i) and then abandon all subsequent
auctions. Hence:

vi(A
−
i ∪ {j∗(i)})− pj∗(i) −

∑

j∈A−

i

pj ≤ vi(A)−
∑

j∈A

pj

vi(A
−
i ∪ {j∗(i)})− pj∗(i) ≤ vi(A) −

∑

j∈A+

i

pj ≤ vi(A)

vi(j
∗(i))− pj∗(i) ≤ vi(A)

If a player did acquire his item in the optimal
matching allocation then the above inequality certainly
holds. Hence, summing up over all players we get:

OptM =
∑

i

vi(j
∗(i)) ≤

∑

i

vi(Ai) +
∑

i

pj∗(i)

≤Spe+
∑

j

pj = Spe+
∑

i

∑

j∈Ai

pj

≤Spe+
∑

i

vi(Ai) = 2Spe

which in turn implies:

Opt ≤ γOptM ≤ 2γSpe

The bound of 4γ for the mixed case is proved along
the lines as the mixed proof of Theorem 3.2.

The above general result can be applied to several
natural classes of bidder valuations. For example,
we can derive the following corollary for multi-unit
auctions with submodular bidders: a bidder is said to be
uniformly submodular if his valuation is a submodular
function on the number of items he has acquired and not
on the exact set of items. Thus a submodular valuation
is defined by a set of decreasing marginals v1i , . . . , v

m
i .

Corollary 3.1. If bidders have uniformly submodular
valuations and ∀i, j : |v1i − v1j | ≤ δmax(v1i , v

1
j ) (δ < 1)

and there are more bidders than items then the PoA of
a Sequential First Price Auction is at most 2/(1− δ).

3.3 First Price Auctions, Submodular Bidders

In sharp contrast to the simultaneous item bidding
auction, where both first and second price have good
price of anarchy whenever Pure Nash equilibrium exist
[7, 4, 14], we show that for certain submodular valua-
tions, no welfare guarantee is possible in the sequential
case. While there are multiple equilibria in such auc-
tions, in our example the natural equilibrium is arbi-
trarily worse then the optimal allocation.
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Figure 2: Valuations v3 and v4.

Theorem 3.4. For submodular players, the Price of
Anarchy of the sequential first-price auction is un-
bounded.

The intuition is that there is a misalignment be-
tween social welfare and player’s utility. A player might
not want an item for which he has high value but has to
pay a high price. In the sequential setting, a bidder may
prefer to let a smaller value player win because of the
benefits she can derive from his decreased value on fu-
ture items, allowing her to buy future items at a smaller
price, or diverting a competitor, and hence decreasing
the price.

Proof. Consider four players and k + 3 items where 2
of the payers have additive valuations and 2 of them
has a coverage function as a valuation. Call the items
{I1, . . . , Ik, Y, Z1, Z2} and let players 1, 2 have additive
valuations. Their valuations are represented by the
following table:

I1 . . . Ik Y Z1 Z2

1 1 + ǫ . . . 1 + ǫ 0 2− kδ/2 0
2 1 . . . 1 0 0 2− kδ/2

The valuations of players 3 and 4 are given by the
coverage functions defined in Figure 2: each item
corresponds to a set in the picture. If the player gets a
set of items, his valuation for those items (sets) is the
sum of the values of the elements covered by the sets
corresponding to the items.

In the optimal allocation, player 1 gets all the items
I1, . . . , Ik, player 3 gets Y and player 4 gets Z1, Z2.
The resulting social welfare is k + 8 + kǫ − δ/2. We
will show that there is a subgame perfect equilibrium
such that player 3 wins all the items I1, . . . , Ik, even
though it has little value for them, resulting in a social
welfare of approximately 8 only. The intuition is the
following: in the end of the auction, player 4 has to
decide if he goes for item Y or goes for items Y1, Y2.
If he goes for item Y , he competes with player 3 and
afterwards lets players 1 and 2 win items Z1, Z2 for
free. This decision of player 4 depends on the outcomes

of the first k auctions. In particular, we show that
if all items I1, . . . , Ik go to either 3 or 4, then player
4 will go for item Y , otherwise, he will go for items
Z1, Z2. If either players 1 or 2 acquire any of the items
I1, . . . , Ik, they will be guaranteed to lose item Z1, Z2,
and therefore both will start bidding truthfully on all
subsequent Ii auctions, deriving very little utility. In
equilibrium agent 3 gets all items I1, . . . , Ik, resulting
in a social welfare of approximately 8 only.

In the remainder of this section, we provide a more
formal analysis: We begin by examining what happens
in the last three auctions of Y, Z1 and Z2 according to
what happened in the first k auctions. Let k1,2, k3, k4 be
the number of items won by the corresponding players
in the first k auctions.

• Case 1: k1,2 = 0. Thus k3 = k− k4. Player 3 has a
value of 4− δ

2 − kδ+ (k− k3)δ = 4− δ
2 − (k − k4)δ

for item Y . Player 4 has a value of 4 for Y and
a value of 2 − k δ

2 + (k − k4)
δ
2 for each of Z1

and Z2. Thus if player 4 loses auction Y he will
get a utility of (k − k4)δ from the auctions of Z1

and Z2 since players 1 and 2 will bid 2 − kδ/2.
Thus at auction Y player 4 is willing to win for
a price of at most 4 − (k − k4)δ and player 3 will
bid 4 − δ

2 − (k − k4)δ. Thus, player 4 will win

Y and will only bid (k − k4)
δ
2 in each of Z1, Z2.

Therefore, in this case we get that the utilities of
all the players from the last three auctions are:
u1 = u2 = 2−(2k−k4)

δ
2 , u3 = 0, u4 = δ

2 +(k−k4)δ

• Case 2: k1,2 > 0. Player 3 has a value of
4 − δ

2 − kδ + (k − k3)δ for Y . Since k12 ≥ 1,
we have k − k3 = k4 + k1,2 ≥ k4 + 1, hence the
value of 3 for Y is at least 4 + δ

2 − (k − k4)δ.
Player 4 has a value of 4 for Y and a value of
2 − k δ

2 + (k − k4)
δ
2 for each of Z1 and Z2. Hence,

again player 4 wants to win at auction Y for at
most 4− δ

2 − (k − k4)δ, hence he will lose to 3 and
will go on to win both Z1 and Z2. Thus the utilities
of all the players from the last three auctions are:
u1 = u2 = 0, u3 = δ, u4 = (k − k4)δ

We show by induction on i that as long as players 1
and 2 haven’t won any of the k−i items auctioned so far
then they will bid 0 in the remaining i items and one of
players 3 or 4 will win marginally with zero profit. For
i = 1 since both 1 and 2 haven’t won any previous item,
by losing the k’th item we know by the above analysis
that they both get utility of ≈ 2, while if any of them
wins then they get utility of 0. The external auction
that is played at the k’th item is represented by the



following [vij ] matrix:









1 + ǫ 0 ≈ 2 ≈ 2
0 1 ≈ 2 ≈ 2
δ δ δ 0

(k − k4)δ (k − k4)δ
δ
2 + (k − k4)δ

3δ
2 + (k − k4)δ









It is easy to observe that the following bidding profile is
an equilibrium of the above game that doesn’t involve
any weakly dominated strategies: b1 = b2 = 0, b3 =
δ, b4 = δ+. Thus, player 4 will marginally win with no
profit from the current auction (alternatively we could
have player 3 win with no profit).

Now we prove the induction step. Assume that it
is true for the i − 1. We know that if either player
1 or 2 wins the k − i item then whatever they do in
subsequent auctions, from the case 2 of the analysis,
player 4 will go for Z1 and Z2 and they will get 0 utility
in the last 3 auctions. Hence, in the i − 1 subsequent
auctions they will bid truthfully, making player 1 win
marginally at zero profit every auction. On the other
hand if they lose, by the induction hypothesis they will
lose all subsequent auctions leading them to utility of
≈ 2. Moreover, players 3 and 4 have the same exactly
utilities as in the base case, since they never acquire
any utility from the first k auctions. Thus the external
auction played at the k − i item is exactly the same as
the auction of the base case and hence has the same
bidding equilibrium.

Thus in the above Spe players 1 and 2 let some of
the players 3 and 4 win all the first k items. This leads
to an unbounded PoA.

4 Matroid Auctions

In this section we first consider a matroid auction where
each matroid element is associated with a separate
bidder, then in Section 4.1 we consider a problem that
generalizes matroid auctions and item auctions with
unit demand bidders.

4.1 Sequential Matroid Auctions Suppose that a
telecommunications company wants to build a spanning
tree over a set of nodes. At each of the possible links of
the network there is a distinct set of local constructor’s
that can build the link. Each constructor has a private
cost for building the link. So the company has to hold a
procurement auction to get contract for building edges
of a spanning tree with minimum cost. In this section,
we show that by running a sequential first price auction,
we get the outcome equivalent to the Vcg auction in a
distributed and asynchronous fashion.

A version of the well-known greedy algorithm for
this optimization problem is to consider cuts of this

graph sequentially, and for each cut we consider, include
the minimum cost edge of the cut. Our sequential
auction is motivated by this greedy algorithm: we run
a sequence of first price auctions among the edges in
a cut. More formally, at each stage of the auction,
we consider a cut where no edge was included so far,
and hold a first price sealed bid auction, whose winner
is contracted. More generally, we can run the same
auction on any matroid, not just the graphical matroid
considered above. The goal of the procurement auction
is to select a minimum cost matroid basis, and at each
stage we run a sealed bid first price auction for selecting
an element in a co-circuit.

Alternately, we can also consider the analogous
auction for selling some service to a basis of a matroid.
As before, the bidders correspond to elements of a
matroid. Their private value vi is their value for the
service. Due to some conflicts, not all subsets of the
bidders can be selected. We assume that feasible subsets
form a matroid, and hence the efficient selection chooses
the basis of maximum value. As before, it may be
simpler to implement smaller regional auctions. Our
method sequentially runs first price auctions for adding
a bidder from a co-circuit. For the special case of the
dual of graphical matroid, this problem corresponds
to the following. Suppose that a telecommunications
company due to some mergers ended up with a network
that has cycles. Thus the company decides to sell off
its redundant edges so that it ends up owning just a
spanning tree. The sequential auction we propose runs
a sequence of first price auctions, each time selecting an
edge of a cycle in the network for sale. If more than
one bidder is interested in an edge we can simply think
of it as replacing that edge with a path of edges, each
controlled by a single individual.

The main result of this section is that the above
sequential auction implements the Vcg outcome both
for procurement and direct auctions. To unify the
presentation with the other sections, we will focus here
on direct auction. In the final subsection, we will
consider a common generalization of the unit-demand
auction and this matroid auction. In the procurement
version, we make the small technical assumption that
every cut of the matroid contains at least two elements,
otherwise the Vcg price of a player could be infinity.
Such assumption was also made in previous work on
matroid auctions [5].

Theorem 4.1. In a sequential first price auction
among players in the co-circuit of a matroid (as de-
scribed above), subgame perfect equilibria in undomi-
nated strategies emulate the Vcg outcome (same allo-
cations and prices).



For completeness, we summarize some some defini-
tions regarding matroids and review notation.

A Matroid M is a pair (EM , IM ), where EM is a
ground set of elements and IM is a set of subsets of
EM with the following properties: (1) ∅ ∈ IM , (2) If
A ∈ IM and B ⊂ A then B ∈ IM , (3) If A,B ∈ IM
and |A| > |B| then ∃e ∈ A − B such that B + e ∈ IM .
The subsets of IM are the independent subsets of the
matroid and the rest are called dependent.

The rank of a set S ⊂ EM , denoted as rM(S), is the
cardinality of the maximum independent subset of S. A
base of a matroid is a maximum cardinality independent
set and the set of bases of a matroid M is denoted with
BM. the An important example of a matroid is the
graphical matroid on the edges of a graph, where a set
S of edges is independent if it doesn’t contain a cycle,
and bases of this matroid are the spanning trees.

A circuit of a matroid M is a minimal dependent
set. and we denote with C(M) the set of circuits of M.
Circuits in graphical matroids are exactly the cycles of
the graph. A cocircuit is a minimal set that intersects
every base of M. Cocircuits in graphical matroids
corresond to cuts of the graph.

Definition 4.1. (Contraction) Given a matroid
M = (EM , IM ) and a set X ⊂ EM the contraction of M
by X, denoted M/X, is the matroid defined on ground
set EM −X with IM/X = {S ⊆ EM −X : S ∪X ∈ IM}.

If we are given weights for each element of the
ground set of a matroid M then it is natural to define
the following optimization problem: Find the base
Opt(M) ∈ BM that has minimum/maximum total
weight (we might sometimes abuse notation and denote
with Opt both the set and its total weight). A well
known algorithm for solving the above optimization
problem is the following (see [22]): At each iteration
consider a cocircuit that doesn’t intersect the elements
already picked in previous iterations, then add its
minimum/maximum element to the current solution.

The most well known mechanism for auctioning
items to a set of bidders is the Vickrey-Clarke-Groves
Mechanism (Vcg). The Vcg mechanism selects the
optimal basis Opt(M). It is easy to see that the Vcg
price of a player i ∈ Opt(M), denoted as Vcgi(M),
is the valuation of the highest bidder j(i) that can
be exchanged with i in Opt(M), i.e. Vcgi(M) =
max{vj : Opt(M) − i + j ∈ IM}, or alternately
the above price is the maximum over all cycles of the
matroid that contain i of the minimum value bidder in
each cycle: Vcgi(M) = maxC∈C(M):i∈C mini6=j∈C vj .
To unify notation we say that Vcgi(M) = ∞ for a
bidder i /∈ Opt(M), although the actual price assigned
by the Vcg mechanism is 0.

The proof of Theorem 4.1 is based on an induction
on matroids of lower rank. After a few stages of the
sequential game, we have selected a subset of elements
X . Notice that the resulting subgame is exactly a
matroid basis auction game in the contracted matroid
M/X . To understand such subgames, we first prove
a lemma that relates the Vcg prices of a player in a
sequence of contracted matroids.

Lemma 4.1. Let M be a matroid, and consider a player
i∗ ∈ Opt(M). Consider a co-circuit D, and assume
our auction selects an element k 6= i∗, and let M′

be the matroid that results from contracting k. Then
Vcgi∗(M′) ≥ Vcgi∗(M) and the two are equal if
k ∈ Opt(M).

Proof. First we show that the VCG prices do not
change when contracting an element from the optimum.
From matroid properties it holds that for any set X :
Opt(M/X) ⊂ Opt(M). In this case Opt(M′) =
Opt(M/{k}) ⊂ Opt(M), which directly implies that
Opt(M′) = Opt(M) − {k}. Hence, {j : Opt(M) −
i∗+ j ∈ IM} = {j : Opt(M′)− i∗+ j ∈ I ′

M}, and thus,
Vcgi∗(M) = Vcgi∗(M′).

As mentioned in the previous section, the Vcg
price can also be defined as the maximum over all
cycles of the matroid that contain i∗ of the min-
imum value bidder in each cycle: Vcgi∗(M) =
maxC∈C(M):i∗∈C mini∗ 6=j∈C vj . Let C be the cycle that
attains this maximum in M. The element i∗ is depen-
dent on the set C \ {i∗} in M, and as a result i∗ is
dependent of the set C \ {i∗, k} in M′, hence there is
a cycle C′ ⊂ C in M′ with i∗ ∈ C′. This proves that
the Vcg price can only increase due to contracting an
element.

Now we are ready to prove Theorem 4.1.
Proof of Theorem 4.1 : For clarity, we assume

the values of the players for being allocated to be all
different. We will prove the theorem by induction on the
rank of the matroid. Let M be our initial matroid prior
to some auction. Notice that for any outcome of the
current auction the corresponding subgame is exactly a
sequential matroid auction on a contracted matroidM′.
The proposed auction for rank 1 matroids is exactly a
standard (no external payoffs) first price auction.

Let D be the co-circuit auctioned. Using the
induction hypothesis, we can write the induced game on
this node of the game tree exactly. For i ∈ D−Opt(M),
if he doesn’t win the current auction then by the
induction hypothesis, he is not going to win in any of
the subsequent auctions, and hence vii = vi and vji = 0
for j 6= i. For player a player i ∈ Opt(M) ∩D. Again



vii = vi and for j 6= i, we have that vji = vi−Vcgi(M/j)

if i ∈ Opt(M/j) and vji = 0 otherwise.
We claim that in all equilibria of this game, where

no player bids bi > γi := maxj v
i
i − vji (notice that

bidding above maxj v
i
i − vji is dominated strategy), a

player i ∈ Opt(M) wins by his Vcg price. Suppose
some player k /∈ Opt(M) wins the auction. Then,
there is some player j ∈ Opt(M) \ Opt(M/k). This
is not an equilibrium, as player has vj > vk, and hence
j could overbid k and get the item, since the price is
p ≤ vk < vj .

Next we claim that the winner i ∈ Opt(M) gets
the item by his Vcg price, and the winner is i ∈ D with
highest Vcg price. Suppose he gets the item by some
value strictly smaller than his Vcg price. If we can show
that there is some player t such that vtt−Vcgi(M) ≥ vit.
Let C and j be the cycle and element j that define the
Vcg price of i in:

Vcgi(M) = max
C∈C(M):i∈C

min
i6=j∈C

vj

Now, since |C ∩D| ≥ 2, there is some t 6= i, t ∈ C ∩D.
Notice that vt ≥ Vcgi(M), so if t /∈ Opt(M), then he
would overbid i and get the item. If t ∈ Opt(M), then
notice Vcgt(M) ≥ Vcgi(M), so again he would prefer
to overbid i and get the item. This also shows that some
player i whose Vcg price is not maximum winning by
at most his Vcg price is not possible in equilibrium.

At last, suppose the winner gets the item for some
price p above his Vcg price. Then bi = p+ and
there is some player j ∈ D such that bj = p. It
can’t be that j /∈ Opt(M), then his value vj can’t
be higher than then maximum Vcg price. So, it must
be that j ∈ Opt(M), then player i can improve his
utility by decreasing his bid, letting j win and win for
Vcgi(M/j) = Vcgi(M) < p (by Lemma 4.1).

The above optimality result tells us that Vcg can
be implemented in a distributed and asynchronous way.
Although the auctions happen locally, the final price of
each auction (the Vcg price) is a global property. It
should be noted, nevertheless, that this is a common
feature in network games in general. The previous
theorem concerns with the state of the game after
equilibrium is reached. If one considers a certain (local)
dynamics and believes it will eventually settle in an
equilibrium, the Vcg outcome is the only possible such
stable state.

4.2 Unit-demand matroid auction In this section
we sketch a common generalization of the auction
for unit demand bidders from section 3.2 and the
matroid auction of section 4.1. Suppose that the
items considered form the ground set of some matroid

M = ([m], IM) and the auctioneer wants to sell an
independent set of this matroid, while buyers remain
unit-demand and are only interested in buying a single
item.

We define the Sequential Matroid Auction with
Unit-Demand Bidders to be the game induced if in the
above setting we run the Sequential First Price Auction
on co-circuits of the matroid as defined in previous
section.

Theorem 4.2. The price of anarchy of a subgame per-
fect equilibrium of any Sequential Matroid Auction with
Unit-Demand Bidders is 2.

To adopt our proof from the auction with unit-
demand bidder to the more general Theorem 4.2 we
define the notion of the participation graph P(B)
of a base B to be a bipartite graph between the nodes
in the base and the auctions that took place. An edge
exists between an element of the base and an auction if
that element participated in the auction. Now the proof
is a combination of the proof of Theorem 3.2 and of the
following lemma.

Lemma 4.2. For any base B of the matroid M, P(B)
contains a perfect matching.

Proof. We will prove that given any k-element indepen-
dent set, there were k auctions that had at least one of
those elements participating. Then by applying Hall’s
theorem we get the lemma.

Let Ik = {x1, . . . , xk} be such an independent set
of the matroid. Let A−k = {A1, . . . , At} be the set
of auctions (co-circuits) that contain no element of Ik
ordered in the way they took place in the game and Ak

its complement. Let a1, . . . , at be the winners of the
auctions in A−k. Let r(M) be the rank of the matroid.

Since Ik is an independent set, it is a subset of some
basis and by the properties of co-circuits: for any xi ∈ Ik
there exists a co-circuitXi that contains xi and no other
xj . The sequence of elements (x1, . . . , xk, a1, . . . , at)
and co-circuits (X1, . . . , Xk, A1, . . . , At) have the prop-
erty that each element belongs to its corresponding co-
circuit and no co-circuit contains any previous element.
Hence, the set {x1, . . . , xk, a1, . . . , at} is an independent
set and therefore t+ k ≤ r(M). Since the total number
of auctions is r(M), |Ak| ≥ k.

Now the proof of Theorem 4.2.
Proof of Theorem 4.2 (sketch) : Using the last

lemma, there is a bijection between the elements allo-
cated in the efficient outcome and the co-circuits auc-
tioned. For a player i that is assigned an item j∗(i)
in the efficient outcome, let A(i) be the auction (co-
circuit) matched with j∗(i) in the above bijection. Now



if in the proof of Theorem 3.2 we replace any rea-
soning about the auction of item j∗(i) with the auc-
tion A(i), we can extend the arguments and prove that
p(A(i)) ≥ vi,j∗(i) − vi,j(i), where p(A(i)) is the value of
the bid that won auction A(i). Summing these inequal-
ities over the auctions completes the proof.
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A Iterated elimination of dominated strategies

First we define precisely the concept of a strategy profile
that survives iterated elimination of weakly dominated



strategies. Then we characterize such profiles for the
first-price auction with externalities using a graph-
theoretical argument.

Definition A.1. Given an n-player game define by
strategy sets S1, . . . , Sn and utilities ui : S1× . . .×Sn →
R we define a valid procedure for eliminating weakly-
dominated strategies as a sequence {St

i} such that for
each t there is i such that St

j = St−1
j for j 6= i,

St
i ⊆ St−1

i and for all si ∈ St−1
i \ St

i there is s′i ∈ St
i

such that ui(s
′
i, s−i) ≥ ui(si, s−i) for all s−i ∈

∏

j 6=i S
t
j

and the inequality is strict for at least one s−i. We say
that an strategy profile s survives iterated elimination
of weakly-dominated strategies if for any valid procedure
{St

i}, si ∈ ∩tS
t
i .

The concept above is very strong as different elim-
ination procedures can lead to elimination of different
strategies. This can possibly lead to no strategy (at
least no Nash equilibrium) surviving iterated elimina-
tion of weakly-dominated strategies. We show that the
first price auction game has equilibria that satisfies this
strong definition, which makes the equilibria a very ro-
bust prediction.

As a warm up, consider the first price auction
without externalities, i.e., vii = vi and vji = 0 for j 6= i
with v1 ≥ v2 ≥ . . .. It is easy to see that the set of
strategies surviving any iterated elimination procedure
is [0, vi) for player i > 1 and [0, v2] for player 1. Bidding
bi > vi is clearly dominated by bidding vi. By the
definition, bidding vi is dominated by bidding any value
smaller then vi, since by bidding vi, the player can never
get positive utility. After we eliminate bi ≥ vi for all
the players, it is easy to see that b1 = v2 dominates any
bid b1 > v2, since player 1 wins anyway (since all the
other players have eliminated their strategies bi ≥ vi).
The natural equilibrium to expect in this case is player
1 getting the item for price v2, which is a result of
b1 = v2+ and b2 = v2. However, b2 = v2 is eliminated
for player 2, but any strategy arbitrarly close to b2 = v2
is not.

This motivates us to pass to the topological closure
when discussing iterative elimination of weakly domi-
nated strategies for first price auctions:

Definition A.2. In a first-price auction with external-
ities, a bid bi for player i is compatible with iterated
elimination of weakly dominated strategies, if bi is in
the topological closure of the set of bids that survive any
procedure of elimination. In other words, for each δ > 0
there is a bid b′i that survives any procedure of elimina-
tion such that |bi − b′i| < δ.

Now, we are ready to characterize the set of Nash
equilibria that are compatible with iterated elimination.

In order to do that, we define an overbidding-graph in
the following way: for each price p, consider a directed
graph Gp on n nodes such that there is an edge from

i to j if vjj − p > vij , i.e., if player i were getting the
item at price p, player j would rather overbid him and
take the item. Now, notice that the graph Gp+ǫ is a
subgraph of Gp.

Let’s assume that all nodes have positive in-degree
and out-degree in G0. If there are nodes with zero in-
degree, simply remove the players that have in-degree
zero in G0 (which mean that they can’t possibly want
the item, i.e. they bidding zero is a dominant strategy).
If there are players with zero out-degree, then the
problem is trivial, since there are nodes for who we can
give the item and get an equilibrium with zero price.

Theorem A.1. The strategies for player i that survive
iterated elimination of weakly dominated strategies are
Si = [0, τi) where τi can be computed by the following
algorithm: begin with p = 0 and V = [n]. In each step,
if there is a node i ∈ V of in-degree zero in Gp[V ] (i.e.,
Gp defined on the nodes V ), then set τi = p and remove
i from V and recurse. If there is no such node, increase
the value of p until some node’s in-degree becomes zero.

Proof. Consider that the players are numbered such
that τ1 ≤ τ2 ≤ . . . ≤ τn. Now, we will prove by
induction that no element of [0, τi) can be eliminated
from the strategy set of player j ≥ i by recursive
elimination of weakly dominated strategies. And that
there is one procedure that eliminates all bids b ≥ τi for
player i strategy set.

For the base case, suppose there is some process
of iterated elimination that removes some strategy b ∈
[0, τ1) for player i, imagine the first time it happens in
this process and say that the strategy that eliminates it
is some b′. If b′ < b, consider the profile for the other
players where everyone plays some value between b′ and
b, and given that player i has positive in-degree in Gb,
suppose that the highest bid is submitted by a player j
such that (j, i) is an edge of Gb. Then clearly b generates
strictly higher utility then b′. Now, suppose b′ > b, then
b performs strictly better then b′ in the profile where all
the other players bid zero. Now, notice that all the bids
b1 > τ1 for player 1 are dominated and bidding b1 = τ1
is dominated by playing any smaller bid.

Now the induction step is along the same lines: We
know that no elimination procedure can eliminate bids
in [0, τk) for player k, k < i. Now, suppose there is some
procedure in which we are able to eliminate some bid
b ∈ [0, τi) for some player j ≥ i. Then again, consider
the first time it happens and let b′ be the bid that
dominates b. We analyze again two cases. If b′ < b.
consider a profile where the other players j′ ≥ i, j′ 6= j



bid between b′ and b where the highest bidder is a player
k such that the edge (k, j′) is in Gb. It is easy to see
that b outperforms b′ for this profile. If b′ > b, we can
use the same argument as in the base case. Also, given
that the strategies bj ≥ τj were already eliminated for
players j < i, clearly bi > τi is dominated by τi.

Corollary A.1. The bids bi ∈ [0, τi] are exactly the
bids that are compatible with iterative elimination of
weakly dominated strategies for the first price auction
with externalities.

Now, given the result above, it is simple to prove
that there are Nash equilibria that are compatible with
iterated elimination. Consider the algorithm used to
calculate τi. Consider that at point p, V , the active
edges are the edges in Gp[V ]. Now, in the execution
of the algorithm, we can keep track of the in-degree
and out-degree of each node with respect to active
egdes. Those naturally decrease with the execution of
the algorithm. Since in each step some edges become
inactive, there is at least one node such that its out-
degree becomes zero before or at the same time that
his in-degree becomes zero. So, for the corresponding
player i, there is one price p such that τi ≥ p, there
is an edge (j, i) in Gp′ [V ′], where p′, V ′ is the state of
the algorithm just before the out-degree of i became
zero. So, clearly τj ≥ p. Now, it is easy to see that
the strategy profile bi = p+, bj = p and bk = 0 for all
k 6= i, j is a Nash equilibrium and it is compatible with
iterative elimination.

In fact, the reasoning above allows us to fully
characterize and enumerate all outcomes that are a
Nash equilibrium compatible with iterated elimination:

Theorem A.2. The outcome of player i winning the
item for price p can be expressed as a Nash equilibrium
that is compatible with iterated elimination iff p ≤ τi,
player i has out-degree zero in Gp and there is some
player j with τj ≥ p such that the edge (j, i) is in Gp′

for all p′ < p.

B Formal definition of extensive form games

We provide in this session a formal mathematical de-
scription of the concepts described in session 3: We can
represent an extensive-form game via a game-tree,
where nodes of the tree correspond to different histories
of play. At each stage of the game, players make simul-
taneous moves, that can depend on the history of play
so far. So a player’s strategy in an extensive form game
is a strategy for each possible history, i.e., each node of
the tree. More formally,

• Let N denote the set of players, and let n = |N |

• A k-stage game is represented by a directed game
tree T = (V,E) of k + 1 levels. Let V t be the
nodes in level t, where V t denotes possible partial
histories at the start of stage t. So V 1 contains only
the root and V k+1 contains all the leaves, i.e., the
outcomes of the game. Note that the tree can be
infinite, if for example some player has an infinite
strategy set.

• for each v ∈ V \ V k+1, i ∈ N , a strategy set Si(v)
is the set of possible strategies of player i

• for each v ∈ V , the out-going edges of v correspond
to strategy profiles s(v) ∈ ×iSi(v), the outcome
of this stage when players play strategies s(v) =
(s1(v), . . . , sn(v)).

• for each i ∈ N , we have the utility function ui :
V k+1 → R, that denotes the utility of the outcome
corresponding to node v ∈ V k+1 for player i.

The pure strategy of a player consists of choosing
si(v) ∈ Si(v) for each node v ∈ V , i.e. a function
si : V → ∪vSi(v) such that si(v) ∈ Si(v). In other
words, it is a strategy choice for each round, given the
history of play so far, which is encoded by node v. A
strategy profile is a n-tuple s = (s1, . . . , sn). It defines
the actual history of play h = (h1, h2, . . . , hk),
where h1 = s(r) is the strategy profile played at the
root, and hi is the strategy profile played at the node
that corresponds to history h1, . . . , hi−1. Notice that h
corresponds to a leaf of the tree, which allows to define
the utility of i for a strategy profile:

ui(s) = ui(h(s))

We use subgame perfect equilibrium (Spe) as
our main solution concept. A subgame of sequential
game is the game resulting after fixing some initial
history of play, i.e., starting the game from a node v of
the game tree. Let uv

i (s) denote the utility that i gets
from playing s starting from node v in the tree. We say
that a profile s is a Spe if it is a Nash equilibrium for
each subgame of the game, that is, for all nodes v we
have:

∀s′i : u
v
i (si, s−i) ≥ uv

i (s
′
i, s−i).

Given a node v in the game tree and fixing si(v
′)

for all v′ below v, we can define an induced normal-
form game in node v by s as the game with strategy
space ×Si(v) such that the utility for player i by playing
s̃(v), s̃i(v) ∈ Si(v) is uv

i (si, s−i) where player i plays
s̃i(v) in node v and according to si(v

′) in all nodes v′

below v. Kuhn’s Theorem states that s is a subgame
perfect equilibrium iff s(v) is a Nash equilibrium on the
induced normal-form game in node v for all v.



The main tool we will use to analyse those games
is the price of anarchy. Consider a welfare function
defined on the leaves of the tree, i.e. W : V k+1 → R.
Given a certain strategy profile s and its induced history
h(s), the social welfare of this game play is given by
W (v) =

∑

i∈N ui(h(s)). We define the optimal welfare
as W ∗ = maxv∈V k+1 W (v), and the pure Price of
Anarchy (PoA) as:

PoA = max
s∈E

W ∗

W (s)

where E is the set of all subgame perfect equilibria.
There sequential auctions we study are m-stage

games and strategy space on each node v for player i
is a bid bi(v) ∈ [0,∞). In other words, the strategy of
each player in this game is a function that maps the bid
profiles in the first k − 1 items to his bid in the k-th
item. Their utility is the total value they get for the
bundle they acquired minus the price paid. The welfare
is the sum of the values of all players.

C Non-Existense of SPE in Multi-Item

Auctions

We give an example of a multi-item sequential auction
with no Spe in pure strategies. The example has
4 players and 5 items. The first two items X1, X2

are auctioned simultaneously first and the remaining
items are auctioned sequentialy afterwards in the order
W,Y, Z. Players 1 and 4 are single minded. Player 1 has
value v only for item Z and player 4 has value 2δ

3 +ǫ only
for item W . Players 2 and 3 have coverage submodular
valuations that are depicted in Figure 3. One can check
that the following allocation and prices constitutes a
walrasian equilibrium of the above instance: A1 =
∅, A2 = {X1, Z}, A3 = {X2, Y }, A4 = {W}), pX1

=
pX2

= δ/3, pY = v + δ/6, pW = 2δ/3. However, we
will show that there is no subgame perfect equilibrium
in pure strategies.

We will show that the subgame perfect equilibrium
in the last three auctions is always unique given the
outcome in the first two item auction and is such that
player 1 has a huge value for winning both X1, X2 and
almost 0 otherwise and player 3 has huge value for
winning any of X1 or X2 and almost 0 otherwise. Thus
ignoring players 2 and 4 since they have negligent value
for X1, X2 we observe that the first two-item auction is
an example of an AND and an OR bidder that is well
known to not have walrasian equilibria and hence pure
nash equilibria in the first price item auction.

So we examine what happens after any outcome of
the first two-item auction:

• Case 1: Player 1 won both X1, X2.

v2 :
δ
3

δ
3

v δ
2

X1

X2

Y

Z

v3 : v − δ
2 δ δ

3
2v
3

Y
W

X1, X2

Figure 3: Valuations v2 and v3.

In this case player 2 has a value of v+ 2δ
3 for Y and

a value of v + δ/2 for Z given that he loses Y . In
the Z auction player 2 will bid v. Hence, player 2
will gain a profit of δ/2 from the Z auction if he
loses Y . Moreover, the value of player 3 for W is
δ + δ/3.

– Case 1a: Player 3 won W . In this case the
value of 3 for Y is v − δ/2. Hence, the game
played at the Y auction is the following (we
ignore player 4):

[vji ] =





0 v − δ
2 0

δ/2 v + 2δ
3 δ/2

0 0 v − δ/2





Thus player 2 wants to win for a price of at
most v+ 2δ

3 − δ
2 . Player 3 will bid v− δ/2 and

player 2 will win. In the last auction player
2 will just bid δ/2. Hence, player 1 will get
utility v − δ/2, player 2 utility δ

2 + 2δ
3 and

player 3 utility 0.

– Case 1b: Player 3 lost W . In this case the
value of 3 for Y is v+δ/2 and the game played
is:

[vji ] =





0 v − δ
2 0

δ/2 v + 2δ
3 δ/2

0 0 v + δ/2





Thus player 3 now wants to win for a value
at most v + δ/2 and player 2 for a value
at most v + 2δ

3 − δ
2 . Hence, in the unique

no-overbidding equilibrium player 3 will win.
Therefore, player 1 will get utility 0,player 2
utility δ/2 and player 3 utility δ

3 .

Thus we see that at auction W the following game



is played:

[vji ] =









0 0 v − δ
2 0

δ
2

δ
2

δ
2 + 2δ

3
δ
2

δ
3

δ
3 δ + δ

3
δ
3

0 0 0 2δ
3 + ǫ









Players 1 and 2 will bid 0 and player 4 wants to
win for at most 2δ

3 + ǫ. Player 3 wants to win for at
most δ. Hence, in the unique equilibrium player 3
will win W . Consequently, player 2 will win Y and
player 1 will win Z. Thus, player 1 will get utility
v− δ

2 , player 2 utility 2δ
3 , player 3 utility 2δ

3 − ǫ and
player 4 utility 0.

• Case 2: Player 3 won at least one of X1 or X2.

In this case player 2 has a value of at least v + δ
3

and at most v+ 2δ
3 for Y and a value of v+ δ/2 for

Z given that he loses Y . In the Z auction player 2
will bid v. Hence, player 2 will gain a profit of δ/2
from the Z auction if he loses Y . Moreover, the
value of player 3 for W is δ.

– Case 2a: Player 3 won W . In this case the
value of 3 for Y is v − δ/2. Hence, the game
played at the Y auction is the following (we
ignore player 4):

[vji ] =





0 v − δ
2 0

δ/2 v + δ
3 or v + 2δ

3 δ/2
0 0 v − δ/2





Thus player 2 wants to win for a price of at
most v+ δ

3 − δ
2 . Player 3 will bid v− δ/2 and

player 2 will win. In the last auction player
2 will just bid δ/2. Hence, player 1 will get
utility v − δ/2, player 2 utility ≥ δ

2 + δ
3 and

player 3 utility 0.

– Case 2b: Player 3 lost W . In this case the
value of 3 for Y is v+δ/2 and the game played
is:

[vji ] =





0 v − δ
2 0

δ/2 v + δ
3 or v + 2δ

3 δ/2
0 0 v + δ/2





Thus player 3 now wants to win for a value
at most v + δ/2 and player 2 for a value
at most v + 2δ

3 − δ
2 . Hence, in the unique

no-overbidding equilibrium player 3 will win.
Therefore, player 1 will get utility 0, player 2
utility δ/2 and player 3 utility at least δ

3 .

Thus we see that at auction W the following game
is played:









0 0 v − δ
2 0

δ
2

δ
2

δ
2 + δ

3 or δ
2 + 2δ

3
δ
2

δ
3 or 2δ

3
δ
3 or 2δ

3 δ δ
3 or 2δ

3

0 0 0 2δ
3 + ǫ









Players 1 and 2 will bid 0 and player 4 wants to
win for at most 2δ

3 + ǫ. Player 3 wants to win for

at most δ − δ
3 . Hence, in the unique equilibrium

player 4 will win W . Consequently, player 3 will
win Y and player 2 will win Z. Thus, player 1 will
get utility 0, player 2 utility δ/2, player 3 utility at
least δ

3 and at most 2δ
3 and player 4 utility at least

ǫ and at most δ
3 + ǫ (according to whether player 2

won one of X1, X2 or not).

• Case 3: Player 3 didn’t win any of X1, X2 and
player 2 won some of X1, X2.

In this case we just need to observe that 2 expects
a profit of at most δ/2 from Z hence he will set a
price of at least v − δ/2 at the Y auction. Thus
player 3 expects to get utility at most 2δ from the
Y and W auctions.

Now we examine the existence of equilibrium in the
two-item auction. Both players 2 and 4 get utilities at
most 2δ from the Y,W and Z auctions and have at most
δ value for X1 and X2. Thus they will bid at most 3δ.
On the other hand player 1 has a utility of v− δ/2 from
subsequent auctions if he wins both items and utility 0
if player 3 wins some of them. Moreover, player 3 has
a utility at most 2δ from subsequent auctions in any
outcome, but has a value of 2v/3 + δ

3 for winning some
of X1 or X2. Hence, player 3 is willing to win some of
X1 or X2 at a price of 2v/3− 2δ. Since we assume that
δ → 0 we can ignore players 2 and 4 in the first auction.

If player 1 wins both items and both at a price
smaller than 2v/3 − 2δ then player 3 has a profitable
deviation to bid higher than that at one auction and
outbid 1. Thus if player 1 wins both items he must be
paying at least 4v/3− 4δ which is much more than the
utility he receives. Hence, this cannot happen.

Thus player 3 must be winning some auction. If
that is true then player 2 receives 0 utility in any possi-
ble outcome and since he has no direct value for X1 or
X2 he doesn’t won to win any of the auctions. More-
over, if player 3 bids more than 2δ in both auctions and
wins both auctions then he has a profitable deviation to
bid 0 in one of them since given that he wins one item
his marginal valuation for the second is 0. Thus in equi-
librium player 3 will bid less than 2δ in some of the two
auctions. Moreover, he is bidding at most 2v/3 + 2δ



in the auction he is winning. However, in that case
player 1 has a profitable deviation of marginally outbid-
ding player 3 in both auctions. Hence, player 3 winning
some auction cannot happen either at equilibrium and
therefore no pure nash equilibrium can exist in the first
round.

D Second vs First price in Sequential Auctions

In order to stress how essential is the design decision
of adopting first price instead of second price in the
sequential auctions1, we present two examples that show
how sequential second price auction fail to provide any
welfare guarantee even for elementary valuations. It is
important to notice that this happens even though we
restrict ourselves to equilibria where no player overbids
in any game induced in a node of the game-tree.
The second example is even stronger: even if we
restrict out attention to equilibria that remain after
iterative elimination of weakly dominated strategies of
all induced games, still no welfare guarantee is possible.

D.1 Additive Valuations Consider a sequential
auction of m items among n players using a sequential
second price auction, where each player has additive val-
uation vi : 2[m] → R+, i.e., vi(S) =

∑

j∈S vj({j}). It
is tempting to believe that this is equivalent to m in-
dependent Vickrey auctions. Using Spe as a solution
concept, however, allows the possibility of signaling.

Consider the following example with 3 players,
where the Price of Anarchy is infinite, which happens
due to a miscoordination of the players. Consider t+ 2
items {A1, . . . , At, B, C} and valuations given by the
following table:

A1 A2 . . . At B C
1 1 1 . . . 1 0 1
2 1− ǫ 1− ǫ . . . 1− ǫ 1 1− ǫ
3 δ δ . . . δ 1− ǫ 0

Now, notice that in each subtree, it is an equilibrium
if everyone plays truthfully in the entire subtree and
notice that under this players get only very small utility.
Now, consider the outcome where player 3 gets items
A1 . . . At, player 2 gets item B and player 1 gets item
C. This outcome has social welfare SW = 2 + tǫ while
Opt = t + 2. Now we argue that there is an Spe that
produces this outcome, showing therefoe that the Price
of Anarchy is unbounded.

In the game tree, in the path corresponding to
the equilibrium described above, consider the winner
bidding truthfully and all other bidding zero. Now, in

1or altenatively, how crucial the envy-free assumption in

second-price auctions is

all other decision nodes of the tree outside that path,
let everyone bid truthfully. It is easy to check that this
is a Spe according to the definition above.

Notice that this is a feature of second price. For
example, in the last auction, player 3 couldn’t have
gotten this item for free in the first price version, since
player 2 would have been overbidded him and got it
instead. Second price auctions have the bug that a
player can win an item for some price p, but some other
player to take the item, he may need to pay p′ > p
and it may make (as in the example) the equilibrium be
non-envy free.

D.2 Unit-demand players In this section we
present a unit-demand sequential second price instance
that exhibits arbitrarily high PoA. The instance we
present involves signaling behaviour from the players.
Moreover, the second price nature of the auction en-
ables players to signal for a zero price and as much as
they want, a combination that has devastating effects
on the efficiency.

va = 1 vb = 2 vc = 2viAi
= 1− ǫ

viBi
= δ

A∗ B∗Ai Bi

G∗

. . .. . .

Figure 4: Sequential Second Price instance with high
PoA. Auctions happen from left to right. If a bidder
is not connected to an item that implies 0 value. If a
bidder has a single value then that is his value for any of
the items he is connected to. Dashed lines mean 0 value
but imply that the bidder might bid at that auction
despite the 0 value.

The instance is depicted in Fig. 4 is an auc-
tion with 2k + 2 items auctioned in the order
A1, B1, A2, B2, . . . , Ak, Bk, A∗, B∗ and n + 3 player
called 1, 2, . . . , k, a, b, c. The main component of the in-
stance is gadget G∗, which comprises of the last two
auctions of the game. As a subgame G∗ has two possi-
ble subgame perfect equilibria: In the first equilibrium,
which we denote Spe1, b wins A∗ at price 1 and c wins
B∗ at price 0. In the second Spe c wins A∗ and b wins
B∗. Hence, player b’s utility is 1 unit higher in Spe1.

In what follows we construct a Spe of the whole
instance that survives iterated elimination of weakly
dominated strategies and exhibits unbounded price of
anarchy. We describe what happens in the last 2
external auctions Ak, Bk. If player b or c win at auction
Ak and at 0 price then in last two auctions Spe1 is



implemented. If player k wins auction Ak then Spe2
is implemented. If player k loses and sets a positive
price then if either b or c win at auction Bk then Spe1
is implemented otherwise Spe2. Now using backwards
induction we see that if player c has no incentive to bid
at any of Ak, Bk. Moreover, if player b wins Ak at any
price then at Bk he has a utility of 2 for winning and
1 for losing. Thus at Bk he bids 1 and player k bids δ.
Thus, at Ak player b has a utility of 1− ǫ for winning at
any price. Hence, he will bid 1− δ > 1− ǫ. Now, player
k knows that he is going to lose at Ak, and if he sets a
positive price he is going to also lose at Bk. On the other
hand if he sets a price of 0 at Ak then none of b, c have
any incentive to outbid him on Bk which will give him
a utility of δ. Thus, player k will bid 0 on Ak. We can
copy this behaviour by adding several auctions Ai, Bi

happening before A∗, B∗. At each of these auctions
player b is going to be winning auction Ai at a price of 0
and the corresponding player i will be winning auction

Bi. This leads to a PoA = k(1−ǫ)+4
kδ+4 = O(1−ǫ

δ ) which
can be arbitrarily high.


