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Abstract
We propose MiniCrypt, the first key-value store that rec-
onciles encryption and compression without compromising
performance. At the core of MiniCrypt is an observation on
data compressibility trends in key-value stores, which en-
ables grouping key-value pairs into small key packs, together
with a set of distributed systems techniques for retrieving,
updating, merging and splitting encrypted packs. Our eval-
uation shows that MiniCrypt compresses data by as much
as 4 times with respect to the vanilla key-value store, and
can increase the server’s throughput by up to two orders of
magnitude by fitting more data in main memory.

1. Introduction
Many applications today capture an immense amount of
private data about their users [30], such as their purchase
history, social interactions, and communication. This pri-
vate data is stored at servers running highly performant data
stores [2–4, 6, 12, 14, 17, 23, 25]. Unfortunately, leakage
of confidential data from these servers is a significant prob-
lem [13].

Applications need data storage systems that are able
to preserve data confidentiality and handle big data work-
loads efficiently. Many big data stores employ compres-
sion [12, 24] to significantly increase performance, some-
times by up to an order of magnitude [6, 23]. Compression
is effective at providing performance gains because it en-
ables servers to fit more data in main memory, thus decreas-
ing the number of accesses to persistent storage. To protect
data confidentiality, a natural solution is to encrypt the data
stored on servers [9, 19, 22, 32] and keep the key at the
client. Therefore, an ideal system that aims to protect confi-
dentiality and preserve performance should incorporate both
encryption and compression into its design.
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Unfortunately, existing systems choose either compres-
sion or encryption – but not both – because there is a funda-
mental tension between encryption and compression. First,
compressing encrypted data (which is randomized) is not vi-
able because pseudorandom data is not compressible. Sec-
ond, while encrypting compressed data works well in some
systems, it is problematic in the database setting. Compress-
ing a single row of data typically provides limited com-
pression ratio, while compressing multiple rows together
means the server cannot maintain fine-grained access to
these rows/attributes and makes it more difficult to maintain
correct semantics. There are a range of effective database
compression techniques [5, 8, 21] that also permit querying
data, but their layouts leak significant information about the
data, as we discuss in Section 2.4.

In this paper, we propose MiniCrypt, the first key-value
store that achieves the benefits of both compression and en-
cryption. Our system model considers a cloud-hosting con-
text, in which a hosting service (the server) hosts a key-value
store, and a company/organization (the customer/client) uses
the hosting service. The client has a symmetric key using
which it encrypts the values stored on the server. To ensure
that MiniCrypt’s design is generic and not tied to a specific
key-value store, we designed MiniCrypt as a layer on top of
unmodified key-value stores. This makes MiniCrypt easier to
adopt into different key-value stores and enables MiniCrypt
to benefit from their performance and fault-tolerance. Our
solution leverages only two basic primitives likely to exist in
many key-value stores: a sorted index on the primary key as
well as a single-row conditional atomic update mechanism.

MiniCrypt starts with an empirical observation on data
compressibility trends in key-value stores. It is well known
that a better compression ratio can be achieved by com-
pressing more data. However, encrypting large compressed
chunks is problematic for key-value stores. Since the server
cannot decrypt, data processing has to be done on the client
side, thus requiring the client to retrieve a large amount
of data even if it only needs to operate on a single row.
Our empirical observation is that by compressing together
only relatively few key-value rows, one can achieve a high
compression ratio as compared to compressing the entire
dataset. As we discuss in Section 3, we observed this be-
havior for a wide range of datasets that could be stored in



key-value stores, such as data from Github, genomics, Twit-
ter, gas sensors, Wikipedia, and anonymized user data from
Conviva (internet-scale video access logs) [1]. For example,
our compression experiments on the Conviva dataset showed
that compressing 1 row yields a compression ratio of 1.6,
compressing 50 rows yields a compression ratio of 4.6, and
compressing 8.7 million rows (the entire dataset) yields a
compression ratio 5.1. We observed that compressing only
a small fraction (0.00057%) of the total number of rows al-
ready provides 90% of the maximum compression ratio.

Based on this compression ratio observation, MiniCrypt
packs together few key-value pairs, compresses, and en-
crypts them using the shared encryption key. Clients now re-
trieve and update packs instead of individual key-value pairs.
However, this simple design runs into a significant chal-
lenge: encrypting packed rows removes the server’s ability
to manage key-value pairs and to maintain correct semantics
because the server cannot decrypt. In a system without en-
cryption, the server is able to decompress the data to read or
update a key-value pair. Maintaining these properties turns
out to be a challenging distributed systems problem, which
we address through a set of new techniques.

The first challenge results from the fact that the server
can no longer serve or update individual keys since it cannot
decrypt encrypted packs. For example, how can the server
fetch the correct pack based on a given key? What happens
when concurrent clients update different keys that happen to
reside in the same pack? If not carefully designed, concur-
rent clients may write over each other’s updates. Fortunately,
these problems can be addressed using systems techniques.
First, we provide a simple mapping scheme that allows the
server to identify the pack containing the key, while avoiding
the overhead of looking up the ID of the pack in a separate
server table or index. We also propose an algorithm for pre-
venting blind overwrites based on a lightweight single-row
synchronization primitive, which is provided by many exist-
ing key-value stores. MiniCrypt’s writes are slower because
each write consists of a read of the encrypted pack, followed
by a synchronized write. To alleviate this problem, we pro-
vide a separate mode that targets a very common workload –
appends-only workload (e.g. time-series data) – and provide
a tailored protocol that achieves a write throughput close
to that of the underlying key-value store in this mode. We
call this new mode the APPEND mode, and the original mode
of operation the GENERIC mode (because it can handle any
workload).

MiniCrypt’s second challenge is the server’s difficulty in
managing encrypted key packs. As more rows get inserted,
packs might become too large and bottleneck the network.
Therefore, MiniCrypt introduces a pack split protocol in the
GENERIC mode to safely split large packs. We also provide
a merge protocol in the APPEND mode that helps to merge
append key-value pairs into packs and achieve fast write
throughput. However, since the server cannot split or merge,

pack management must be designated to the clients. Merge
and split operations act on multiple rows of data, but many
existing key-value stores do not provide sophisticated trans-
actional mechanisms (e.g., most stores do not support trans-
actions over multiple keys). We provide new algorithms to
merge and split packs using the same single-row synchro-
nization primitive mentioned above.

We implemented MiniCrypt on top of Cassandra [25]
without modifying its internals. Our performance evalua-
tion shows that MiniCrypt delivers significant compression,
while keeping the data encrypted: for example, on the Con-
viva dataset, MiniCrypt compresses the data by a factor of
4.3; this ratio is close to the maximum one of 5.1, which
can be obtained by compressing all the data together into
one unfunctional blob. We show that MiniCrypt can increase
the server’s throughput significantly as compared to both an
encrypted baseline (Cassandra with single row encryption,
but without MiniCrypt’s compression) and a vanilla ver-
sion (Cassandra with no encryption) by fitting more data in
main memory. For example, on the Conviva dataset, the read
throughput increases by up to 100 times (for disk-backed
servers) and 9.2 times (for SSD-backed servers) compared
to the encrypted baseline, and even up to 6.2 times (for SSD-
backed servers) compared to the vanilla version. Moreover,
MiniCrypt’s packing delivers particularly good performance
for range queries, which are common for time-series data: 5
to 40 times faster than the encrypted baseline.

2. Overview
2.1 Model and threat model
We adopt a cloud-hosting model, consisting of two roles:
the hosting service (the server, which can be distributed),
and the company/organization that uses the hosting service
(the customer). The customer consists of one or more client
machines within the same trust domain; these share a single
encryption key, which is not available to the server. The
server hosts the encrypted key-value store, and the clients
issue queries to the server.

MiniCrypt protects against an attacker who manages to
gain access to the server, can see all server side data (in-
cluding messages from the clients), and attempts to exfil-
trate the data. MiniCrypt considers a passive attacker, which
follows the MiniCrypt protocol (e.g., a curious system ad-
ministrator). In particular, it does not corrupt the data and
does not provide incorrect query results. We also assume that
the clients are trusted and allowed to see all server-side data
(e.g., because the customer is the data owner). In this paper,
we are concerned only with protecting the data from a server
attacker. As a consequence, we assume that the attacker can-
not control any client and hence cannot execute any queries
through the client (e.g., insert, delete, get).

Many applications implement finer grained client access
control to ensure that certain clients have access to only
part of the data. Such access control can be implemented
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Figure 1: System architecture for a typical encrypted key-value store and MiniCrypt. A lock indicates an encrypted item.
Orange indicates a compressed item. MiniCrypt’s values consist of compressed and encrypted packs.

in various ways in a MiniCrypt setup and is complementary
to MiniCrypt. For example, the customer can add a proxy
between the clients and the server and the proxy acts as
a MiniCrypt client: the proxy restricts access to queries
and query results to the clients. Another way is to let the
clients maintain different keys for each group of data with
the same access permissions, essentially running a separate
MiniCrypt instance for each group. Since pack compression
is done on the client side, the client can pack data with
different permissions in separate packs. Although both of
these designs can be easily integrated into MiniCrypt, client
access control is not the focus of MiniCrypt – MiniCrypt is
concerned with protecting the data from the cloud provider.

Finally, access patterns (e.g., which keys are being re-
trieved) or timing attacks are out of scope for MiniCrypt.

2.2 Goals
MiniCrypt has the following design goals. First, MiniCrypt
aims to provide end-to-end encryption for the values in the
key-value store. Second, MiniCrypt aims to provide signif-
icant compression, which promises better performance in
many situations. For example, MiniCrypt should achieve
higher read throughput than a standard encrypted service
without compression, because MiniCrypt can fit more data
in memory. Third, MiniCrypt aims to work as a layer on
top of unmodified key-value stores. This makes it easier to
adopt MiniCrypt into different key-value stores and enables
MiniCrypt to benefit from their performance and fault toler-
ance. Finally, MiniCrypt aims to provide eventual consis-
tency guarantees, which is often utilized in big data key-
value stores due to its performance.

2.3 System API
MiniCrypt exposes the basic key-value store API, as well as
support for range queries. Range queries (in the form of get
(low, high)) are common for time-series big data [11, 27].
MiniCrypt supports the following API:

Function Description
get (key) returns value associated with key

put (key,val) sets the value for key to val

delete (key) deletes the record with key key

get (low, high) returns all the (key, value) pairs
where low ≤ key ≤ high

2.4 Strawman designs
Compression is a widely studied topic in databases [5, 6, 8,
21]. We briefly discuss two compression strawman designs
and show their limitations.

The first approach is utilizing compression techniques
that allow queries to be run on the compressed data [5, 6, 21].
Directly adding encryption will leak significant information
about the data due to the data layout and the data access
patterns. For example, run-length encoding (RLE) [5], com-
monly used in column-oriented databases, encodes runs of
values (a contiguous sequence of the same values) together.
Ten consecutive rows with the value “female” are encoded
as (“female”, 10). One possible way to integrate encryption
is to encrypt the run value (e.g., “female”) separately, while
leaving the run length (e.g., 10) in plaintext. This allows the
server to answer a get (key) query, during which it can
use the run length information to return the correct value.
However, this arrangement easily leaks important informa-
tion such as data frequency. For example, if the column is
gender (F/M) or letter grades (A, B, C) and is sorted by this
value, the server-side attacker can learn which row has what
grade or gender by observing the run lengths that are stored
in the plaintext.

Dictionary encoding [8] is another common compression
technique. The clients share a compression table that maps
uncompressed values to compressed codes. To compress, the
clients look up specific values in this table and construct the
correct compressed version. To decompress, the clients refer
to the same shared table and translate the compressed values
back into the correct uncompressed text. The advantage of
this design is that it combines compression and encryption
without introducing the complexity of packs. However, this
approach has significant disadvantages. First, dictionary en-
coding works well for some columns (such as columns with
few distinct values), but it does not work well in general.
As an example, we ran this technique on Conviva data and
found that, even though the compression rate was very high
for some columns, the overall compression ratio was only
1.6. Second, each client needs to use the compression table
for both reads and updates. If the table is stored on the server
side, each client must do extra reads in order to decompress
and compress, which will reduce the read throughput as well
as leak significant information through access patterns on



this shared table. Storing the table at the client imposes per-
formance overhead. The compression table can be very big:
for example, for Conviva, the table was 80% of the entire
compressed data. Finally, as data gets modified, the contents
of the table change over time. The database must provide a
protocol for synchronizing the compression table stored on
different clients, adding further complexity. Not updating the
dictionary table might result in an out-of-date dictionary ta-
ble that wastes space storing past encodings.

MiniCrypt aims to be a generalized system that can han-
dle both reads and updates on a variety of data types while
providing strong confidentiality guarantees. Our packing
technique is independent of workloads, data types, and com-
pression algorithms.

2.5 MiniCrypt’s design overview
Figure 1 summarizes MiniCrypt’s architecture in compari-
son to a regular key-value store that provides encryption in a
straightforward way. This is a logical baseline for MiniCrypt
because it provides similar security. The data in MiniCrypt
is stored in packs, where each pack is a group of key-value
pairs, compressed together and encrypted. The keys in a
pack represent a contiguous range in a sequence sorted on
the keys.

Each pack has a packID. We choose the packID to be
the smallest key in the pack, and assume there is a sorted
index on the packID. This means that to find a given key, we
simply need to retrieve the pack with the largest ID smaller
than or equal to the key. Each pack also has some metadata
information such as a hash of its value and status messages
(to be introduced in later sections).

To read a key, a client fetches the corresponding pack,
decrypts and decompresses it. To write a key, a client updates
a pack. As keys get deleted or inserted, some packs become
too small or too large; in this case, MiniCrypt merges or
splits them to maintain performance.

Security guarantees. MiniCrypt protects each pack with a
strong and standard encryption scheme (AES-256 in CBC
mode), which provides semantic security. The clients never
send the decryption key to the server. Thus, this encryption
protects the values in the original key-value store. The en-
cryption leaks nothing about the contents of the pack, except
for the size of each compressed pack. While MiniCrypt re-
veals the size of a compressed pack, it does not reveal the
sizes of the original rows within the pack, which are revealed
by the vanilla system. MiniCrypt enables reducing the infor-
mation leaked by the size of the pack by padding the en-
crypted packs to a tier of a few possible sizes. MiniCrypt al-
lows the customer to specify the padding tiers, such as small-
medium-large or exponential scale, and pads each pack to
the smallest tier value that is at least the pack size. This strat-
egy provides a tradeoff between compression and security.
Note that, in our threat model, an attacker does not have the
ability to issue write queries to the storage through the client,

which prevents the attacker from doing injection attacks that
exploit pack size.

The keys in a key-value store are often not sensitive (e.g.,
random identifiers, counters, timestamps). However, if the
keys are deemed sensitive, then the packIDs should be en-
crypted since a packID reveals the lowest key in the pack.
Note that the rest of the keys are automatically encrypted
by MiniCrypt as part of a pack. MiniCrypt supports packID
encryption only in GENERIC mode and for a system that
does not perform range queries, as follows. MiniCrypt ap-
plies a pseudorandom function [20] to the packIDs, keyed
using a different symmetric key for each table, and treats
that as the new packID. While this is a deterministic en-
cryption scheme, it is essentially as secure as randomized
encryption because the keys in a key-value store are unique.
This determinism allows MiniCrypt to proceed as normal by
maintaining a sorted index on the encrypted keys and allows
the clients to directly query on them. MiniCrypt does not
support range queries or APPEND mode in this case, because
there is currently no encryption scheme that enables ranges
while providing semantic security and being efficient in our
setting. A number of different schemes for range queries
on encrypted data exist, trading off either security or ef-
ficiency. For example, order-preserving encryption (OPE)
schemes [10, 31] enable efficient range queries on encrypted
data in exchange for revealing the order of packIDs to the
server. In the rest of the paper, we treat packIDs as un-
encrypted for simplicity, but our evaluation uses encrypted
packIDs. Finally, MiniCrypt does not hide the number of
rows/packs in the database or the structure of the database
(e.g., number of tables).
2.5.1 The underlying key-value store
To achieve the goal of working on top of unmodified key-
value stores, MiniCrypt should not rely on specialized or
expensive primitives that are not supported by most key-
value stores. For example, most key-value stores do not
support transactions covering multiple keys. The few that do
(e.g. Redis and Cassandra) support them with limitations and
significant performance overhead.

In fact, MiniCrypt can work on top of any key-value
store that supports an ordered index on keys and provides
a conditional atomic update (update-if) primitive for a single
row. The first property enables MiniCrypt to support range
queries and to efficiently locate the packID for a given key,
as discussed in Section 4.1 and Section 4.2. Most key-value
stores support an index on the key and many of these enable
ordered clustering or range queries on this key.

The second property is a lightweight transactional prim-
itive that executes an update on a single row at the server
only if the condition is true. This primitive can be of the
form “UPDATE ... IF condition” or “INSERT ... IF NOT
EXISTS”. This type of transaction is relatively lightweight
because (1) it operates on a single row and (2) it contains
only one statement as opposed to a multi-statement proce-



Mode Type of write Pack op. Perfor. note

Generic all types split put uses
(get, delete) update-if

Append append, put, merge fast
no delete appends

Table 1: Comparison between MiniCrypt’s modes, including
the pack maintenance operation.

dure. Most key-value stores support such transactions. For
example, in Cassandra, these are called lightweight transac-
tions [18].

MiniCrypt maintains the semantics of the underlying
store for eventual consistency, which is commonly used in
the key-value store setting. MiniCrypt also benefits from the
fault tolerance and replication mechanisms of the underlying
store.
2.5.2 Modes of operation
MiniCrypt provides two modes of operation: GENERIC and
APPEND. Table 1 compares the two modes.

The GENERIC mode applies to any application: clients
can update, insert, and delete key-value pairs. Writes use the
update-if primitive to prevent clients from overwriting each
other’s updates. When a pack becomes too large, it is split.
Since supporting both split and merge at the same time is
overly complex, MiniCrypt does not support merging packs
in this mode.

The APPEND mode supports applications in which writes
are appends of new keys, and there are no deletes. Many
big data applications are append-only. For example, a com-
mon pattern for big data is time-series data [11, 27], where
the keys are timestamps, while values are typically actions or
measurements. In this mode, MiniCrypt delivers high perfor-
mance for appends, essentially as fast as the underlying sys-
tem. Appends get inserted directly into the key-value store
and not into packs. Then, background processes running on
clients merge these keys in packs.

3. Key packing
In this section, we empirically justify the observation that
compressing a relatively small number of key-value pairs to-
gether yields a compression ratio that is a significant fraction
of the compression ratio obtained when compressing an en-
tire dataset into one unfunctional blob.

The six datasets we examined are: anonymized Conviva
time-series data on user behavior, genomics data where each
entry consists of an identifier and a partial sequence of the
genome, time-series Twitter data consisting of tweets and
metadata, time-series data from gas sensors, Wikipedia files,
and Github files from the Linux source code. We exam-
ined 5 different compression algorithms (bz2, zlib, lzma,
lz4, snappy), which provide different tradeoffs in compres-
sion ratio and speed. For each pair of dataset and compres-
sion algorithm (30 pairs), we plotted the compression ratio

against the number of rows in the pack. We first re-format
each dataset into key-value pairs, then group the values into
packs by adjusting a maximum threshold (in bytes) for each
pack and calculate the average number of values present in
each pack for a given pack size.

Figure 2 shows the results. Due to space constraints, we
include here the graphs for Conviva and genomics with a
table summary of the other datasets. The x-axis shows the
average number of values, while the y-axis shows the com-
pression ratio. We can see from Figure 2 that the compres-
sion ratio grows very fast as the number of rows increases,
then quickly plateaus close to the maximum compression ra-
tio achieved when compressing the entire dataset. For exam-
ple, for Conviva, compressing 1 row yields a compression
ratio of 1.6, compressing 50 rows yields a compression ratio
of 4.6, and compressing the entire dataset of 1.5 million rows
yields a compression ratio of 5.1. Hence, a relatively small
number of rows per pack suffices for a significant compres-
sion ratio. We explain how MiniCrypt determines the pack
size for a given dataset and system parameters in Section 8.3.

As surveyed in [16], there is a sharp tradeoff between
compression ratio and the speed of compression/decompres-
sion. For example, bz2 and lzma have high compression ra-
tios but poor compression/decompression speed, which af-
fects client latency in MiniCrypt. Considering this tradeoff,
we chose to use zlib in MiniCrypt as it achieves both a
good compression ratio and good compression/decompres-
sion speeds.

4. Read operations
In this section, we describe read operations in MiniCrypt,
which work the same in both the GENERIC and APPEND

modes.

4.1 Get
Since key-value pairs are packed and encrypted in
MiniCrypt, clients can only fetch at the granularity of a pack.
A question is: how does a client know the packID given to
the key of interest? One option is to maintain a table map-
ping keys to packIDs at the server. This strategy is undesir-
able because it increases server side space usage and query
latency, and is difficult to keep consistent with the main data
table during concurrent updates and client failures.

Instead, MiniCrypt enables clients to fetch the correct
pack without knowing the packID. Since the packID is cho-
sen to be smaller than or equal to the smallest key in the
pack, the pack corresponding to a key k is the pack with the
highest ID from all the packIDs that are at most k. This
query can be run efficiently at the server because the under-
lying key-value store keeps an ordered index on packID. To
find the right pack, the server simply locates k by retriev-
ing the packID immediately preceding it. Once the client re-
ceives the result of this query, it decrypts and decompresses
the pack. It then scans the content and retrieves the value for
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(b) Genomics

Total Avg Max Pack
All Num of Value Comp Size

Datasets Rows Size Ratio (rows)
Conviva 8.7M 1.1KB 5.1 25

Genomics 1.6M 1.3KB 4.8 14.5
Twitter 2.5M 5.5KB 8.3 4.2

Gas Sensor 4.2M 135B 3.4 75
GitHub 50.8K 11.6KB 4.5 2.5

Wikipedia 202.5K 13.2KB 3.1 1.4

Figure 2: Compression ratios for different datasets. Note the x-axis is log-scale. The table summarizes the trend for each dataset
using the zlib compression algorithm. For each dataset, it lists the total number of rows, the average size of the value in each
row, the maximum compression ratio achieved (on the entire dataset), and the average number of rows that must be in a single
pack to achieve a compression ratio that is ≥ 75% of the maximum compression ratio.

the key k. Figure 3 presents the overall procedure. The hash
is a hash of the encrypted pack.

1: procedure get(key)
2: Fetch data from server:

3:
SELECT packID, value, hash FROM table

WHERE packID ≤ key

ORDER BY packID DESC LIMIT 1
4: Decrypt and decompress value
5: Return the entire row

Figure 3: get pseudocode.

4.2 Range queries
Range queries fit easily into MiniCrypt’s design. In fact,
for large range queries that touch many keys, MiniCrypt
utilizes less network bandwidth than a regular key-value
store because MiniCrypt compresses multiple keys together
based on the query range. MiniCrypt performs a range query
on packIDs using a key range [low, high]. Since a packID
indicates the lowest key in the pack, a MiniCrypt client
fetches the packIDs in [low, high]. If low is not equal to
the smallest packID in the results, then MiniCrypt needs to
fetch the pack that potentially contains keys from low to
the smallest packID. The packs that contain key low and
key high will need to be filtered by the MiniCrypt client as
they can contain keys outside of the range [low, high]. The
pseudocode for range queries is in Figure 4.

1: procedure get(low, high)
2: Fetch range from server:

3:
res← SELECT packID, value, hash

FROM table
WHERE low ≤ packID ≤ high

4: Decrypt and decompress each value in res

5: if low < smallest packID in res then
6: Run get (low) and add to res

7: Filter out keys not in [low, high] from res

8: return res

Figure 4: get by range pseudocode

5. Writes in the generic mode
In the GENERIC mode, clients can perform any type of write
from the API in Section 2.3. MiniCrypt additionally supports
pack splitting because a pack may grow too large if there
are repeated inserts, and retrieving overly large packs will
increase bandwidth usage and hurt performance.

5.1 Put
Writes are more challenging than reads in MiniCrypt. Since
the server cannot update an individual key in a pack due to
encryption, each client has to retrieve an entire pack to exe-
cute a write. The client updates the value of the specific key
in the pack, compresses the pack, encrypts it and writes it
back to the database. However, if designed naı̈vely, concur-
rent clients may overwrite each other’s updates if they are all
modifying the same pack.

To prevent such contention, we rely on the update-if prim-
itive explained in Section 2.5.1. We use this primitive and
hashes to ensure that clients do not overwrite changes from
each other as follows. Consider a client C1 who wants to up-
date a key in a pack. The client reads the pack and records its
hash h. C1 then updates the contents of the pack and issues
an update-if at the server, specifying that the value should
be updated only if the hash of the pack is still h. If the hash
is no longer h, it means that another client C2 has recently
updated the pack. Thus, C1 should not perform the update
because it can overwrite C2’s update. Instead, C1 will retry
the update by performing a read of the current pack value.
Figure 5 presents the overall procedure.

Another possible design that preserves eventual consis-
tency is to do a blind write of the pack without any update-if
mechanism. However, a read of the pack is still necessary to
decrypt and modify the pack. As we show in the evaluation
section, the extra read incurs significantly more cost than the
update-if mechanism. Hence, we chose to use update-if be-
cause its cost on top of the extra read is not significant and it
preserves better the original data store’s semantics.



1: procedure put(key, value)
2: repeat
3: (packID, pvalue, h)← get (key)
4: if # keys in pvalue > max keys then
5: Do split as in Section 5.2. continue
6: Inside pvalue, set key’s value to value

7: Compress and encrypt pvalue
8: Compute its hash phash

9:
ok← UPDATE table SET value = pvalue,

hash = phash

WHERE packID = packID IF hash = h

10: until ok
Figure 5: put pseudocode

5.2 Split
Pack splitting is useful when there are inserts in the system
that cause packs to grow large.
When to split a pack. Whenever a client runs put or
delete, the client first checks the size of the retrieved
pack after reading the pack. If the pack contains more than
max keys, the client proceeds to split the pack. The param-
eter max keys is a system-wide constant, and can be set to
1.5 ·n, where n is the desired number of keys in a pack. The
client can proceed with the original operation once a split
successfully completes.
How to split a pack. Figure 6 shows the pseudocode for
split (packID, pack, h), where pack and the hash h are
the retrieved values from reading packID. During split,
the client divides the pack by creating a left pack from the
first half of the keys (rounded up) and a right pack from the
rest of the keys. Note that we require this operation to be
deterministic so that every client that reads the same pack
will divide the pack in exactly the same way. The client then
compresses each pack and encrypts it as usual. It inserts the
right pack and then the left pack, both using the update-if
primitive.

The split procedure is safe in the presence of multiple
clients as well as client failures. For example, two clients,
A and B, may attempt to split the same pack. These clients
will read the same pack, and then split in a deterministic
way, resulting in the same left and right packs. If client A
inserts the new right pack into the database first, client B
will attempt to insert the same right pack. The second insert
operation will fail because client A’s insert has succeeded.

What if a client fails in the middle of a split operation?
As an example, let’s assume that a client fails its split right
before step 5 of Figure 6. This means there are two copies
of the new right pack’s rows in the database: one copy in the
newly inserted right pack, and one (stale) copy in the original
pack. This is still safe because a new client that attempts to
read/modify those keys will retrieve the newly inserted right
pack instead of the stale copies. Any client that attempts to
modify the original pack will execute the split procedure.
Note that the new right pack will not be overwritten since we
do not delete packs.

1: procedure split(packID, pack, h)

2:
Assemble the right half of the pack: right pack with
rightID and hash rh

3:
INSERT INTO table VALUES (rightID,

right pack, rh) IF NOT EXISTS
4: Assemble left pack with hash lh

5:
UPDATE table SET value = left pack, hash = lh

WHERE packID = packID

IF hash = h

Figure 6: split pseudocode
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Figure 7: APPEND mode timeline.

5.3 Delete operations
delete is similar to put except that the key is removed from
the pack. The ID of the pack does not change even when
the lowest key in the pack gets removed. We do not remove
packs when they become empty. The protocol for removing
an pack is very complex because a split might reinsert a right
half of the pack that was deleted.

5.4 Correctness
Recall that our notion of correctness was that MiniCrypt
maintains the eventual consistency and liveness of the un-
derlying key-value store. Due to space constraints, we only
provide an intuition here.

The algorithm is safe when the operations are read-only.
Updates that do not split the packs are also safe because
of the hash check. The situation is trickier when there are
concurrent updates with split operations. However, any
client that issues a put or delete to a pack that has a
number of keys greater than max keys will block, since that
client will choose to run split first. This allows concurrent
modifications to safely co-exist with split. Furthermore,
synchronization mechanisms such as “insert if not exists”
and “update-if” ensure that concurrent splits on the same
pack are safe. A client that is delayed during its split will
not overwrite changes made after the split finished (due to
other clients) to either of the two resulting packs. Finally,
the liveness property is maintained because a client will not
be stuck in an infinite loop — at least one live client will
succeed to do a put or complete a split.

6. The APPEND mode
In APPEND mode, data is inserted into the system in order of
roughly increasing keys. Clients can read keys, but no keys
are updated or deleted once a certain time has elapsed since a
key’s first insertion. This mode fits applications whose writes
are appends and enables these writes to be very fast. There
are many APPEND mode use cases. For example, a common



Epoch eEpoch e-1 Epoch e+1
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Time
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Figure 8: APPEND mode: an illustrated timeline showing
the key constraints in each epoch. Let k1.x be the first key
in epoch x, and kmin.x be the minimum key in epoch x.
The epoch time is designed to be large enough to provide
guarantees that k1.e+1 is less than all keys in epochs e + 2
and beyond. This implies that kmin.e+1 is also less than all
keys in epochs e + 2 and beyond. We can also guarantee
that kmin.e is greater than all keys in epochs less than e− 1,
since k1.e is greater than all keys in those epochs. From this,
we can guarantee that all keys between kmin.e and kmin.e+1

occur in e− 1, e and e+ 1.

pattern for big data is time-series data [11, 27], where the
keys are timestamps while the values are actions or events.

Let us define concretely MiniCrypt’s assumption in this
setting. First, MiniCrypt assumes that the keys are roughly
inserted in order, but not in a perfectly increasing manner.
MiniCrypt allows for a time lag in which keys do not appear
(to get operations) in increasing order and requires that
there is an upper bound on this lag denoted as T∆. Let key
k be a key inserted at time tk. The assumption is, for every
key k, that no key less than k is inserted beyond tk + T∆;
similarly, no key greater than k is inserted before tk − T∆.

What is T∆? T∆ should be a conservative upper bound
on the sum of the relevant time bounds, which include a
bound on the time lag in which keys can arrive out of order
(which could be due to the client), a bound on the network
transfer time (the time it takes for a client request to reach
the servers), and a bound on the server side time delay for
new updates to be propagated to all available servers.

In the following section, we first present a basic design for
the APPEND mode. We follow up with various improvements
that can be made on the base design.

6.1 Design
The put operation is slow in the generic mode because
MiniCrypt clients perform an extra read per put and employ
synchronization (using update-if ) to avoid overwrites due
to concurrent put operations. To enable put to be fast in
APPEND mode, MiniCrypt executes a put directly into the
database (by compressing and encrypting a single row), and
arranges for the clients to merge these inserts into packs
in the background. In principle, this is possible because no
key is updated or deleted once a certain amount of time
has elapsed since it was first inserted, and a new key is
not inserted between two such keys. In append mode, put
should be very fast compared to regular put operations that
do not operate on packs.

The main challenge that we face in APPEND mode is that
the merge process can be expensive, but must keep the same
rate as puts. Clients must be in charge of merging packs
since the server cannot decrypt data. This means that the
clients must read and delete a lot of keys, and that multi-
ple clients might attempt to merge the same keys (poten-
tially causing pack overwrites) while leaving other keys un-
merged.

MiniCrypt addresses this challenge through a careful de-
sign of the system in APPEND mode. First, MiniCrypt groups
keys into monotonically increasing epochs, which are useful
in enabling batch processing. Each insert or update belongs
to a single epoch. In many key-value stores, retrieving an en-
tire epoch (e.g., if it is a partition as in Cassandra) and delet-
ing the entire epoch is much faster than performing many
server-side operations for reading and deleting each key.

We create a service called the epoch management (EM)
service to manage epochs and the associated metadata. The
EM service maintains a global epoch that is periodically in-
creased. Each epoch is EPOCH seconds long. Clients period-
ically synchronize their local epochs with the global epoch.
We define Tdrift to be the maximum amount of time any
client can be out of sync with the current global epoch.
To maintain correctness, we need to make sure that EPOCH
> T∆+Tdrift. In practice, Tdrift is very small compared to
EPOCH (we set it to be 10 seconds in our experiments), and
we require any new/recovered client to synchronize its local
epoch before doing an insertion.

Clients merge at the granularity of epochs in a determinis-
tic way: sort the keys in an epoch and group them in packs of
a given size starting with the smallest key. Thus, even if two
clients concurrently merge the same epoch, the results are
the same. The merged packs are placed in a special epoch
0, and the keys in the merged epochs are eventually deleted.
Figure 7 shows the timeline of merge operations.

One way for the clients to merge epochs is to randomly
pick an epoch to merge. Even though determinism ensures
correctness, this method is inefficient because clients might
do wasted work by merging the same epochs. MiniCrypt
attempts to avoid having many multiple clients merge the
same epoch by allowing the EM service to assign epochs
to clients so that only one client is merging an epoch. If a
client fails, the EM service will assign new clients to those
potentially unmerged epochs.
6.1.1 The EM service
For availability, the EM service runs on the server. The EM
does not see the contents of the packs, but only manages
information about what client should merge what packs;
hence, hosting the EM on the server does not pose a security
issue within our threat model.

The EM maintains three pieces of information: the stats
table, the clients table, and g epoch, which we explain
below. All this information is stored in the server database,



so the EM is essentially a client of the underlying key-value
store, and requires no changes to this store.

The stats table contains an entry per epoch of the form:
epoch ID, client ID (the client that is in charge of merg-
ing the epoch), and status (current status of epoch, could
be NOT MERGED, MERGED, or DELETED). When a new client
comes online, the client updates the clients table on the
server by inserting its client ID and its local timestamp. Each
client periodically refreshes that timestamp to indicate that it
is still alive. The EM service periodically reads the clients
table to assign clients to epochs, and to make sure that cur-
rently active clients are still alive. If a client times out, the
EM service will scan through the stats table and assign all
unmerged epochs with the failed client’s ID to new clients.

The EM also maintains g epoch, the current global epoch
number, and updates it once every every EPOCH seconds.
6.1.2 Put
A put operation in APPEND mode is simply a single-row in-
sertion of the key-value pair. When a client wishes to exe-
cute a put, it looks at its locally stored variable c epoch for
the current global epoch. The client loosely synchronizes the
c epoch variable with the server-side g epoch by periodi-
cally querying g epoch. In MiniCrypt, we adjust the period
to be short enough so that c epoch is at most one epoch be-
hind of g epoch. The client uses (c epoch, key) as the
new key and inserts ((c epoch, key), value) into the
table, where value is compressed and encrypted.
6.1.3 Get
A get operation in APPEND mode is similar to the GENERIC
mode get. A client first queries epoch 0 using the GENERIC
mode query method. If the key is not found in the retrieved
pack, the client retrieves the stats table, which additionally
contains the minimum key for each epoch. The client finds
the epoch with the largest “minimum key” that is smaller
than the queried key. Let this epoch be e. Since the keys
can be inserted roughly out of order, the actual record could
be in either epoch e or e − 1 (but not beyond e − 1 since
each epoch is long enough to cover T∆ + Tdrift). The client
will execute get for at most two epochs. Note that due to
concurrent merges, one could miss the key if that key is
merged right before either of the queries. Therefore, if both
reads miss, the client performs an extra read of epoch 0 to
attempt to find the key. Note that there are still cases where
the key exists but is not found partly due to the fact that the
underlying key-value store is itself eventually consistent, so
the client must retry after a delay.
6.1.4 Merge
Each client’s merge process periodically reads the stats ta-
ble to find epochs that the client is responsible for. Consider
a client that is responsible for merging epoch e. Because of
the loose epoch synchronization on the client side and the
fact that key inserts are also only roughly increasing in or-
der, we cannot take keys from epoch e, order by key, and di-

rectly merge them into packs. We still wish to maintain the
pack semantics – that each pack uses the minimum key as
its pack id, and that all key-value pairs reside in the correct
pack. An APPEND mode get should be able to use a range
query to retrieve the correct pack for a query key once that
key-value pair has been inserted. Therefore, the merge pro-
cess begins by reading back all key-value pairs from e−1, e,
and e+1. We use the minimum key from epochs e, e+1 (de-
noted kmin.e, kmin.e+1), as markers for deciding which keys
to merge: all key-value pairs from e − 1, e, e + 1 with keys
that are greater than or equal to kmin.e but less than kmin.e+1

are grouped together and merged. Once the correct key-value
pairs are retrieved, the merging process is easy: we simply
order every key-value pair by key, then split them into packs
based on a pack threshold. These packs are then inserted into
epoch 0. After the packs have been inserted, the client up-
dates the stats table with a status that the epoch has been
merged by setting status to MERGED.

Each client also periodically deletes epochs. An epoch e
can be safely deleted if its status is MERGED and epochs e−1
and e+ 1 are either DELETED or MERGED. After deletion, e’s
status is set to DELETED.

6.2 Fault tolerance for the EM
There need only be one EM machine running at a time be-
cause the job of the EM is light. For reliability, we distribute
the EM service into multiple replicas. In our design, we as-
sign each server replica an EM instance. One of these in-
stances is the master EM, which is in charge of modifying
the stats table and updating the global epoch. To survive
EM master failures, the server contains an entry EMreplica

identifying which replica is the master EM. The only task of
the other EM replicas is to ping the master replica periodi-
cally to check if the master is alive.

If a replica believes the master is down, it updates
EMreplica to designate itself as the master; this update is
performed with an update-if, and thus relies on the underly-
ing store’s lightweight transactional mechanism to agree on
the next replica to run the EM service. Hence, every update
to g epoch and the other EM data structures is performed
using an update-if. This makes our design safe even if mul-
tiple EM replicas believe they are masters. We assume that
the EM replicas’ clocks are roughly synchronized (using a
protocol such as NTP [29]), which means that multiple mas-
ters can safely update the global epoch by checking its local
timestamp with the timestamp of the g epoch. Since there
is a further timing overhead from synchronization, the epoch
time needs to be adjusted appropriately. Second, our merge
protocol is deterministic, which means that it is safe even if
multiple clients attempt to merge the same epoch.

6.3 Correctness
We provide an intuition for the correctness of APPEND

mode. MiniCrypt provides eventual consistency guarantees
because all replicas will eventually reach the same state af-



ter updates stop. MiniCrypt’s protocols are also correct. The
writes are regular single-key inserts, thus inheriting the cor-
rectness of the underlying system. The merge process pre-
serves correctness for three reasons. First, there are no con-
current put and delete operations because clients only
merge epochs that are two epochs older than g epoch. We
carefully choose the epoch time to ensure that the inserts/up-
dates have settled and that the values will not change fur-
ther (essentially becoming immutable). Second, merge op-
erations by two clients on the same epoch result in the same
outcome because the merge operation is deterministic. Since
the client always reads the stats table (executing a read
that reads back the latest status) before attempting to merge
epochs, it will never attempt to merge a partially deleted
epoch because the epoch’s status is always set to DELETED

before the actual deletion begins. Finally, the merge proto-
col first inserts keys in epoch 0 before deleting them; get-s
are not affected because a get queries epoch 0 as well as
unmerged epochs.

Figure 8 also shows an explanation of our append mode’s
correctness through an epoch timeline analysis.

7. Implementation
We implemented MiniCrypt in approximately 5000 lines of
C++ code on top of an existing key-value store, Cassan-
dra [25]. Cassandra is a widely used open-source key-value
storage system that is both scalable and highly available. Our
implemented interface does not make any internal modifica-
tions to Cassandra, and simply calls Cassandra’s C++ driver.
We used zlib to compress packs and OpenSSL AES-256-
CBC to encrypt them.

Cassandra uses consistent hashing to distribute its data.
Primary keys in Cassandra consist of a partition key and
optional clustering keys. To find a particular piece of data,
Cassandra simply hashes the partition key. Cassandra does
not support range queries directly on the partition key, but
clients can order rows within a partition based on the clus-
tering keys. This allows for range queries within a Cassandra
partition. MiniCrypt sorts data in descending order to opti-
mize for get queries.

To support a generic key-value store interface, MiniCrypt
makes some small adjustments to fit Cassandra’s design. For
a key-value pair (key, value), MiniCrypt takes key and
hashes it to a hash value. Using this hash value, MiniCrypt is
able to assign the keys to N partitions. The default number of
hash partitions is 8, though the user may adjust this param-
eter. Therefore, the primary key used in Cassandra is a key
pair (part key, key) where part key = SHA256(key)

mod N. Within each hash partition, the data is ordered by
key. If a user wishes to perform get(k), MiniCrypt will
hash k to get a partition number, then use the get operation
described in Section 4.1. For range queries, MiniCrypt has to
make a range query request to each partition. In addition to
a generic interface, MiniCrypt also has the ability to support

a compound primary key (partition key, clustering

key) (similar to what Cassandra supports). The primary key
used in this situation is key pair (part key, key) where
part key = SHA56(partition key) mod N.

8. Evaluation
Our experiments were conducted on Amazon EC2. All
benchmarks were run on a small cluster of 3 c4.2xlarge
instances, and each instance has 15 GB of memory and 8
cores. The SSD experiments were run with 2 provisioned
SSD drives per instance. The disk experiments were run with
2 magnetic drives per instance. The Cassandra replication
factor was set to 3. All benchmarks use the Conviva dataset
row values [1], consisting of approximately 1100 bytes of
anonymized customer data. All experiments use one 8-byte
integer as the key, and one Conviva row as the value. Un-
less indicated otherwise, all MiniCrypt experiments (in both
APPEND and GENERIC modes) set pack size to 50 rows.

We compare the performance of MiniCrypt with a base-
line encrypted client. The baseline embodies a typical en-
crypted system that gives confidentiality guarantees by en-
crypting each row individually. This client has similar secu-
rity to MiniCrypt, but it does not have the compression ben-
efits of MiniCrypt. Nevertheless, we also use the same com-
pression algorithm on each row before encrypting it to give
this client an advantage. The compression ratio for single
rows is roughly 1.6. Additionally, we compare MiniCrypt
with a vanilla Cassandra client that uses no encryption and
no compression for the 100% read and range query bench-
marks.

8.1 Read performance
We ran a modified YCSB read workload on a small three-
instance cluster. We pre-loaded data into Cassandra and ran
a 100% uniform read/range query workload on tables of
different sizes. We compare MiniCrypt with a baseline en-
crypted client that compresses and encrypts each row sepa-
rately, as well as a vanilla Cassandra client. The system was
warmed up for 5 minutes for SSDs, and 10 minutes for disks.
After warmup, each experiment was run for 60 seconds.
8.1.1 Point queries
Figure 9 plots the maximum server throughput (achieved
by saturating the server with as many clients as possible)
against varying overall dataset sizes. The same experiment
was run with both SSD and magnetic disks.

We first compare MiniCrypt with the encrypted baseline
client. When the dataset’s size is small, both MiniCrypt and
the baseline client fit the data in memory. The baseline client
has a higher maximum throughput than MiniCrypt because
the latter is retrieving more data and does extra processing
(decompression, decryption) on the client. As the dataset
size is slowly increased, the baseline client cannot fit in
memory anymore. Once it starts accessing persistent stor-
age for reads, the throughput drops significantly. Because
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Figure 9: Point queries on (a) SSD (b) disk; range queries on (c) SSD (d) disk
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100% write
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Figure 11: APPEND
mode 100% write
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Figure 12: APPEND mode
100% write, long run
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Figure 13: APPEND mode
50% read, 50% write

MiniCrypt achieves higher data compression ratio, the same
dataset that does not fit in memory for the baseline client
still fits in memory for a MiniCrypt client. Thus, MiniCrypt
continues to maintain high throughput until the compressed
data can no longer fit in memory. In this situation, MiniCrypt
is able to achieve roughly 100x performance gain over the
baseline client when the server is backed by disk, and 9.2x
performance gain when the server is backed by SSD. If both
clients cannot fit data in memory anymore, MiniCrypt still
manages to maintain good performance for a while because
a large majority of the data it accesses is still in memory.
For larger data sizes, we expect a crossover point where the
baseline client becomes better than MiniCrypt because the
query overhead starts to be dominated by accesses to persis-
tent storage. MiniCrypt is weak in this scenario because it
accesses an entire pack for a single point query. Compared
to the SSD graph, the disk graph has much sharper drops.
This behavior is expected because disks have a significantly
lower read throughput for uniform access than SSDs.

MiniCrypt is also able to achieve roughly 6.2x perfor-
mance gain over the vanilla Cassandra client (SSD). The
vanilla client’s graph is similar to the encrypted baseline’s
graph, except shifted to the right. Since Cassandra utilizes
compression on the server side, it is able to compress plain-
text value to a certain extent. However, the compression ra-
tio Cassandra achieves is not as good as that of MiniCrypt.
These graphs show that MiniCrypt provides a significant
throughput increase for a significant range of data sizes.

To compare latency numbers for both MiniCrypt and
the baseline, we ran the same 100% read benchmark on
SSD for a MiniCrypt client and a baseline client (both of

which are single threaded) on a database size of 5 GB.
This latency measurement is advantageous for the baseline
client because its data fits in memory. The baseline achieves
1.019 ms per query, and MiniCrypt achieves 1.199 ms per
query. MiniCrypt’s extra latency gains come from the extra
processing on the client.
8.1.2 Range queries
Range queries are very common in many workloads. For ex-
ample, time series data (such as session logs) are frequently
append-only and immutable when inserted. The logs are
later retrieved by time range. The Conviva analytical query
workload also retrieves customer data within a time range,
where the range can be as short as one hour and as long as
one week.

MiniCrypt’s design makes range queries very efficient be-
cause MiniCrypt orders all key-value pairs and groups them
into packs. For a point query, the space overhead is (pack
size / compression ratio). For range queries (especially large
scans that touch many records), the bandwidth overhead is
reduced. For example, if the number of records queried is
significantly greater than the pack size, the baseline client
will have more bandwidth overhead than MiniCrypt (by a
factor of C, where C is the ratio of MiniCrypt’s pack com-
pression to a single row’s compression).

Our range query experiments are based on YCSB’s short
ranges workload. Each query selects a key k uniformly
from the keyspace, and attempts to query all items between
(k − 1000, k]. Figure 9 shows that MiniCrypt consistently
experiences a significantly higher maximum range query
throughput compared to both the encrypted baseline client
and the vanilla client, both when the data fits in memory



and when it does not. MiniCrypt is able to achieve up to 5x
performance gain over the encrypted baseline client. Note
that the vanilla client is slightly slower than the encrypted
baseline client in the 100% range query experiment for small
database sizes. This is due to the vanilla client being bottle-
necked by the network. The vanilla client may achieve com-
pression in memory, but still has to return the result in un-
compressed format. The baseline encrypted client is able to
achieve some compression for a single row, and can there-
fore return the result in the compressed format as well. As
the size of the database increases, disk becomes more of a
bottleneck, and the vanilla client and the encrypted baseline
client converge to same throughput.

These experimental observations align with our analysis.
Since our range is 1000 records, MiniCrypt is able to achieve
much better performance because the compressed data has
a higher compression ratio. When data can no longer fit in
memory, the performance drops because of disk accesses.
The drop is more significant for disk than for SSD.

8.2 Write performance
Generic mode. In GENERIC mode, each write has two over-
heads: an extra read and a lightweight transaction (update-
if ). Figure 10 shows the result of running 100% uniform
random writes on a pre-loaded 10 GB database, with the y-
axis on a log scale. Each experiment ran for 120 seconds.
The baseline client is fast because it is able to execute blind
writes. MiniCrypt GENERIC mode with update-if is slow, but
is mainly dominated by the extra read while the usage of the
lightweight transaction introduces further stress to the sys-
tem. This experiment justifies our decision to use the update-
if mechanism because it gives much better guarantees of the
system’s semantics. Even if we revert the system to do blind
writes, each write still requires an extra read, which is where
the performance loss is coming from. Figure 10 also shows a
skewed workload that is generated using a Zipfian distribu-
tion. The Zipfian parameter is set to 0.2 (with 0 being pure
Zipfian, and 1 being uniformly random). The skew has al-
most no effect on the write performance.
Append mode. Our append mode writes increase the per-
formance of put by several orders of magnitude. We ran two
sets of experiments in MiniCrypt APPEND mode: modified
YCSB 100% write and 50% read/50% write. Under APPEND
mode assumptions, all writes are actually inserts where in-
serted keys are roughly increasing. Each experiment is run
for 120 seconds (except for the long 100% write).

Write-only. We start with an empty database for both the
encrypted baseline and MiniCrypt. Figure 11 compares the
baseline client with MiniCrypt in APPEND mode. Compared
to Figure 10, MiniCrypt is able to keep up with the baseline
client’s put speed much better because put in APPEND mode
does not have an extra read and does not use update-if. The
difference between MiniCrypt’s and baseline’s throughput
is due to the overhead of the merge process. This overhead
is not visible when the number of clients is small, but it
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Figure 14: Pack size versus maximum throughput.

appears when the number of clients increases. The merge
process has to read back inserted keys, as well as re-insert
them (though in a compressed format). This interferes with
regular inserts because of both disk reads and extra insertion
costs. MiniCrypt settles to about 40% of maximum write
throughput achieved by baseline client.

Figure 12 shows the performance of MiniCrypt for a long
run (approximately 10 minutes). We scale up the number of
clients to 72, which corresponds to the right most data point
in Figure 11. This graph plots cumulative number of keys
against time. The baseline client line shows cumulative num-
ber of keys inserted during the 10 minute run. MiniCrypt has
three different lines: “insert”, “merge”, and “delete”. Insert
indicates the cumulative number of keys inserted during the
run; “merge” is the total number of keys merged from the
inserted keys; “delete” is the total number of keys deleted.
This graph shows that the merge process is able to keep up
with key insertions, albeit at a lower insertion rate than that
of the baseline client.

Read/write mix. The read/write mix workload is aimed
to emulate one of YCSB’s “read-most-recent” workloads,
which is a common case when a workload inserts new
data. All of the runs were executed on a pre-loaded 70 GB
database. We adjust an “interval” parameter that indicates
the range of the keys read. For example, an interval of 5 GB
will allow the clients to read a uniformly random key from
the most recently inserted 5 GB worth of data. Both the base-
line client and MiniCrypt were warmed up for 5 minutes be-
fore each run. Each experiment runs for 120 seconds.

Figure 13 shows MiniCrypt’s performance for a 50%
reads and 50% writes workload. Since writes are faster than
reads, the baseline’s performance settles to a point that is
higher than the baseline’s performance in Figure 9 (a). The
performance of MiniCrypt APPEND falls off as the size of
the query interval increases because the merge process also
needs to read recently inserted values. If more values are
read into memory in the normal benchmark, the two pro-
cesses will interfere with each other.

We also benchmarked the latency of the append
MiniCrypt client as compared to the baseline client (again
using single-threaded clients) on 5 GB of data. The baseline
achieves a latency of 1.103 ms per read query, and 0.718
ms per write query. MiniCrypt achieves a latency of 1.743
ms per read query, and 0.781 ms per write query. The writes
are very fast for both clients because both execute appends,
while MiniCrypt’s read is slower because it may have to do
more work if an initial attempt to read misses.



8.3 Determining the pack size
Writing an equation for the optimal pack size is not feasible
because there are too many factors that affect this choice.
Instead, MiniCrypt provides a tool to empirically determine
a good pack size. This tool takes in a representative dataset
and workload and can generate a graph of throughput plot-
ted against various pack sizes. MiniCrypt then chooses the
pack size that provides the highest throughput. Figure 14
shows running YCSB 100% uniform read workload for 50
GB of Conviva data. In our experiments, we noticed con-
sistently that the optimal pack size was the following: the
smallest pack size for which the data fits in memory, namely,
argminn{compratio(n) · data size < memory size}, where
compratio(n) is the compression ratio obtained when com-
pressing a pack of size n.

We recommend using MiniCrypt when all or most of the
data fits in memory when compressed by MiniCrypt (i.e., fits
in memory on each machine), but would not fit in memory
without MiniCrypt. We show in the previous sections that
there is a significant data size range when this is the case. If
a significant fraction of the data does not fit in memory, we
do not recommend using MiniCrypt.

8.4 Network bandwidth
MiniCrypt’s network bandwidth overhead can be determined
by (# of rows in each pack / pack compression ratio). In our
experiments, network bandwidth did not become a bottle-
neck. We expect MiniCrypt to be used in a setting where the
network is not the bottleneck.

9. Related work
We now discuss other related work in addition to the straw-
man designs described in §2.4.
Key-Value Stores. Some key-value stores (e.g., Cassan-
dra [25] and MongoDB [3]) compress and then encrypt the
data at rest (in permanent storage). However, the decryp-
tion key is available to the server so that the server can de-
crypt and decompress the data when a client requests a key.
This strategy does not protect against a server compromise
(e.g., hacker, administrator of the server) because the at-
tacker can get access to the decrypted data by compromising
the server-side key. On the other hand, if a client inserts data
encrypted with a key unavailable to the server, the compres-
sion mechanisms in these systems become ineffective due
to the pseudorandom properties of the encryption. In com-
parison, MiniCrypt provides a significant compression ratio
even in this case.

A recent system, Succinct [6] supports compression for
a key-value store, while enabling rich search capabilities.
However, Succinct does not support encryption. Adding en-
cryption directly on top of Succinct would cause significant
data access pattern leakage.
Encrypted databases. A number of recent proposals in
databases support queries on encrypted data [7, 32, 33].

However, encryption introduces a significant storage over-
head compared to the unencrypted data (e.g., 5 times larger
for [32]). These systems do not support compression while
executing queries on encrypted data. As presented in the
MiniCrypt evaluation, querying on data that does not fit in
memory will cause a significant performance hit.
Compressed databases. Compression is a common tech-
nique explore in databases [5, 6, 8, 15, 21, 26]. We discuss
some simple strawman designs that utilize these techniques
in Section 2.4. MiniCrypt is a generalized system that does
not rely on a particular compression algorithm – users can
choose any algorithm that fits their application requirements.

MiniCrypt differs from these two types of databases in
two main ways. First, it focuses on NoSQL stores and
does not support the more generic SQL operations. Sec-
ond, MiniCrypt achieves both data confidentiality through
encryption and a significant compression ratio.
File systems. There is previous work on designing encrypted
file systems [9, 19, 22, 28] to protect data confidentiality
from an untrusted server. One can compress a file before
encrypting it. However, as discussed, compressing a single
key-value pair alone does not provide good performance.

10. Conclusion
We presented MiniCrypt, the first big data key-value store
that reconciles encryption and compression. MiniCrypt
makes an empirical observation about data compression
trends and provides a set of distributed systems techniques
for retrieving, updating, merging and splitting encrypted
packs while preserving consistency and performance. Our
evaluation shows that MiniCrypt can increase the server’s
throughput by up to two orders of magnitude.
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