IEE Irish Signals and Systems Conference, Dublin, June 28-30, 2006

Hardware - Software Implementation of Public-Key
Cryptography for Wireless Sensor Networks

Gerard Murphy1

Aidan Keeshan® Rachit Agarwa13

Department of Microelectronic Engineering,
University College Cork,
Cork,
Ireland

o d murphy@student.ucc.ie ° a.keeshan@student.ucc.ie
rachit.agarwal@ue.ucc.ie *e.popovici@ucc.ie

E-mail:

Abstract - Security in wireless sensor networks is currently provided
through symmetric key cryptography. Although the low
computational complexity involved in private key algorithms is
advantageous, session keys must be embedded in the sensor nodes
before the nodes can be deployed. Protocols are also necessary to
ensure synchronization of keys between the devices on a network.
These protocols require significant communication and storage
overhead. The limitation of such a cryptosystem is that it is not
possible to guarantee the confidentiality of the session keys.

It is commonly perceived that public key algorithms are slow,
consume a lot of power and require a significant amount of
architectural overhead. In this paper we show that it is possible to
implement public key algorithms on resource constrained sensor
node platforms. Using a hardware/software codesign approach, we
have successfully mapped a public key cryptosystem based on
Rabin’s scheme onto the motes developed by Tyndall National
Institute. Our implementation focuses on efficient architectures that
execute the public key algorithms using minimal resources.

Keywords — Rabin’s Scheme, public-key cryptography, wireless
sensor networks

INTRODUCTION key cryptography, parties

Emanuel Popovici 4

Interest in wireless sensor networks has increased
dramatically in recent years due to the vast range of
possible applications for the technology. It is
expected that wireless sensors will soon be
incorporated into medical, personal and military
applications on a large scale. Distributed embedded
systems that can communicate wirelessly have the
potential to behave far more intelligently than
isolated nodes. Due to the potentially sensitive nature
of communications between sensor nodes, the
confidentiality and the integrity of data must be
assured. Both can be achieved by encrypting the
communications.

Security in wireless sensor networks is currently
provided through private key cryptography. Private-
key cryptosystems need complicated key-scheduling
algorithms to establish symmetric keys. In private

communicate must agree on a secret symmetric key.
This is currently achieved by embedding session
keys within the sensor nodes before they are
deployed. In this scenario, the capture of a single
node by an adversary may compromise the security
of the entire network.

It is widely believed that the complexity cost of
public-key algorithms make them unsuitable for
resource constrained applications. In this paper we
propose a public-key cryptographic architecture
based on Rabin’s scheme [1] that provides efficient
encryption of data. Using public-key cryptography
we can eliminate the necessity for predetermined
session keys.

In communications, the original message before
encryption is referred to as the plaintext (P) and is
usually of a fixed length. In public-key cryptography
an entity generates a pseudo-random private key and

IEE Irish Signals and Systems Conference, Dublin, June 28-30, 2006

a corresponding public-key. The public-key is not
secret and can be used by anyone to encrypt
communications intended for the entity associated
with that public key. After encryption the resulting
ciphertext (C) can be sent over an insecure channel,
but only the entity that generated the keys can
decrypt the ciphertext. The private key is used to
decrypt the communications and is known only by
the entity that generated the keys. This process is
shown in Fig. 1.

Base Station

Sensor
Node
Unsecured
Plaintext Channel

Source (P)

Decryption
Dp(O)=P
Key
Generation

Encryption
E(P)=C

\npmblic key

Fig. 1: Public Key Cryptography in Sensor Networks

It is usual in sensor network applications that the
sensor nodes need only encrypt communications and
not decipher them. Our implementation exploits this
detail by utilizing a public-key scheme which has a
very efficient encryption algorithm. It is possible to
incorporate our public key architecture into a hybrid
cryptosystem for applications were decryption on the
nodes is necessary. The public key encryption
algorithm can be used to establish symmetric session
keys, which can then be used with a private key
cryptographic algorithm to encrypt and decrypt
communications.

II RABIN’S SCHEME

The security of Rabin’s scheme is inherent in the
difficulty of factorizing large numbers and is
therefore similar to the security of RSA with a
modulus of the same size. The size of the modulus
determines the security of the cipher. RSA is the
standard encryption algorithm used in public key
cryptographic applications. The disadvantage of
RSA is that the algorithm necessary to implement
both encryption and decryption is computational
intensive. Rabin’s scheme has asymmetric
computational costs. It is only necessary to perform a
simple modulo squaring operation to encrypt a
message. Therefore encryption can be preformed
relatively efficiently, while the computational cost of
the decryption algorithm is comparable to RSA. This
asymmetrical property of Rabin’s scheme means it is
of significant practical importance in applications
such as wireless sensor networks where encryption

must be done on very low power, often remote,
nodes.

We present next the encryption and decryption
steps as they appear in [2].

Key generation for Rabin’s Scheme
The base station generates a private key pair and a
corresponding public key.

1. Choose two large strong random prime
numbers, p and g, both congruent to 3 mod 4.
p, g =3 mod 4

2. Compute the productn=p. g
3. The base station’s public key is n. The private

key is the pair (p,q)

Rabin’s public-key encryption
To encrypt a message for the base station

1. Obtain the base station’s public key n.

2. Represent the message (M) as a binary integer,
less than the length of n

3. Compute C =M’ mod n
4. Transmit the ciphertext C to base station
Rabin’s public-key decryption

Decryption involves finding the four square roots of
C = M mod n. To recover the plaintext:

1. Use the extended Euclidean algorithm to find
integers a and b that satisfy the equation:
apt+bg=1

Note that a and b can be computed during the
key generation stage

2. Compute r = C?™" mod p
3. Compute s=C9"* mod g
4. Compute x = (a.p.s + b.q.r) mod n
5. Compute y = (a.p.s - b.q.r) mod n

6. The four square roots of C modulo # are:

MI=x
M2 =-xmodn
M3=y
M4 =-ymod n

IEE Irish Signals and Systems Conference, Dublin, June 28-30, 2006

The plaintext was M1, M2, M3 or M4. The base
station somehow decides which one of these was the
actual message.

The drawback of Rabin’s public-key scheme is
that the receiver must select the correct plaintext
from among four possibilities. This can be overcome
in practice by adding predetermined redundancy to
the original plaintext before encryption [2]. For
example, a specified header can be added to the
plaintext or instead the last 32 bits can be replicated.
With this approach, we can determine the actual
message sent with high probability. Although this
does generate significant transmission overhead, it
does act as a simple error detection protocol for the
receiver. If an error occurs in the transmitted bit
sequence the decryption process will not generate a
square root with the specified redundancy.

The extra bits also have the benefit of
circumventing weaknesses in certain cryptographic
protocols [3]. Certain chosen-ciphertext attacks exist
against Rabin’s scheme where an adversary can
recover some information about a plaintext. In this
scenario, the adversary presents a certain ciphertext
to the decryption machine. The decryption machine
decrypts the ciphertext and returns some plaintext.
The adversary can build up information about the
private keys which can then be used to help recover
information about legitimate plaintexts. The
decryption machine can be implemented so that it
only returns legitimate messages. If it decrypts a
ciphertext that does not have the specified
redundancy, the ciphertext is considered fraudulent
and the message is discarded.

Rabin’s scheme encryption is regarded as an
extremely fast operation in terms of public-key
encryptions algorithms. It involves a single modulo
squaring operation while RSA encryption with e = 3
requires one modular multiplication and two modular
squaring calculation. While Rabin’s scheme
decryption is slower than RSA decryption, the
operations are comparable. In applications such as
sensor networks, decryption may be done on
dedicated base stations that are not be constrained by
resources. Sensor nodes nominally do have limited
resources. But the low computational complexity of
this public-key encryption algorithm means that it
can be feasibly implemented on such a platform.

1 IMPLEMENTATION

The implementation was prototyped on 25mm cube
modules provided by the Tyndall National Institute
[3]. These cubes consist of several different
programmable modules that are interchangeable. The
cubes were configured so that each node included a
low power 8-bit Atmel microcontroller, a Spartan-
IIE FPGA and a RF transceiver. For our
implementation the different modules were

synchronized by a shared 4 MHz clock. This
experimentation platform was ideal for verifying the
public-key architecture and testing the overall
cryptosystem. An overview of the system platform is
illustrated in Fig. 2.

Spartan-IIE |
FPGA :System:
iI ! Clock !

Atmel 8-bit |[A—N Nordic nRF

microcontroller \1—1/ 2401

Fig. 2: System Platform

a) Encryption - Hardware

The architecture was designed to be parametrizable
in regard to the length of the modulus used. For the
purpose of this paper the cryptosystem is presented
with a 512-bit modulus.

Rabin’s scheme encryption is based on a simple
modular squaring operation. An inefficient approach
to this calculation would involve squaring the 512-bit
number and performing a large division operation.
An optimized algorithm was devised with
consideration for the timing and memory constraints
of the platform. This algorithm (Modular Squaring)
performs the calculation using repeated additions and
subtractions, eliminating the need for a large
multiplier.

Modular Squaring modSquare(4, M)
Input: Integers A, M; 0< A<M<2"
Output: R=A’mod M (0<R<M)

0l. R<=0

02. B<=A

03. fori=0 upton-1 do

04. if(b;=1)

05. R<=R+A;

06. A <=A(n-1downto 0) & ‘0’
07. while(A=M OR R =z=M)do

08. if A=M AND R<M)thenA <= A-M;
09. elseif (A<M AND R=M)thenR <=R -M;
10. elseif (A=M AND R = M) then

11. R<=R-M;

12. A<=A-M;

13. return R;

The encryption algorithm was implemented on a
Spartan-IIE FPGA. The encryption operation
requires the plaintext and the public key as inputs. A
standard handshaking protocol is used to interface
the FPGA with the microcontroller. The two 512-bit
numbers are sent from the microcontroller to the
FPGA via an 8-bit bus. The FPGA signals the
microcontroller to read back the ciphertext when the

IEE Irish Signals and Systems Conference, Dublin, June 28-30, 2006

encryption procedure is complete. The encryption
architecture is shown in Fig. 3.

P
512
—
E‘— Control
Left Shift Register Logic
512
n
51sz1
| Subtractor | | Multiplexer |
i|’512 512

Adder/Subtractor

512

Sum Register
512

Fig. 3: Encryption Architecture

The Spartan-IIE has 64k-bits of RAM that is
divided into sixteen 4k-bit dual-port blocks. These
blocks can be configured to specific port widths. Due
to the limited design space available on the FPGA it
was necessary to utilize one of these RAM blocks for
the encryption process. The Ram block was
configured to write data via an 8-bit parallel bus. The
data was consequently read serially by the control
logic during the calculation process.

The main advantage of using a FPGA to
prototype a hardware design is the ability to test the
physical implementation. Unfortunately the power
consumed by FPGA’s make them unsuitable for
sensor network architectures. Actual sensor nodes
are commonly realized in ASIC format. Their
appearance in this implementation is purely for
timing and area considerations. Power consumption
is not indicative of actual sensor node performance.

b) Encryption - Sofiware

It was necessary to employ a power -efficient
methodology in the design of the software. The
advantage of using the Atmel microcontroller was its
low power RISC architecture. Consideration for the
specialized instruction set of Atmega 128 helped to
exploit this feature. Memory usage was also
minimized to avoid the latency and power
consumption of memory access. The power saving
conventions for this design included:
e Minimizing repetitive address computation
o Assigning the most frequently accessed
parameters to registers.

Auxiliary to this convention was the optimization
of all numerical calculations in order to achieve the
most efficient implementation. All software was

implemented using a C variant developed for
embedded systems. The maximum radix that can be
represented on an 8-bit microcontroller is 256. This
is the same numerical radix of extended ASCII codes
as represented by the char type in C. It was necessary
to develop multi-precision functions to represent
numbers greater than the processor’s radix.

Additions, subtraction, compare, multiplication
and modulo functions were required to implement
Rabin’s Scheme. All these functions were developed
using classical algorithms [4], with the exception of
the modulo function. This modulo function utilized
the compare and subtraction functions in order to
resolve the remainder. The full design
implementation revealed the computational
complexity of this modulo function. An algorithm
was devised to make this function operate more
efficiently. By using pre-multiplication and right-
shift operations it was possible to reduce the number
of subtraction per byte from a maximum of 256,
down to a maximum of 8 subtractions.

¢) Decryption — Hardware/Software Codesign

The decryption architecture was implemented on the
sensor node platform by adopting a
hardware/software ~ codesign approach. The
architecture was partitioned so that the most
computationally intensive processes were
implemented in hardware while the microcontroller
managed the execution of the algorithm and
performed the final mathematical transformations.

The most demanding calculations in the
decryption process are the two 256-bit modular
exponential operations. The computation architecture
which was implemented is based on the binary
method algorithm. This algorithm (Modular
Exponentiation) performs modular exponentiation
by using repeated modular squaring and modular
multiplication (Modular Multiplication) operations.
Modular multiplication is almost identical to
modular squaring. It was possible to implement the
decryption hardware by reusing the encryption
architecture and combining it with a more
sophisticated control logic block and memory
management system.

Modular Multiplication modMult(4, B, M)
Input: Integers A, B, M; 0< A<M<2", 0<B<E<2"
Output: R=ABmodM (0<R<M)

0l. R<=0

02. fori=0 upton-1 do

03. if(=1)

04. R<=R+A;

05. A <=A(n-1downto 0) & ‘0’;
06. while(A=M OR R =M)do

07. if A=M AND R<M)thenA <= A-M;
08. elseif (A<M ANDR =M)thenR<=R - M;
09. else if (A =M AND R = M) then

10. R<=R-M;

11. A<=A-M;

12. return R;

IEE Irish Signals and Systems Conference, Dublin, June 28-30, 2006

Modular Exponentiation modExp(4, E, M)
Input: Integers A, E,M; 0< A<M<2" 0<E <2"
Output: R=A*mod M (0= R<M)

01. R<=1
02. fori=n-1 downto 0 do
03. R <=modSquare(R, M)

04. if (E;=1)
05. R <= modMult(R, A, M)
06. return R;

Extended precision addition, subtraction and
modulo operations were implemented on the
microcontroller to perform the final mathematical
operations. The microcontroller selected the correct
plaintext from among the four possible plaintexts by
scanning the solutions for a pre-specified header.

By exploiting the potential of hardware/software
codesign it was possible to implement the decryption
architecture relatively efficiently. Encryption can
also be performed by using the modular
exponentiation hardware and setting the exponent to
2. However the area constraints of the Spartan-1IE
FPGA meant that it was only possible to fit a 256-bit
modulo exponentiation architecture onto the nodes. It
is also worth noting that RSA encryption and
decryption can both be performed using a single
modular exponentiation operation.

IV RESULTS

The public-key cryptosystem was successfully
implemented and tested on the 25mm cube platform.
Each FPGA design was synthesized and
implemented using ISE8 software. The results for the
encryption architecture are shown in tables 1 and 2.

Table 1 shows results for resource usage in terms
of LUT’s, slices and Ram bits used. Table 2 shows
the timing results of the encryption architecture
clocked with a frequency of 4 MHz. The number of
clock cycles needed to perform the encryption
procedure does not include the time necessary to
load the data into the FPGA. The maximum
throughput results however do include the
communication overhead necessary to interface the
FPGA and the microcontroller.

The synthesis results for a 1024-bit design were
also obtained. Unfortunately, it was not possible to
implement this design as it required more area
resources than the Spartan-IIE FPGA had available.
The results for this design are shown in table 3.

Design | Max Freq. LUT Slices Ram

bits MHz No. (%) | No. (%) bits
8352 4574

1024 13.3 (135%) (148%) 1024

Table 3: Spartan-IIE FPGA Implementation of Encryption
Synthesis Results

Preliminary timing analysis show that encryption
in software is two orders of magnitude slower than
encryption in hardware.

The results for the modular exponentiation
architecture that was used in the decryption process
are shown in tables 4 and 5. Rabin’s Scheme
encryption with a 512-bit modulus requires a 256-bit
modular exponentiation architecture for decryption.

Design | Max Freq. LUT Slices Ram

bits MHz No. (%) | No. (%) bits
1674 903

128 29.6 27%) (29%) 256
3238 1769

256 19.8 (52%) (57%) 512

Design 11?\: :X LUT Slices Ram

bits MH‘l‘ No. (%) | No. (%) | bits
2401 1454

256 17.8 (39%) @7%) 256
4,736 2,879

512 11.7 (77%) (93%) 512

Table 1: Spartan-IIE FPGA Implementation of Encryption
Post Place & Route Results

Table 4: Spartan-IIE FPGA Implementation of Modular
Exponentiation
Post Place & Route Results

. Maximum
Deson | Noof okl | g
Kbits/s
128 86,090 5.92
256 344,356 2.97

. Maximum
Desen | Noof ek 3 | Turougipu
Kbits/s
256 692 769
512 1385 769

Table 2: Spartan-IIE FPGA Implementation of Encryption

Timing Results

Table S: Spartan-IIE FPGA Implementation of Modular
Exponentiation
Timing Results

The high level of computational complexity
involved in modular exponentiation is revealed in the
results shown above. The results obtained are
averages of possible inputs where the exponent is the

IEE Irish Signals and Systems Conference, Dublin, June 28-30, 2006

largest possible length i.e. the same length as the
modulus.

Table 6 shows the synthesis results for a 512-bit
modular exponential FPGA design.

Design | Max Freq. LUT Slices Ram

bits MHz No. (%) No. (%) bits
6347 3542
512 13.3 (103%) (115%) 1024
Table 6: Spartan-IIE FPGA Implementation of Modular
Exponentiation
Synthesis Results
The rest of the decryption algorithm was

implemented on the microcontroller. The software
partitioned decryption process involves several
extended-precision multiplication and modulo
operations, one addition and three subtractions. The
estimated results for the software partitioned design
indicate that the time necessary to perform these
calculations is similar to the amount of time that is
needed for the FPGA to perform the modulo
exponentiation operations.

V CONCLUSIONS

Good cryptographic implementations are essential in
wireless sensor networks if the security of the
communications is to be assured. As wireless sensor
technologies begin to be incorporated into
applications on a large scale, the secure encryption of
data is becoming even more vital. Public-key
cryptography permits such security and its flexibility
enables the formation of ad hoc networks. Our
results show that it is possible to implement public-
key cryptosystems on resource constrained platforms
such as wireless sensor networks.

While the hardware implementation of the
encryption algorithm is much faster than the software
implementation, more power is consumed due to the
high power requirements of the FPGA. Software
implementations of the algorithm are also realizable
and have the benefit of low cost and high flexibility.
However the time necessary to perform encryption
and decryption is significantly increased by using a
software only approach. The results show that the
inherited benefit of adopting a hardware-software
partitioned cryptographic system is a great advantage
for efficient implementations on resource constrained
sensor nodes.

(1]

(2]

(4]
(]
(6]

VI REFERENCES

Rabin, M.O., ”Digitalized signatures and public key
functions as intractable as factorization”, Mit/lcs/tr-
212, Massachusetts Institute of Technology (1979)

A. Menezes, P. van Oorschot, and S. Vanstone,
“Handbook of Applied Cryptography”, Second
Edition, CRC Press, 2001

B. O'Flynn, S. Bellis, K. Delaney, J. Barton, S.C.
O'Mathuna, A.M. Barroso, J. Benson, U. Roedig, C.
Sreenan, “The development of a novel
minaturized modular platform for wireless sensor
networks”, Information Processing in Sensor
Networks, 2005. IPSN 2005. Fourth International
Symposium on 15 April

D. E. Knuth, “The Art of Computer Programming”,
Volume II Seminumerical Algorithms, 1997
B.Schneier, “Applied Cryptography”, Second Edition,
John Wiley and Sons, Inc, 1996

G. Gaubatz, J.-P. Kaps and B. Sunar, “Public Key
Cryptography in Sensor Neworks — revisited”, In 1*
European Workshop on sSecurity in Ad-Hoc and
Sensor Networks (ESAS 2004), 2004.

