
Guaranteeing BGP Stability With a Few Extra Paths

Rachit Agarwal, Virajith Jalaparti, Matthew Caesar, P. Brighten Godfrey

University of Illinois at Urbana-Champaign, IL, USA

{agarwa16, jalapar1, caesar, pbg}@illinois.edu

Abstract—Policy autonomy exercised by Autonomous Sys-
tems (ASes) on the Internet can result in persistent oscilla-
tions in Border Gateway Protocol, the Internet’s inter-domain
routing protocol. Current solutions either rely on globally
consistent policy assignments, or require significant devia-
tions from locally assigned policies, resulting in significant
loss of autonomy of ASes.

In this paper, we take a different approach that guarantees
stability with less restrictive policies. Namely, we propose
multipath routing to find a better trade-off between AS policy
autonomy and system stability. We design an algorithm,
STABLE PATH(S) ASSIGNMENT (SPA), that provably detects
persistent oscillations and eliminates these oscillations by
assigning multiple paths to some ASes in the network. Such
an assignment allows each AS to use its most-preferred
available path, while requiring very few ASes to carry transit
traffic along additional paths in order to break oscillations.

We design a distributed protocol for SPA and present tight
bounds on the number of paths assigned to the ASes in the
network. Using simulations on the AS graph, we show that
in presence of oscillations, SPA assigns at most two paths to
any AS in the network (in 99.9% of the instances), with an
extremely small fraction of ASes assigned the extra path.

Keywords-Internetworking, Routing, Algorithms, Border
Gateway Protocol

I. INTRODUCTION

The Internet connects thousands of independently op-

erating networks, known as Autonomous Systems (ASes),

corresponding to Internet service providers, companies,

universities, etc. Individual ASes must cooperate to con-

struct routes, yet at the same time, they often compete

for business and have very different operational goals. To

allow this highly diverse set of networks to cooperate,

the Border Gateway Protocol (BGP) was developed. BGP

is a routing protocol that computes paths across ASes,

and comes with a highly flexible set of policy knobs

and configuration parameters to allow individual ASes to

express their routing preferences. However, it has been

shown that this freedom of route selection exercised by

the ASes can cause instability in inter-domain routing

manifesting in the form of persistent route oscillations

[1], [2]. Several studies have demonstrated that such

routing oscillations can significantly degrade the end-to-

end performance of the Internet [3], [4].

Currently, there are two main approaches to avoid

persistent route oscillations in BGP. First, convergence is

guaranteed if ASes use a restricted set of policies known as

valley-free routes [5]. However, though valley-free routes

are common, it is unrealistic to expect all ASes to conform

to these constraints. A second approach requires ASes

to dynamically detect persistent oscillations, and deviate

from local preferences when oscillations do occur [6].

This approach has the advantage that a limitation on

the permitted policies is imposed only in the presence of

persistent oscillations. However, in such cases, it requires a

significant deviation from locally assigned policies: ASes

involved in an oscillation must switch to a (potentially

much) lower preferred path, both for the traffic originat-

ing at the AS and the transit traffic.

In this paper, we take a different approach which

guarantees stability with less restrictive policies. Our key

observation is that oscillations are fundamentally caused

by the interdependence of routes across ASes, and this

interdependence can be broken through multipath routing.

Specifically, we show that a selection of routes is possible

such that every AS uses its most-preferred available path,

and some ASes may be required to carry transit traffic

along additional paths in order to break oscillations. Thus,

instead of requiring ASes to change their preferences over

the set of paths as in [5], [6], we restrict policies only by

requiring a few ASes to carry transit traffic along certain

paths in addition to their most preferred path. Any scheme

which guarantees stability must restrict ASes’ policies in

some way; we believe our approach may offer a good

tradeoff in order to guarantee stability, as long as it is

rare that an AS is forced to use one of these less-preferred

transit paths. Therefore, a key question for our approach

is how to guarantee convergence while assigning only a

small number of additional paths. We additionally note

that a multipath-based approach may be desirable as it

has several benefits in its own right, including improved

security, availability, and flexibility [7], [8], [9].

To formalize the idea of stability using multipath rout-

ing, we present the Multiple Stable Paths Problem (MSPP)

(Section III), where an AS is allowed to be assigned a

set of paths, and the set is stable if it includes the AS’s

most preferred path. We present a centralized algorithm

STABLE PATH(S) ASSIGNMENT (SPA) (Section IV), that given

an instance of MSPP, assigns paths to each AS in the

network in a way that guarantees: (1) each AS is assigned

its highest preferred path among the set of available paths,

and (2) the set of assigned paths is small.

If the set of assigned paths are all of size one, then the

solution corresponds to the route assignment using BGP.

The two key challenges addressed by SPA are: one, in

absence of routing oscillations, the solution of SPA must

correspond to that of BGP and two, a way of keeping

the size of the set of assigned paths small when routing

oscillations do occur, which corresponds to taking away

only a little autonomy from the ASes.

In order to understand the behavior of SPA in dis-

tributed settings, we design a distributed protocol for SPA

(Section V) and evaluate the performance of SPA on the

AS graph (Section VI). Our evaluation results suggest two

main conclusions; first, misconfigurations in the network

can have significant impact on the routing stability in the

network. In particular, we show that even with 1% of the

ASes misconfigured, the network may have dispute wheels

with overwhelming probability. Second, assigning at most

one extra path to very few ASes in the network may be

sufficient to guarantee routing stability. In particular, in

99.9% of the networks that had a dispute wheel, SPA

assigned at most one extra path to any AS in the network.

Furthermore, in 99.9% of the instances when SPA assigned

more than one path to any AS, less than 0.04% of the ASes

were assigned the extra path.

Our evaluation results also suggest that SPA can effec-

tively detect (with high probability) networks that have a

stable state but can potentially face persistent oscillations.

In particular, assuming that all the networks that had a

dispute wheel also had a stable state, SPA detected (and

assigned) the stable state for more than 91% of these

networks. This means that for more than 91% of the

networks that had a dispute wheel, SPA assigned a single

path to each AS in the network.

II. RELATED WORK

The possibility of persistent oscillations in BGP was first

noticed in [1]. Griffin et al. [2] introduced Stable Paths

Problem as a formal model for policy routing with path

vector protocols. They proved that a sufficient condition

for guaranteed convergence of BGP is the absence of

dispute wheels, a structure that captures the conflicting

routing policies of the ASes that are involved in the oscilla-

tions. The essence of [2], and a series of theoretical results

that followed [10], [11], [12], is that the problem of

routing oscillations is a fundamentally inherent property

of any path-vector routing protocol that allows each AS

to select its highest preferred available path. Hence, by

definition, any scheme that guarantees stability would

require to limit the autonomy of the ASes in some form.

However, the degree to which autonomy must be limited

to achieve stability is an open problem.

A natural approach to avoid persistent oscillations is to

restrict the set of paths an AS can select its path from. Gao

and Rexford [5] presented a set of such restrictions that

guarantee convergence of BGP. However, restricting each

AS in the Internet to select paths based on these restric-

tions is unrealistically restrictive: an AS can not choose a

higher preferred path that is restricted, even when there

are no policy conflicts in the network. Moreover, doing

this consistently across ASes (which do not share a global

view of the topology) is a challenging problem. Finally,

even if one can achieve such a path assignment, violations

to these policies due to complex business agreements and

misconfigurations can still induce persistent oscillations.

Another approach is to dynamically detect persistent

routing oscillations and limit autonomy only when persis-

tent oscillations are detected. Such schemes would induce

restrictions on local policies at some ASes when a dispute

wheel does occur [6], [13], [14]. While this restricts

limiting AS autonomy only when necessary, the proposed

schemes require ASes to select a lower preferred path

for their own traffic as well as the transit traffic. Our

solution, on the other hand, allows each AS in the network

to route its traffic through its highest preferred available

path, while requiring (very few) ASes to route some of the

transit traffic through a lower ranked path. Moreover, we

show through simulations that our scheme can guarantee

stability while requiring use of lower-ranked paths on

only an extremely small fraction of ASes; this extent of

autonomy loss was not evaluated in [6], [13], [14].

Exploiting multipath routing as a tool to design stable

routing protocols has been explored in at least two other

solutions. Haxell and Wilfong [15] introduced a fractional

model of BGP, where an AS is assigned multiple paths

to the same destination. They proved that every instance

of a network under Fractional-BGP model is solvable.

However, their proof is non-constructive and in fact the

path assignment for Fractional-BGP is “hard” (a PPAD-

complete problem) [16]. Furthermore, in fractional-BGP,

some ASes in the network may be required to be assigned

exponentially many paths in order to guarantee conver-

gence, even when each AS is involved in a single minimal

dispute wheel. In contrast, our scheme guarantees stability

by assigning no more than a single extra path per minimal

dispute wheel an AS is involved in (for a comparison of

our scheme to Fractional-BGP, see [17]).

Wang et al. introduced NS-BGP [18], a neighbor-specific

routing model that allows ASes to select multiple paths,

each of which is used by the AS to transit at least one

of its neighbor’s traffic. It was shown that such a path-

assignment protocol is inherently more stable when com-

pared to BGP. However, despite multiple path assignments,

NS-BGP does not guarantee stability without any restric-

tion on the set of paths an AS can select its path from,

leading to similar issues as with [5]. Our algorithm SPA,

on the other hand, guarantees stability and as discussed

earlier, evaluation results suggests that SPA assigns just a

single extra path to very few ASes in the network.

III. MULTIPLE STABLE PATHS PROBLEM

We start by giving an example as an intuition to why

multipath routing may help in stabilizing the BGP route

selection process. Using this example, we discuss some of

the issues with designing an efficient multipath routing

solution to the BGP instability problem. We then give a

formal definition of the Multiple Stable Paths Problem

(MSPP), and summarize the results from the following

sections.

Assume, for the following example, that all an AS cares

about is to route its own traffic through its most preferred

available path.

Example 1: Consider an example network shown in Fig.

1. This network has no stable state if each node insists on

routing all the traffic (both, the originating and the transit

traffic) through its highest preferred available path [2].

However, if we allow some nodes in the network to be

assigned multiple paths, it is not very difficult to realize

that persistent oscillations in the network can be avoided.

For instance, one of the path assignment using STABLE

PATH(S) ASSIGNMENT for MSPP is {{130,10}, 210,30,430},

i.e., node 1 is assigned paths {130,10}, node 2 is assigned

path 210 and so on. To see this, note that each of the

nodes in the network is assigned its highest preferred

available path to the destination (paths 3420 and 420 are

not available).

0

{130,10} 1 2 {210,20}

{3420,30} 3 4 {420,430}

Figure 1. BAD GADGET. The set next to the node denotes the set
of permissible paths at that node in decreasing order of ranking.

There are several important issues that need to be

addressed in light of the above example. Our approach

requires some ASes (node 1 in Example 1) in the network

to select and advertise multiple routes. The first problem

is to design a scheme that allows such path selection so

as to guarantee stability in the network. Furthermore, in

practice, the assumption made before the example could

be unrealistic: an AS cares not only about the path taken

by the traffic originating at the AS, but also about the

path taken by the transit traffic. Hence, requiring an AS

to select and advertise multiple paths can be regarded as

limiting autonomy of that AS in the following sense: an AS

advertising multiple routes to its neighbors might require

to route its neighbor’s traffic through a path which is not

the highest preferred path of that AS. For instance, node

1 in Example 1 routes 2’s traffic through path 10, which is

not 1’s highest preferred path. Note that, in the absence

of a monetary payment, node 1 has no incentive to do

that, other than stability. We remark, however, that in all

the earlier schemes node 1 will route its traffic and 2’s

traffic through path 10. In this sense, our scheme for the

network of Example 1, limits less autonomy than all the

previous schemes. In general, the scheme should assign

as few paths as possible to an AS in the network so as to

limit as less an autonomy as possible.

We revisit these issues in following sections, where we

show that our algorithm, with extremely high probability,

assigns a single extra path to ASes in the network while

guaranteeing stability. We start the discussion on MSPP by

describing the notation used in this paper.

A. Preliminaries

The network is represented as an AS graph G = (V, E),

where V = {0,1, . . . , n} is the set of ASes and each edge

e = (u v) ∈ E represents a BGP session between ASes

u and v. We assume that AS 0 is the destination AS. A

path in G is either the empty path, denoted by ε, or a

sequence of ASes, (vk, vk−1, . . . , v0). If P and Q are paths

with u and v as their last and first ASes respectively, and

if (u v) ∈ E, we denote by P(u v)Q the path formed by

the concatenation of these paths.

For each v ∈ V , let P v denote the set of permitted paths1

from v to the destination (AS 0). For the destination AS,

we assume that P 0 = {(0)}. Let P = ∪vP
v be the

union of all sets of permitted paths. For each v ∈ V ,

there is a non-negative integer valued ranking function

λv , defined over P v , which represents how AS v ranks

its permitted paths. We assume strictness of the ranking

functions, namely, for any AS v and two paths P1, P2 ∈ P
v ,

λv(P1) = λ
v(P2) if and only if P1 = P2. Furthermore, for

any two paths P1, P2 ∈ P
v and λv(P1) < λ

v(P2), then

P2 is said to be preferred over P1. We assume that for

each AS v ∈ V − {0}, the empty path is contained in the

set of permitted paths and for each path P ∈ P v − ε,

λv(P)> λv(ε). Let Λ = {λv|v ∈ V −{0}}.

An instance of the MSPP, I = (G,P ,Λ), is an undi-

rected graph G together with the set of permitted paths

at each AS P and the ranking functions for each AS Λ.

B. Stable Path Assignment

We describe the path assignment process at each AS in

the network and the collective outcome of the processes

at each AS: a stable path assignment.

Definition 1 (Path Assignment): Given an instance I of

MSPP, a path assignment π : V →P is a function π that

maps each AS u ∈ V to a set of paths π(u) ⊆ P u. By

definition, π(0) = {(0)}.

1An AS may apply its local policies to decide a subset of available
paths that are allowed to be used at that AS. Such paths are referred to
as permitted paths at the ASes.

We will generally write a path assignment as a vector

of sets, (π(0),π(1), . . . ,π(n)), where π(u) ⊆ P u (recall

that π(0) = {(0)}). The set of choices that an AS u ∈ V

gets to choose a path from are given by:

choices(π,u) =

�

{(u v)π(v)|(u v) ∈ E}∩P u if u 6= 0

(0) otherwise

Note that π(v) could possibly be a set of paths and

hence AS u could potentially have several choices of paths

that have as next hop the same neighbor v. For any

AS u ∈ V , we define the best available path (denoted

as best(choices(π,u))) as the highest preferred path in

choices(π,u). Note that the best “available” path depends

on the path assignment π. When the context is clear, we

will denote the best available path for an AS u as P∗(u).

Definition 2 (Stable Path Assignment): Given an

instance I of MSPP, a path assignment π is said to be

stable at AS u if π(u) contains best(choices(π,u)). The

path assignment π is stable if it is stable at each AS in

the network.

Note that the autonomy issues discussed earlier are

captured within the definition of MSPP stable path assign-

ment. Indeed, the only restriction we put for stability of

an instance of MSPP is that an AS has its highest preferred

available path in the set of paths assigned to that AS.

C. Summary of Results

We first summarize the results in the following sections:

• We present an algorithm STABLE PATH(S) ASSIGNMENT

(SPA), that produces a path assignment π that is

stable, as defined in Definition 2.

• SPA imposes no restriction on the set of permitted

paths at any AS in the network, and assigns each AS

its highest preferred available path.

• If the network has no dispute wheel, SPA assigns

paths exactly as BGP would.

• If the network does have a dispute wheel, then SPA

requires that some ASes support routing along paths

other than their highest preferred path. We give a

tight upper bound on the number of paths assigned

by SPA to any AS in the worst-case. However, using

simulations on the AS graph, we show that in 99.9%

of the cases, SPA assigns no more that two paths (i.e.,

one extra path) to any AS in the network.

• We design a distributed protocol for SPA.

IV. STABLE PATH(S) ASSIGNMENT

In this section, we present STABLE PATH(S) ASSIGNMENT

(SPA), a centralized algorithm which when given an in-

stance I = (G,P ,Λ) of MSPP, assigns paths to each

AS in the network such that the final path assignment

corresponds to a stable path assignment of MSPP. We give

a distributed protocol that implements SPA in the next

section.

We also introduce a graph theoretic structure dispute

graph and show that a directed cycle in a dispute graph

corresponds to the possibility of persistent routing oscilla-

tions in the network. We then exploit this observation to

provide proofs of correctness of SPA. We close the section

with some properties of SPA including a tight bound on

the maximum number of paths assigned by SPA to any

AS in the network. To start with, we give some definitions

which will allow us to succinctly describe the algorithm.

Definition 3 (Partial Path Assignment): A partial path

assignment π = {{(0)},π(1),π(2), . . . ,π(n)} for V ′ ⊆ V

is a path assignment such that for every u ∈ V ′, every AS

in π(u) is in V ′.

Definition 4 (Consistent Path): For an AS v0, a path

P = (v0, v1, . . . , vk , 0) ∈ P v0 is said to be consistent

with path assignment π if for each vi ∈ P, the subpath

Pi = (vi , . . . , vk, 0) is either in π(vi) or is ranked higher

than each of the paths in π(vi). If P ∈ π(v1), then P is

said to be a direct path, else we call it an indirect path.

Example 2 (Example 1 continued): Consider again the

network shown in Fig. 1 and a run of BGP. Consider a

snapshot during the path assignment process with π =

{0,130,20,30,430}. First, note that for V ′ = {0,1,2,3},

π can be called a partial path assignment but for V ′ =

{0,1,2}, π is not a partial path assignment. Next, con-

sider node 1 (π(1) = {130}). We claim that path 10 is

inconsistent with the path assignment π. This is due to

the fact that λ1(10) < λ1(π(1)). Next consider nodes 4

and 3. The claim is that path 420 is a direct path for

node 4 that is consistent with π, while the path 3420 is

an indirect path for node 3 that is consistent with π. We

leave it as an exercise to confirm the claims (see [17]).

It is easy to see and particularly important to note that

for two partial path assignments, πi and π j , if for each

AS u, πi(u)⊆ π j(u) and if a path P is not consistent with

πi , then P can not be consistent with π j.

Definition 5 (Stable and Unstable Sets): The stable set

S is defined to be the set of ASes u ∈ V , for which the

highest ranked path consistent with π is assigned to u.

The unstable set is the set of ASes that are not in the

stable set.

Definition 6 (Dispute Wheel [2]): A dispute wheel W =

{{u1,u2, . . . ,uk}, {Q1,Q2, . . . ,Qk}, {R1,R2, . . . ,Rk}} is a se-

quence of nodes u1,u2, . . . ,uk, a sequence of non-empty

paths Q1,Q2, . . . ,Qk and a sequence of paths R1,R2, . . . ,Rk

such that for each 1 ≤ i ≤ k, we have (1) Ri is a path

from ui to ui+1, (2) Qi ∈ P
ui , (3) RiQi+1 ∈ P

ui , and

λui (Qi)< λ
ui (RiQi+1) (all subscripts taken modulo k).

Definition 7 (Minimal Dispute Wheel [2]): A minimal

dispute wheel is a dispute wheel in which for each

1 ≤ i ≤ k, either RiRi+1Qi+2 is not permitted at ui or

λui (RiRi+1Qi+2) < λ
ui (RiQi+1).

Examples illustrating the idea of dispute wheels and

minimal dispute wheels can be found in [2], [17].

Figure 2. Pseudo-Code for INITIAL PATH ASSIGNMENT

INITIAL PATH ASSIGNMENT:

While Vi 6= V Do

If Si 6= ;

Assign each node in Si its highest ranked path consistent with πi−1

Vi+1 = Vi ∪Si

Else If Di 6= ;

Let v be an arbitrarily chosen node from Di

Assign v its highest ranked direct path consistent with πi−1

Vi+1 = Vi ∪ {v}

Else

Assign each node in V − Vi the empty path

Vi+1 = V

i = i + 1

Let π= πi

Let S = ∪iSi

Figure 3. Pseudo-Code for STABLE PATH(S) ASSIGNMENT – SMDW

STABLE PATH(S) ASSIGNMENT – SMDW:

Run INITIAL PATH ASSIGNMENT to compute π and S

Let U = V −S

Initialize j

While |U | 6= 0

Let U j ⊆U be the set of nodes whose highest ranked path consistent with π is a direct path

Assign each node in U j its highest ranked path consistent with π

U =U −U j

j = j+ 1

A. Stable Path(s) Assignment Algorithm

We present STABLE PATH(S) ASSIGNMENT (SPA) algo-

rithm. To give an intuition for the underlying functioning

of the algorithm, we first consider a simpler case, when

the instance I of MSPP contains a single minimal dispute

wheel. We then give a simple generalization to the case

of networks having multiple minimal dispute wheels.

The algorithm (for the case of single minimal dispute

wheel) runs in two phases: in first phase INITIAL PATH

ASSIGNMENT, each AS is assigned a single path to the

destination (some ASes may be assigned empty paths);

the second phase STABLE PATH(S) ASSIGNMENT – SMDW

(SMDW for single minimal dispute wheel) assigns each

AS in the unstable set its highest ranked path consistent

with the current path assignment. Both phases assign

paths in a greedy fashion, first assigning paths to the ASes

whose highest ranked path consistent with current path

assignment is a direct path. If no such AS is available,

the algorithm will arbitrarily choose an AS that has direct

paths to the destination and assign the highest ranked

path among these (direct) paths to the AS. The algorithms

INITIAL PATH ASSIGNMENT and STABLE PATH(S) ASSIGNMENT

– SMDW are given in Fig. 2 and Fig. 3 respectively.

More formally, the first phase INITIAL PATH ASSIGNMENT,

constructs a sequence of subsets of V , {0} = V0 ⊂ V1 ⊂

V2 ⊂ · · · ⊂ Vk = V , together with a sequence of partial path

assignments π0,π1, . . . ,πk, where each πi is a partial path

assignment for Vi . Let Di be the set of ASes u ∈ V − Vi

that have a direct path consistent with πi . Let Si ⊆ Di

be the set of ASes whose highest ranked path consistent

with πi (i.e., best(choices(πi,u))), is a direct path. The

second phase takes the ASes in the unstable set and

assigns, in each iteration, at least one AS its highest

ranked path consistent with the current path assignment.

Note that for correctness of the algorithm, it suffices to

prove that in each iteration of STABLE PATH(S) ASSIGNMENT

– SMDW, there is at least one AS whose highest ranked

path consistent with current path assignment is a direct

path, i.e., for all j, either |U j |> 0 or |U |= 0.

Example 3: Consider again the network shown in Fig.

1. Table I gives the step-wise path assignment when the

algorithm STABLE PATH(S) ASSIGNMENT – SMDW is run on

the BAD GADGET. It is easy to see that the final path assign-

ment using the algorithm, π= {0, {10,130}, 210,30,430},

is indeed a stable path assignment for MSPP.

Next, we prove the correctness of the algorithm.

Table I
ITERATIONS OF STABLE PATH(S) ASSIGNMENT – SMDW FOR NETWORK OF FIG. 1

iteration i Vi πi Di Si U Ui

0 {0} {0,−,−,−,−} {1, 2, 3} {} {1} -

1 {0, 1} {0, 10,−,−,−} {2, 3} {2} {1} -

2 {0, 1, 2} {0, 10, 210,−,−} {3} {3} {1} -

3 {0, 1, 2, 3} {0, 10, 210, 30,−} {4} {4} {1} -

4 {0, 1, 2, 3, 4} {0, 10, 210, 30, 430} {} {} {1} -

0 {0, 1, 2, 3, 4} {0, 10, 210, 30, 430} - - {1} {1}

1 {0, 1, 2, 3, 4} {0, {10, 130}, 210, 30, 430} - - {} {}

B. Correctness of SPA

We start by defining dispute graph, a directed graph

that captures the set of conflicting rankings between ASes.

We then show that edge-disjoint cycles in a dispute graph

correspond to distinct minimal dispute wheels and exploit

this to give a simple proof for the correctness of the

algorithm.

Definition 8 (Dispute Graph): Given an instance I =

(G,P ,Λ) and a path assignment π, a dispute graph cor-

responding to π is a directed graph G (I ,π) constructed

as follows: For each node u ∈ V\{0}, we create a node in

the dispute graph. Let P∗(u) = (u, v1, v2, . . . , vk, 0) denote

the highest ranked path of u consistent with π. For each

intermediate node vi , we create an edge (u vi) in the

dispute graph.

Definition 9: A cycle u1 → u2 → ·· · → uk → u1 is said

to be minimal if there do not exist any i, j 6= i + 1 such

that u1→ ·· · → ui → u j → ·· · → u1 is also a cycle.

Lemma 1: Let I = (G,P ,Λ) be an instance of MSPP

and let G (I ,π) be the dispute graph for I corresponding

to a path assignment π. Then if G (I ,π) has k edge-

disjoint cycles, I has at least k minimal dispute wheels.

Proof: We show that each edge-disjoint cycle cor-

responds to a minimal dispute wheel in the network.

Consider a minimal cycle u1 → u2 → ·· · → uk → u1

in G (I ,π). Then, by definition of a dispute graph,

for any node ui in the cycle, ui+1 must be in the

highest ranked path of ui that is consistent with π.

This implies that one can construct a minimal dispute

wheel as follows: Let P∗(ui) denote the highest rated

path of ui and let Ri be the subpath of P∗(ui) from

ui to ui+1 and let Qi+1 be the remaining subpath of

P∗(ui). This will give a minimal dispute wheel W =

{{u1,u2, . . . ,uk}, {Q1,Q2, . . . ,Qk}, {R1,R2, . . . ,Rk}}.

Lemma 2: Let U denote the unstable set after INITIAL

PATH ASSIGNMENT and let W be a dispute wheel in U . For

each u ∈W , let P∗(u) denote the highest ranked path of

u consistent with π. Then, P∗(u) must contain at least 4

nodes from V .

Proof: Consider any node u ∈W and let P∗(u) be its

highest ranked path consistent with π. Note that since u

is in a dispute wheel P∗(u) must not be a direct path for

u. Clearly, P∗(u) must contain at least two nodes u and

0. If π(u) = ε, then (u 0) /∈ P u and if π(u) 6= ε, then

λu(π(u))≥ (u 0), hence P∗(u) must contain at least three

nodes. We need to show that if u ∈W , P∗(u) must contain

at least four nodes. For sake of contradiction, assume that

it contains only three nodes. Then, P∗(u) = uu′0 for some

u′ ∈ V . Clearly, (u′ 0) ∈ π(u′) since P∗(u) is consistent

with π. But then, P∗(u) is a direct path for u leading to

the contradiction that u ∈W . Hence, P∗(u) must have at

least 4 nodes.

Lemma 3 ([19]): A k-regular directed graph with no

parallel edges contains at least 5k/2 − 2 edge-disjoint

cycles.

Theorem 1: The algorithm STABLE PATH(S) ASSIGNMENT

– SMDW solves all instances I = (G,P ,Λ) of MSPP if I

does not contain multiple minimal dispute wheels.

Proof: Consider the first iteration of STABLE PATH(S)

ASSIGNMENT. If there is no dispute wheel in U , then

clearly each node is assigned a stable path. However, if

there is a dispute wheel in U , then we claim that there

must be multiple minimal dispute wheels in the network.

To prove this, let I = (G,P ,Λ) be an instance of MSPP

and let G (I ,π) be the dispute graph for I corresponding

to current path assignment. Let W be a dispute wheel

in the unstable set U after INITIAL PATH ASSIGNMENT. By

Lemma 2, the highest ranked path of each node in W

must have at least four nodes, out of which two nodes

must be different from u and the destination node. Hence,

by construction, each node in G (I ,π) must have an out-

degree of at least 2. Then, by Lemma 3, there must be at

least three edge-disjoint cycles in G (I ,π). This in turn,

by Lemma 1, means that there must be multiple minimal

dispute wheels in I .

The above results naturally generalize to the case of

multiple minimal dispute wheels. We give the algorithm

for the case of multiple minimal dispute wheels in the

following subsection. We close this section with discussion

on the properties of the SPA solutions. Due to lack of

space, proofs for the following theorems and claims have

not been included and can be found in [17].

Figure 4. Pseudo-code for STABLE PATH(S) ASSIGNMENT

STABLE PATH(S) ASSIGNMENT:

While S 6= V

Run INITIAL PATH ASSIGNMENT with V =U to compute π and S .

Let U = V −S .

Initialize j to 0.

Let U0 ⊆U be the set of nodes whose highest ranked path consistent with π is a direct path.

While |U j | 6= 0

Assign each node in U j its highest ranked path consistent with π

U =U −U j

Compute U j+1: the set of nodes whose highest ranked path consistent with π is a direct path.

j = j+ 1

Let S = V −U

C. Case of Multiple Minimal Dispute Wheels

When there are multiple minimal dispute wheels in

I , one may need to assign more than two paths to a

single node. This can be achieved by running algorithm

INITIAL PATH ASSIGNMENT every time a dispute wheel is

found in the unstable set U . Each iteration of INITIAL PATH

ASSIGNMENT will result in breaking at least one minimal

dispute wheel. However, we believe (and show using

evaluation results) that for most of the networks, multiple

minimal dispute wheel case is also resolved in a single run

of INITIAL PATH ASSIGNMENT. The pseudo-code for STABLE

PATH(S) ASSIGNMENT algorithm is shown in Fig. 4.

Theorem 2: The algorithm STABLE PATH(S) ASSIGNMENT-

MMDW solves all instances (G,P ,Λ) of MSPP.

D. Properties of SPA

We discuss some of the properties of SPA solutions. The

proofs for the claims can be found in [17].

Claim 1: In absence of dispute wheels, STABLE PATH(S)

ASSIGNMENT assigns a single path to each node. The paths

assigned correspond to the paths assigned by BGP.

Claim 2: No node in (a single minimal dispute wheel

of) a network is assigned more than two paths by STABLE

PATH(S) ASSIGNMENT – SMDW.

Claim 3: Given an instance I = (G,P ,Λ) of MSPP, let

m(u) denote the number of minimal dispute wheels that

an AS u is in. Then STABLE PATH(S) ASSIGNMENT assigns no

more than m(u) + 1 paths to u. This is tight.

We make two observations. First, the bound of Claim

3 is valid for any multipath assignment algorithm that

guarantees stability and that operates in a distributed

fashion, in the sense that it does not restrict the order in

which nodes in dispute wheel are assigned paths. Second,

the number of paths assigned in the worst case could be

as many as the number of nodes in the dispute wheel.

Whether or not it is large is an interesting question;

however, we show in Section VI that in almost all the

cases, just one extra path suffices to guarantee stability.

V. DISTRIBUTED STABLE PATH(S) ASSIGNMENT

Previous sections have described our overall approach.

However, thus far we have assumed that each AS in the

network can observe the entire graph. In this section,

we describe some simple extensions to our technique to

allow it to operate as a dynamic routing protocol in dis-

tributed environments. For simplicity, we concentrate only

on sketching the main ideas of our approach, relying on

previous work in detecting dispute wheels [13], [6], mul-

tipath routing [8], [20], and BGP implementations [21]

to handle details not discussed here.

The distributed protocol (corresponding to a single

destination prefix) is shown in Fig. 5. The algorithm

consists of two key steps.

A. Dispute detection

First, each AS continuously checks to determine if it

is part of a dispute wheel. This can be performed by

adapting any of the known techniques [6], [13]. We do

this by extending the SPVP formulation [13], which allows

ASes to detect their being in dispute by maintaining a

route history and detecting cycles in the history. Our ex-

tension [17] allows an AS that receives an advertisement

containing multiple paths to detect if it is still in dispute;

the originial SPVP formulation did not need to handle this

case. Using this technique, each AS can determine whether

it is currently in dispute with other ASes.

B. Handling disputes

Once an AS has detected its involvement in a dispute,

the protocol places a restriction on the path selection

process of the AS. The restriction disallows withdrawals

that are caused by availability of a higher preferred path

(such withdrawals are implicit in BGP). When an AS

processes a new (and higher preferred) path, it selects

this path and forwards it as an additional path to break

the dispute. In particular, when the restriction is enabled,

the AS marks the current path that is advertised. The AS

Figure 5. Distributed Stable Path(s) Assignment Algorithm

DISTRIBUTED STABLE PATH(S) ASSIGNMENT:

For each node v

On receiving an advertisement for path P:

Check whether or not in dispute

If P preferred over all paths in π(v)

If in dispute wheel

Select the path P (as an additional path)

Let π(v) = π(v)∪ {P}

Else

Select the path P

Let π(v) = {P}

Advertise π(v) to neighbors

On receiving a withdrawal for path P:

π(v) = π(v)\{P}

Withdraw path P from neighbors

then additionally marks any new more-preferred paths

that are received after the restriction is enabled. The AS

then advertises the set of these paths to its neighbor. Note

that this procedure does not affect how physical failures

and other withdrawals are handled – only path changes

due to receiving a more-preferred path are affected. On

a failure (or a path withdrawn by the neighbor), the AS

would receive a withdrawal message, causing the path to

be unmarked and deleted from its own routing table (and

subsequently deleted from the set advertised to the AS’s

neighbors).

Note that the description above handles the network

dynamics. Indeed, during the convergence process, an AS

u that has detected its presence in a dispute wheel may

either receive a path advertisement or a path withdrawal.

A path advertisement does not affect u’s adherence to the

restrictions imposed in order to handle the disputes; the

path advertisement received by an AS under restriction

will not cause path withdrawals. An explicit path with-

drawal, on the other hand, may be due to a change in

the topology of the underlying network or due to one

of u’s neighbors, say AS v, withdrawing the path being

advertised by u to its neighbors. Consider AS v. Either

v is in the dispute wheel or not. If not, then the path

withdrawal by AS v is allowed by the protocol (recall,

the handling disputes above puts restriction only when an

AS is in dispute wheel). If v is indeed in dispute wheel,

at some point of time v will detect its presence in the

dispute wheel and at that point of time, both u and v

will stop withdrawing the paths. Following this process,

at some point, all the ASes in the dispute wheel will

stop withdrawing the paths and all the advertisements

will eventually be consumed by the ASes in the network,

resulting in the network reaching a stable state.

VI. EVALUATION RESULTS

In this section, we report on our implementation of

STABLE PATH(S) ASSIGNMENT (SPA) and its evaluation on

an AS-level network topology. We discuss below the

methodology used for evaluating the performance of the

algorithm (Sec. VI-A). We then describe our results on

the effect of misconfigurations on routing instability for

traditional single-path routing (Sec. VI-B), and the num-

ber of paths assigned by SPA to guarantee convergence

(Sec. VI-C).

A. Methodology

SPA requires several inputs: (1) a network topology, (2)

a set of possible paths for each AS, and (3) a ranking of

these paths to define policies.

Topology: We use an AS-level network topology from

CAIDA [22], which used route dumps from January 2009

to construct an AS-level network which consists of 24,113

ASes.

Possible paths: Distributed protocols such as ours and

BGP require only a function to compare the preference

of two paths. However, SPA requires an explicit list of

possible paths sorted in order of preference. We begin by

generating a list of possible paths. Unfortunately, there

could be exponentially many paths from each AS to each

destination. Hence, we resorted to a heuristic preprocess-

ing approach: we implemented a “policy-free” path-vector

protocol in which each AS simply advertises every path it

receives, up to at most 100 paths to each neighbor and

at most 10 paths of each length, for each destination.

After running this protocol, we collect the set of advertised

paths at each AS, and use these as the possible paths

that are the input to SPA. We believe this set of paths—

which includes paths through all neighbors and of various

lengths—is a representative set given that the policies we

will test are based on the path’s next-hop and length.

Policies: To rank the set of possible paths, we imple-

mented a simple shortest-path based preference ranking

function for most ASes. If an AS had multiple paths of the

same length through the same neighbor, ties were broken

arbitarily. If all ASes used these policies, convergence

would be guaranteed. However, in order to simulate

misconfigurations or unusual policies, we select a small

uniform-random set of ASes whose policies are defined

by a random ordering of the possible paths at that AS.

Trials: In each trial of our algorithm we select a single

random destination, a random set of misconfigured ASes,

and random policies for those ASes. We varied the fraction

of ASes that are misconfigured; for each fraction, we ran

10,000 trials.

We note that the performance of SPA may vary if

different assumptions are made about the topology, set

of possible paths, or policies. We leave a detailed study of

a broad range of environments to future work.

 0.9

 0.92

 0.94

 0.96

 0.98

 1

 1 1.5 2 2.5 3 3.5 4

C
u
m

u
la

ti
v
e
 F

ra
c
ti
o
n

(i
n
s
ta

n
c
e
s
 w

it
h
 d

is
p
u
te

 w
h
e
e
ls

)

Maximum number of Paths assigned

50
100
150
200
250

Figure 7. Cumulative fraction of instances
(among all instances that had a dispute
wheel) versus the maximum number of
paths assigned to any AS for various number
of misconfigured ASes

 0.92

 0.93

 0.94

 0.95

 0.96

 0.97

 0.98

 0.99

 1

 1.01

 2 2.5 3 3.5 4

C
u
m

u
la

ti
v
e
 F

ra
c
ti
o
n
 (

in
s
ta

n
c
e
s

 t
h
a
t
re

q
u
ir
e
d
 m

o
re

 t
h
a
n
 o

n
e
 p

a
th

)

Maximum number of Paths assigned

50
100
150
200
250

Figure 8. Cumulative fraction of instances
(among all instances in which some AS
was assigned more than one path) versus
the maximum number of paths assigned to
any AS for various number of misconfigured
ASes

 0.99

 0.992

 0.994

 0.996

 0.998

 1

 1 1.02 1.04 1.06 1.08 1.1

C
u
m

u
la

ti
v
e
 F

ra
c
ti
o
n

(i
n
s
ta

n
c
e
s
 w

it
h
 d

is
p
u
te

 w
h
e
e
ls

)

Average number of Paths assigned

10
100
250

Figure 9. Cumulative fraction of instances
(among all instances that had a dispute
wheel) versus the average number of paths
assigned (over all ASes) for various number
of misconfigured ASes

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 0 50 100 150 200 250 300

F
ra

c
ti
o
n
 o

f
In

s
ta

n
c
e
s

Misconfigured ASes

Contain Dispute Wheel
More than one path

Figure 6. Fraction of instances with dispute wheel and fraction
of instances in which SPA assigned more than one path in order
to stabilize the network (out of 10,000 instances) versus number
of misconfigured ASes.

B. Misconfigurations and Instability

Our first metric of interest is the intensity of the routing

instability problem for traditional single-path routing. In

particular, the effect of misconfigurations on the routing

instability has not been evaluated in earlier works.

Of course, deciding convergence properties of an in-

stance is hard: it is NP-complete to decide whether a stable

state exists [2], and PSPACE-complete to decide whether

BGP can oscillate [23]. We therefore study two upper

bounds on the fraction of instances that are unstable.

First, we compute the fraction that have dispute wheels;

the absence of a dispute wheel is the classic sufficient

condition for a unique stable state to exist [2]. Second,

we compute the fraction on which SPA converges with each

AS in the network assigned a single path.

Our evaluation results (shown in Fig. 6) suggest that

even a few ASes being misconfigured can cause dispute

wheels in the network. In particular, even with 0.05% of

the ASes misconfigured (10 out of 24,113 ASes), more

than 5% of the instances (out of 10,000 instances) had

dispute wheels. The lower line in the figure shows that

despite the presence of dispute wheels, SPA was usually

able to find a stable state while giving each AS a single

path to the destination. This indicates either that (1) the

“no dispute wheel” condition is a very pessimistic bound

on the fraction of instances that definitely converge, or

(2) in a large fraction of cases divergence is possible,

but requires an unlikely ordering of events. An interesting

question for future work is to resolve which of these cases

is most common.

However, there are still cases in which, when running

SPA, the network did not converge with one path per

AS. For example, just 0.1% of the ASes misconfigured

(20 out of 24,113 ASes) led to non-single-path conver-

gence in 0.45% percent of trials. Given the importance

of convergence, this fraction is non-negligible. Moreover,

each trial uses a single destination, so the chance of non-

convergence when routing to all 24,112 destinations is

presumably much higher.

C. Number of Paths

Finally, we study our main performance metric for SPA:

the number of paths assigned to ASes in the network. Note

that Claim 3 implies that the number of paths assigned to

an AS by SPA could be as large as the number of ASes in

the dispute wheel. However, in (almost) all the instances,

SPA stabilized the network with at most one extra path

assigned to (very) few ASes in the network. In particular,

in 99.9% of the instances that had a dispute wheel, even

with a large number of misconfigured ASes, SPA assigned

at most one extra path to any AS in the network (see Fig.

7). Furthermore, the number of ASes that were assigned

this extra path were an extremely small fraction of the

total number of ASes: in more than 99% of the networks

in which any AS was assigned an extra path, at most

0.04% of the ASes were assigned an extra path.

For networks in which the algorithm assigned more

than two paths to any AS in the network, almost 97.5%

of the instances were assigned at most three paths (see

Fig. 8). The remaining instances were some of the unlucky

instances, in which the algorithm ended up assigning four

paths to some ASes in the network. In all the 300,000

iterations (over 30 values of number of misconfigured

ASes), not even a single AS (in any instance) was assigned

more than four paths.

This resulted in an extremely small number of paths

assigned on an average (averaged over all the ASes in the

network), as shown in Fig. 9.

VII. CONCLUSION

In this paper, we have presented a solution towards

resolving the conflict between policy autonomy of Au-

tonomous Systems in the Internet and stability of the

inter-domain routing protocol BGP. The key tool we lever-

age is the use of multipath routing by ASes in conflict. We

have presented an algorithm STABLE PATH(S) ASSIGNMENT

(SPA) that detects persistent oscillations and eliminates

these oscillations by assigning multiple paths to some ASes

in the network. SPA achieves a better trade-off between AS

policy autonomy and system stability by allowing each AS

to use its most preferred available path, while requiring

very few ASes in the network to carry transit traffic along

additional paths in order to break oscillations. We have

shown that in absence of dispute wheels, SPA assigns

path exactly as BGP. SPA is complemented with a simple

distributed protocol that assigns multiple stable paths in

a distributed fashion.

Through simulations, we have shown that with very

high probability, SPA assigns at most one extra path

to ASes in conflict while guaranteeing stability of the

network.

REFERENCES

[1] K. Varadhan, R. Govindan, and D. Estrin, “Persistent route
oscillations in inter-domain routing,” Computer Networks,
vol. 32, no. 1, pp. 1–16, 2000.

[2] T. G. Griffin, F. B. Shepherd, and G. Wilfong, “The stable
paths problem and interdomain routing,” ACM/IEEE Trans-
actions on Networking, vol. 10, no. 2, pp. 232–243, 2002.

[3] C. Labovitz, G. R. Malan, and F. Jahanian, “Internet routing
instability,” in Proc. ACM SIGCOMM, 1997, pp. 115–126.

[4] C. Labowitz, G. R. Malan, and F. Jahanian, “Origins of
Internet routing instability,” in Proc. IEEE INFOCOM, 1999,
pp. 218–226.

[5] L. Gao and J. Rexford, “Stable internet routing without
global coordination,” ACM/IEEE Transactions on Network-
ing, vol. 9, no. 6, pp. 681–692, 2001.

[6] C. T. Ee, B. Chun, V. Ramchandran, K. Lakshminarayanan,
and S. Shenker, “Resolving inter-domain policy disputes,”
in Proc. ACM SIGCOMM, 2007, pp. 157–168.

[7] D. Wendlandt, I. Avramopoulos, D. G. Andersen, and
J. Rexford, “Don’t secure routing protocols, secure data
delivery,” in Proc. ACM HotNets, 2006.

[8] W. Xu and J. Rexford, “Miro: Multi-path interdomain
routing,” in Proc. ACM SIGCOMM, 2006, pp. 171–182.

[9] J. He and J. Rexford, “Towards internet-wide multipath
routing,” IEEE Network, vol. 22, no. 2, pp. 16–21, 2008.

[10] J. L. Sobrinho, “An algebraic theory of dynamic network
routing,” ACM/IEEE Transactions on Networking, vol. 13,
no. 5, pp. 1160–1173, 2005.

[11] T. G. Griffin, A. D. Jaggard, and V. Ramchandran, “Design
principles of policy languages for path vector protocols,”
in Proc. ACM SIGCOMM, 2003, pp. 61–72.

[12] N. Feamster, R. Johari, and H. Balakrishnan, “Implications
of autonomy for the expressiveness of policy routing,”
IEEE/ACM Transactions on Networking, vol. 15, no. 6, pp.
1266–1279, 2007.

[13] T. G. Griffin and G. Wilfong, “A safe path vector protocol,”
in Proc. IEEE INFOCOM, 2000, pp. 490–499.

[14] J. A. Cobb, M. G. Gouda, and R. Musunuri, “A stabilizing
solution to the stable paths problem,” in Proc. ACM Sym-
posium on Self-Stabilizing Systems, 2704 LNCS, Springer-
Verlag, 2003, pp. 169–183.

[15] P. E. Haxell and G. T. Wilfong, “A fractional model of the
border gateway protocol (BGP),” in Proc. ACM-SIAM SODA,
2008, pp. 193–199.

[16] S. Kintali, L. J. Poplawski, R. Rajaraman, R. Sundaram, and
S. Teng, “Reducibility among fractional stability problems,”
in Proc. IEEE FOCS, 2009, pp. 283–292.

[17] R. Agarwal, M. Caesar, and P. B. Godfrey, “Stable path(s)
assignment for inter-domain routing,” University of Illinois
at Urbana-Champaign, IL, USA, Tech. Rep., June 2009.
[Online]. Available: www.ifp.illinois.edu/∼agarwa16

[18] Y. Wang, M. Schapira, and J. Rexford, “Neighbor-specific
BGP: more flexible routing policies while improving global
stability,” in Proc. ACM SIGMETRICS, 2009, pp. 217–228.

[19] N. Alon, C. McDiarmin, and M. Molloy, “Edge-disjoint
cycles in regular directed graphs,” Journal of Graph Theory,
vol. 22, no. 3, pp. 231–237, 1996.

[20] E. Rosen, A. Viswanathan, and R. Callon. (2001) Multipro-
tocol label switching architecture, RFC 3031.

[21] Y. Rekhter and T. Li. (1995) A border gateway protocol -
4, RFC 1771.

[22] The cooperative association for internet data analysis,
URL: http://www.caida.org/home/.

[23] A. Fabrikant and C. Papadimitriou, “The complexity of
game dynamics: BGP oscillations, sink equilibria, and be-
yond,” in Proc. ACM-SIAM SODA, 2008, pp. 844–853.

