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Abstract

Consider a m-round interactive protocol with soundness error 1/2. How much extra random-
ness is required to decrease the soundness error to δ through parallel repetition? Previous work,
initiated by Bellare, Goldreich and Goldwasser, shows that for public-coin interactive protocols
with statistical soundness, m · O(log(1/δ)) bits of extra randomness suffices. In this work, we
initiate a more general study of the above question.

• We establish the first derandomized parallel repetition theorem for public-coin interactive
protocols with computational soundness (a.k.a. arguments). The parameters of our result
essentially matches the earlier works in the information-theoretic setting.

• We show that obtaining even a sub-linear dependency on the number of rounds m (i.e.,
o(m) · log(1/δ)) is impossible in the information-theoretic, and requires the existence of
one-way functions in the computational setting.

• We show that non-trivial derandomized parallel repetition for private-coin protocols is im-
possible in the information-theoretic setting and requires the existence of one-way functions
in the computational setting.

These results are tight in the sense that parallel repetition theorems in the computational
setting can trivially be derandomized using pseudorandom generators, which are implied by the
existence of one-way functions.
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1 Introduction

In an interactive protocol, two parties, called the prover P and the verifier V , receive some common
inputs and perhaps some private inputs, toss some random coins, and interact with each other
following some prescribed protocol. The prover attempts to convince the verifier V than a certain
input x is in a language L. The soundness property of an interactive proof requires that when
x /∈ L, V will only accept with bounded (error) probability, even when he interacts with a certain
class of adversarial cheating provers P ∗. Such an upper bound on the error probability of V is
called the soundness error of the protocol.

Two versions of the soundness property, statistical soundness and computational soundness,
are commonly studied. Statistical soundness requires the upper bound on V ’s error probability
(to accept incorrectly) to hold against computationally unbounded adversarial provers, whereas
computational soundness only requires the soundness to hold against probabilistic polynomial time
(PPT). Computational soundness is a weaker requirement than statistical soundness. However, in
many settings, requiring only computational soundness allows us to improve the efficiency (e.g., in
round complexity or communication complexity). When statistical soundness holds, the protocol
is referred to as an interactive proof, whereas if only computational soundness holds, the protocol
is referred to as an interactive arguments.

Ideally, we would like the soundness error to be negligible. But, in many settings, our starting
point is a protocol with somewhat large soundness error. For example, to design an interactive
proof for a language L, it may be easier to first design a protocol with soundness error 1/2. This
leads to the question of soundness amplification: Is there a way to decrease the soundness error of
a given protocol?

A natural approach to soundness amplification is by parallel repetition, i.e., many instances of
the protocols are executed in parallel, and the verifier accepts iff all instances accept. We denote
by Πk = (P k, V k) the k-fold parallel repetition of a protocol Π = (P, V ). It is known that parallel
repetition decrease soundness error at an optimal rate (i.e., from 1/2 to 1/2k under k-fold repetition)
for interactive proofs [BM88, Gol01]. For the arguments case, optimal parallel repetition theorems
are known for three-message private-coin protocols [BIN97, CHS05] and for public-coin protocols
(i.e., protocols where the verifier does not keep secret) [PV07, HPWP10, CL10].

Note, however, that the parallelized verifier V k uses k times more randomness than the original
verifier V . We may also consider a derandomized parallel verifier V k

G who generates V k’s coins
by applying the function G to a ”short” random seed; we usually refer to the function G as a
derandomizer. A natural question that arises is thus:

Given an m-round protocol with soundness error, say 1/2, how much extra randomness
is required to decrease the soundness error to δ through parallel repetition?

This question was first addressed by Bellare, Goldreich, and Goldwasser [BGG93] in 1990.
They established that for public-coin interactive proofs with verifier sending t-bits messages in
each round, m · (t + O(log(1/δ)) bits of randomness suffice. Their construction is based on the
notion of an averaging sampler introduced by Bellare and Rompel [BR94]. Relying on more recent
constructions of averaging samplers [Zuc97, RVW01], the extra randomness required can be reduced
to m ·O(log(m/δ)).

In this work, we initiate a more general study of the above question. More precisely, we
focus on 1) extending the above treatment to both computationally sound protocols and private
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coin protocols, and 2) investigating the randomness complexity required to perform soundness
amplification through parallel repetition in all of these settings.

1.1 Our Results

We establish the first derandomized parallel repetition theorem for public-coin interactive protocols
with computational soundness. The parameters of our result essentially matches the earlier works
in the information-theoretic setting.

Theorem 1 (informal) For every m, δ, there exists a polynomial k and a polynomial-time com-
putable derandomizer G, such that for any m-round public-coin argument (P, V ) with soundness
error 1/2, the protocol (P k, V k

G) has soundness error δ + ngl and uses only m ·O(log(m/δ))-bits of
extra randomness (compared to the original verifier V ).

We mention that the framework of Bellare et. al. [BGG93] does not apply to the computational
setting. Rather, we develop a new framework for establishing the above theorem. Our framework
applies to both the computational and the information-theoretic settings (i.e., for both proofs and
arguments); incidentally, our analysis actually slightly improves the concrete parameters also of
earlier works in the information-theoretic setting. Our main technique for proving Theorem 1 is
establishing a connection between certain types of, so-called invertible, randomness extractors for
high entropy sources, and derandomized parallel repetition; roughly speaking, we say that a strong
randomness extractor is invertible if we can, given any r, y, efficiently sample a uniform x such that
Ext(x, r) = y. The extra randomness required in the statement of Theorem 1 corresponds to m
times the “entropy-loss” of the invertible extractor used; the parameters in Theorem 1 are then
obtained by relying on extractors due to Reingold et. al. [RVW01] and Guruswami et. al. [GUV09].

We mention that in the computational setting, the existence of a cryptographic pseudorandom
generator (PRG) [BM84, Yao82], which in turn is implied by one-way functions [HILL99] can
trivially be used to derandomize interactive protocols. Thus assuming the existence of one-way
functions, derandomized parallel repetition doesn’t require any additional randomness. The obvious
advantage of Theorem 1 is that the derandomization is unconditional. A more subtle advantage
of our approach is that the resulting protocol remains sound, even if the verifier, at each round,
reveals all its random coin tosses. This has two benefits: By slightly changing the prover strategy (to
expand the verifier messages using our derandomizer G) we can get a derandomized protocol that
still is public coin and only increases the verifier communication complexity by an additive term of
m·O(log(m/δ)), whereas the PRG solution is private-coin, and increases the verifier communication
complexity by a multiplicative factor of k = log(1/δ).

We next show that obtaining even a sub-linear dependency on the number of rounds m is
impossible in the information-theoretic, and requires the existence of one-way functions in the
computational setting.

Theorem 2 (informal) Consider some m > 0, δ > 0. There does not exist a derandomizer G and
a polynomial k such that for every m-round public-coin proof (P, V ) with soundness error 1/2, the
protocol (P k, V k

G) has soundness error δ and uses only m · log(1/δ)−O(1)-bits of extra randomness.
For the case of arguments, the existence of such a derandomizer instead implies the existence of
one-way functions.
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Our lower bound is actually a bit stronger than stated: we present a specific protocol for which
every derandomizer must use at least m · log(1/δ) − O(1)-bits of extra randomness. Additionally,
note that we cannot hope to get an unconditional lower-bound in the computational setting, since,
as mentioned, assuming the existence of a PRG, parallel repetition theorems can be derandom-
ized without any additional randomness. However, if we require that the derandomizer protocol
remains secure even if the verifier reveals its random coins at each round (which is the case for the
derandomized protocols from our upper-bound), then the above lower bound holds unconditionally
also in the computational setting.

We finally show that non-trivial derandomized parallel repetition for private-coin protocols
is impossible in the information-theoretic setting, and requires proving the existence of one-way
functions in the computational setting.

Theorem 3 (informal) Consider some m ≥ 3, δ > 0. There does not exist a derandomizer G
and a polynomial k such that for every m-round proof (P, V ) with soundness error 1/2, the protocol
(P k, V k

G) has soundness error δ and uses o(t · log(1/δ)) bits of randomness, where t is the random
complexity of V . For the case of arguments, the existence of such a derandomizer instead implies
the existence of one-way functions.

As before, we here present a specific protocol for which every derandomizer must use at least
O(t · log(1/δ)) bits of randomness. Again, this results is ”tight” as in the computational setting,
pseudorandom generators can be used to trivially derandomize parallel repetition theorems also for
private-coin interactive protocols.

Future Work Our results establish essentially tight upper and lower bounds on the random-
ness/soundness trade-off for soundness amplification through parallel repetition. We have not
focused on minimizing the number of parallel repetitions needed for such randomness efficient
soundness amplification; in other words, we have not focused on minimizing prover communication
complexity. In our framework the number of parallel repetitions is 2 to the power of the seed length
of the extractor we use. So one method for decreasing the number of parallel repetitions (and thus
improving prover communication comlexity) would be to improve the seed length of known (in-
vertible) extractors for high entropy sources, without hurting the entropy loss. We leave open the
question of determining the trade-off between randomness, soundness and the number of parallel
repetitions.

We have only focused on methods for derandomizing the original verifier strategy; that is,
we consider a derandomizer that generates random coins, and then runs parallel instances of the
original verifier. A less restrictive approach would be to allow the derandomizer to arbitrarily
change the parallel verifier strategy (i.e., both how its messages are generated, and its acceptance
rule) subject to preserving the completeness condition with respect to the original prover strategy.
Our lower bounds do not extend to this setting. We leave open the question of whether more
randomness efficient parallel repetition can be performed in this model.

Finally, in this paper we have only focused on establishing direct product theorems, as op-
posed to ”Chernoff-type” theorems. Nonetheless, although we haven’t checked the details, it seems
that our techniques directly extend also to the Chernoff bound setting by plugging them into the
framework of [HPWP10]; we leave the details for future work.
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1.2 Organization of the Paper

Section 2 presents some notations and preliminaries on interactive protocols. We define the notion
of derandomizers in Section 3. In Section 4, we present our main derandomized parallel repetition
theorem (formal version of Theorem 1) and our new framework for proving the theorem; the formal
proof is deferred to Section 6. We introduce preliminaries on randomness extractors and state the
extractors we use in Section 5. Finally, we present our lower bounds in Section 7 and 8.

2 Preliminaries

We use N to denote the natural numbers {0, 1, . . . }, [n] to denote the set {1, . . . , n}, and |x| to
denote the length of a string x ∈ {0, 1}∗. By ngl, we mean a function negligible in n (i.e., 1/nω(1)).
All log’s are base 2 unless otherwise specified. For random variables X,Y , we use PX(x) to denote
Pr[X = x] and use PX|Y (x|y) to denote Pr[X = x|Y = y].

2.1 Interactive Protocols

An interactive protocol Π is a pair of interactive Turing machines, (P, V ), where V is probabilistic
polynomial time (PPT). P is called the prover, while V is called the verifier. 〈P, V 〉 (z) denotes
the random variable (over the randomness of P and V ) representing V ’s output at the end of
the interaction on common input z. We often omit the input z and simply write 〈P, V 〉. We
count one round as two message exchanges from one party to the other and back, so a m-round
protocol consists of 2m messages. Π is public-coin if the verifier’s messages are simply independent
uniformly random coins.

We are interested in the trade-off between the randomness complexity and the soundness prop-
erty of protocols. The randomness complexity of a protocol Π is simply the number of random
coins tossed by the verifier. A protocol Π for a language L has statistical (resp., computational)
soundness error ε, if for every z /∈ L, for every unbounded (resp., PPT) adversarial prover P ∗,

Pr[〈P ∗, V 〉 (z) = 1] ≤ ε(|z|).

Π is referred to as an interactive proof (resp., interactive argument) for L if Π has bounded
statistical (reps., computational) soundness error.

Let Πk = (P k, V k) denote the k-fold parallel repetition of Π, where k independent copies of
Π are executed in parallel and at the end of interaction, V k = (V1, . . . , Vk) accepts iff all sub-verifiers
Vi’s accept.

3 Definition of Derandomizers

In this section, we introduce our framework for studying the randomness complexity of parallel
repetition by formalizing the notion of a derandomizer.

Recall that in a parallel repetition Πk of an interactive protocol Π, k independent copies of the
protocols are executed in parallel, and the parallel verifier V k accepts iff all sub-verifiers Vi’s accept.
A derandomizer is simply an efficiently computable function G that on input a short seed Us of s
bits randomness, generates a random tape for the parallel verifier V k, i.e., G : {0, 1}s → {0, 1}k·t,
where t is the randomness complexity of Π. In other words, G derandomizes the random tape of
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V k. This induces a derandomized parallel protocol ΠG where the derandomized verifier VG uses
the derandomized random tape generated by G to interact with P k.

Definition 4 (Derandomizer for Interactive Protocols) Let Π be an interactive proof/argument
with soundness error ε and randomness complexity t. A derandomizer for Π is simply an effi-
ciently computable function G : {0, 1}s → {0, 1}k·t. G induces a derandomized k-fold parallel
repetition ΠG = (P k, VG) of Π, where the derandomized parallel verifier VG first generates G(Us)
using a uniform seed Us, and then emulates V k with coins G(Us).

We say that G is a (ε 7→ δ)-statistically-sound derandomizer (resp., computationally-
sound derandomizer) for Π if ΠG has statistical (resp., computational) soundness error at most
δ.

Note that our definition of a derandomizer is general in the sense that we allow the derandomizer
to depend on the protocol arbitrarily. Allowing a general definition of a derandomizer makes our
lower bound results stronger.

On the other hand, the derandomizer G for public-coin protocols we construct in Theorem 6
works for all public-coin protocols of some fixed round complexity and message length. Additionally,
as we shall see, there exists an efficient algorithm that given just the rounds complexity m and
message length t, outputs such a protocol ”oblivious” derandomizerG. Let us proceed to formalizing
the notion of an oblivious derandomizer.

Definition 5 Let C be a class of interactive protocols. G is an (ε 7→ δ)-oblivous statistically-
sound (resp., computationally-sound) derandomizer for C if for every protocol Π ∈ C (for
some language L) with statistical (resp., computational) soundness error at most ε, the derandom-
ized parallel protocol ΠG has statistical (resp., computational) soundness error at most δ.

4 A Derandomized Parallel Repetition Theorem

In this section, we state a formal version of Theorem 1, and give a detailed proof overview. We shall
prove Theorem 6 formally in Section 6, after presenting some necessary preliminary on randomness
extractors in Section 5.

For simplicity of exposition, we consider m-round public-coin protocols where the verifier sends
a t-bit random message at each round. We refer to such protocols as (m, t)-public-coin protocols.
We focus on constructing efficient and oblivious derandomizers for the class of (m, t)-public-coin
protocols.

Theorem 6 For every polynomially bounded m, t : N → N, every ε, δ : N → (0, 1), there exists
a ((1 − ε) 7→ δ)-oblivious statistically-sound derandomizer (resp., ((1 − ε) 7→ δ + ngl)-oblivious
computationally-sound derandomizer) G : {0, 1}s → {0, 1}k·m·t for (m, t)-public-coin interactive
proofs (resp., arguments) with randomness complexity

s = m · t+m ·O(log(1/δ)) +O(log(m/ε)),

and number of repetition k = poly(m, 1/ε, log(1/δ)). Furthermore, for the case of interactive proofs,
the constant in the O(log(1/δ)) term for the randomness complexity can be set to (1 + γ) for an
arbitrarily small constant γ.
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Our approach to derandomize parallel repetition of interactive protocols can be viewed as de-
randomizing the analysis of a parallel repetition theorem of H̊astad, Pass, Pietrzak, and Wik-
ström [HPWP10]. Therefore, we start by a high level overview of their result and their proof.

H̊astad et. al. proved an efficient parallel repetition theorem for public-coin interactive argu-
ments, stating that parallel repetition decreases the soundness error at an exponential rate. They
proved the theorem by an efficient black-box reduction. Namely, suppose there exists an adversary
P k∗ for the parallel protocol Πk that breaks the soundness with probability δ, then there exists an
adversary P ∗ for the original protocol Π such that, given oracle access to P k∗, P ∗ can break the
soundness with a much higher probability ε� δ, which, in the contrapositive form, shows that the
soundness error goes down from ε to δ under parallel repetition.

A general framework for such reductions is for the single-instance adversary P ∗ to interact with
the verifier V by simulating the interaction between P k∗ and V k, where the external verifier V is
embedded in some coordinate Vi of V k, and P ∗ simulates P k∗ and the remaining k−1 sub-verifiers
(denoted by V−i) of V k internally and forwards P k∗’s messages at coordinate i to V . The task of
P ∗ is to decide which coordinate to embed V , and to choose k − 1 messages of V−i at each round.

H̊astad et. al. showed that the following rejection sampling strategy P ∗rej works. P ∗rej simply
selects a uniformly random coordinate i ∈ [k] to embed V . At each round j, upon receiving the
external verifier V ’s message xj,i, P

∗ repeatedly samples a random continuation of (P k∗, V k) until
he finds an accepting continuation, i.e., V k accepts at the end of interaction. Then P ∗ selects
the corresponding messages in the accepting continuation as the messages of V−i at round j, and
forward the corresponding response of P k∗ to V . If P ∗ fails to find an accepting continuation, then
P ∗ simply aborts.

To show that the rejection sampling strategy works, we consider a mental experiment, where
the external verifier is also aware of the simulated interaction (P k∗, V k), and also uses the rejection
sampling strategy to selects his message xj,i at each round j. Namely, the verifier also repeatedly
samples a random continuation of (P k∗, V k) until a accepting continuation is found, and forwards
the corresponding message in the accepting continuation to P ∗rej . We refer to this mental experiment
as the ideal experiment (P ∗rej , V

∗
rej), in contrast to the real experiment (P ∗rej , V ).

Now, a key observation is that, both parties performing rejection sampling strategy is equivalent
to them jointly sampling an accepting interaction. Therefore, in the ideal experiment, the verifier
accepts with probability 1 at the end of interaction. The crux of the analysis is to show that
the real experiment and the ideal experiment are statistically close, using a sampling lemma by
Raz [Raz98].

Specifically, let E denote the event of accepting interaction. Recall that Pr[E] ≥ δ. Consider
the distribution of V k’s first message ~X1 = (X1,1, . . . , X1,k). Since Π is public-coin, ~X1 is simply
a uniform distribution. In the ideal experiment, P ∗rej and V ∗rej jointly select the first message

from the conditional distribution ~X1|E . In the real experiment, V selects X1,i uniformly without
conditioning, and then P ∗rej selects the messages of V−i according to distribution X1,−i|E,X1,i . Recall
that the coordinate i is uniformly random, the statistical distance of the first message between the
two experiments is

1

k

k∑
i=1

SD(X1,i|E , X1,i),

which can be upper bounded by the following Raz’s Lemma.
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Lemma 7 (Raz’s Lemma [Raz98]) Let X1, . . . , Xk be independent random variables on a finite
domain U . Let E be an event over ~X = (X1, . . . , Xk). We have

1

k
·

k∑
i=1

SD(Xi|E , Xi) ≤

√
1

k
· log

1

Pr[E]
.

Applying the Raz’s Lemma to every round together with a hybrid argument, one can show that
the statistical distance between the ideal and the real experiments is at most m ·

√
(log(1/δ))/k,

and hence1

Pr[(P ∗, V ) = 1] ≥ 1−m ·
√

log(1/δ)

k
.

It turns out that to derandomize the parallel repetition theorem, it suffices to derandomize the
Raz’s Lemma in the sense of identifying derandomized distribution ~X = (X1, . . . , Xk) such that the
conclusion of the lemma remains true. Note that the lemma is applied to the special case where
Xi’s are uniform. As observed by Shaltiel [Sha10], in this special case, the Raz’s Lemma can be
derandomized using strong randomness extractors. Recall that Ext : {0, 1}n × [k] → {0, 1}t is a
strong (n−∆, ε)-randomness extractor if for every sources X with min-entropy H∞(X) ≥ n−∆, the
distribution (I,Ext(X, I)) is ε-close to (I, Ut) in statistical distance, where I is uniformly random
seed over [k]. Note that

SD((I,Ext(X, I)), (I, Ut)) =
1

k
·

k∑
i=1

SD(Ext(X, i), Ut).

Therefore, consider the distribution (X1, . . . , Xk) , (Ext(Un, 1), . . . ,Ext(Un, k)) and an event E
over (X1, . . . , Xk) with Pr[E] ≥ 2−∆. Let X = Un|E , and note that H∞(X) ≥ n− log(1/Pr[E]) ≥
n−∆. By the property of the extractor,

SD((I,Ext(X, I)), (I, Ut)) =
1

k
·

k∑
i=1

SD(Xi|E , Ut) ≤ ε,

which is the desired conclusion we want from the Raz’s Lemma. Therefore, the parallel verifier
V k can be derandomized by replacing the independent messages with the outputs of a strong
randomness extractor. Namely, at each round, the derandomized verifier VG samples Xj ≡ Un and
sends (Ext(Xj , 1), . . . ,Ext(Xj , k)) to P k.

Note that the randomness extractor we need is only required to extract randomness from sources
with high min-entropy. On the other hand, we want to minimize the entropy loss n − ∆ − t
(corresponds to the extra randomness used) and the seed length (corresponds to the number of
repetition). Randomness extractors for high min-entropy sources with very good parameters has
been constructed by Reingold, Vadhan, and Wigderson [RVW01].

However, there are two additional issues that we need to address. First, recall that to finish
proof of parallel repetition theorem, we need to apply the Raz’s Lemma to each round together
with a hybrid argument. Except for the first round, there is already some partial interaction h that
is determined before the j-th message ~Xj is chosen. To handle this issue, H̊astad et. al. instead
used the following generalized Raz’s Lemma (formalized by Holenstein [Hol09]).

1The analysis presented here is slightly oversimplified and omits some technical details. Nevertheless, those
technical details are irrelevant for the purpose of derandomization and are ignored from the informal discussion here.
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Lemma 8 (Generalized Raz’s Lemma [Raz98]) Let H,X1, . . . , Xk be independent random vari-
ables such that Xi ≡ Ut are uniform2 for every i ∈ [k]. Let E be an event over (H,X1, . . . , Xk)
with Pr[E] ≥ δ. Then

1

k

k∑
i=1

SD((H,Xi)|E , (H|E , Ut)) ≤
√

log(1/δ)

k
.

We observe that, the generalized Raz’s Lemma can be derandomized using an average-case
version of randomness extractor, introduced by Dodis, Ostrovsky, Reyzin, and Smith [DORS08].3

Informally, an extractor Ext : {0, 1}n× [k]→ {0, 1}t is a strong average-case (n−∆, ε)-randomness
extractor if for every sources X with “average conditional min-entropy” H∞(X|H) ≥ n−∆ condi-
tioned on some distribution H, the distribution (I,H,Ext(X, I)) is ε-close to (I,H,Ut). Namely,
Ext can extract t bits of randomness from X even when X only has sufficient average conditional
min-entropy.

Now, letH and Un be independent random variables and let (X1, . . . , Xk) = (Ext(Un, 1), . . . ,Ext(Un, k)).
Let E be an event over (H,Un) with Pr[E] ≥ 2−∆, and let (H̃,X) = (H,Un)|E . It can be shown
that H∞(X|H̃) ≥ n−∆, and hence, the property of average-case extractor implies

SD((I, H̃,Ext(X, I)), (I, H̃, Ut))

=
1

k
·

k∑
i=1

SD((H̃,Ext(X, i), (H̃, Ut))

=
1

k
·

k∑
i=1

SD((H,Xi)|E , (H|E , Ut))

≤ ε,

which is the desired conclusion we want from the generalized Raz’s Lemma. Therefore, the analysis
of H̊astad et. al. can go through if we derandomize the parallel verifier using average-case extractor.

In fact, as proved by [DORS08], every ordinary randomness extractor is also an average-case
extractor with a small loss in parameter. Furthermore, Vadhan [Vad11a] observed that such a
parameter loss is actually not necessary. Therefore, the requirement of average-case extractor is
not an extra requirement.

The second issue is about the efficiency of the rejection sampling strategy. Note that proving
parallel repetition theorem for interactive arguments requires efficient reductions. Recall that upon
receiving the external verifier V ’s message xj,i, P

∗
rej needs to sample a random continuation of

(P k∗, VG) in order to find an accepting continuation. This requires P ∗rej to generates the remaining
k − 1 subverifiers’ message, conditioned on the i-th verifier’s message is xj,i.

Recall that VG generates xj,i according to the distribution Ext(Un, i). To ensure that the re-
jection sampling strategy can be implemented efficiently, we require the extractor to satisfy the
following invertible property: for every output y and seed i, one can efficiently sample a random

2As in the basic Raz’s Lemma, the generalized Raz’s Lemma holds without requiring that Xi being uniform.
We state the lemma for uniform Xi’s since we only apply the lemma for this case, and it makes the connection to
extractors more explicit.

3Dodis et. al. defined the notion for standard (non-strong) randomness extractor. We require the strong version
definition which can be defined readily.

8



input x such that Ext(x, i) = y. Fortunately, while not every randomness extractor satisfies the re-
constructiblity property, we observe that the high min-entropy extractor constructed in Proposition
5 of Reingold et. al. [RVW01] is invertible and achieves very good parameters.

To summarize, we show that parallel repetition of public-coin protocols can be derandomized
using randomness extractors that are strong, average-case, and invertible.

5 Invertible Randomness Extractors

We start with the definition of standard seeded randomness extractor.

Definition 9 (Min-entropy) Let X be a finite distribution. The min-entropy of X is

H∞(X) = − log max
x∈supp(X)

PX(x).

Definition 10 (Strong Randomness Extractors) A function Ext : {0, 1}n×{0, 1}d → {0, 1}m
is a strong (k, ε)-extractor if for every source X over {0, 1}n with H∞(X) ≥ k, the distribution
(Ud,Ext(X,Ud)) is ε-close to the uniform distribution (Ud, Um).

As in the above definition, when we discuss the extractors, we follow the convention in the
literature, i.e., n is the length of the source X, k is the min-entropy of X, d is the seed length,
m is the output length, and ε is the error parameter. Furthermore, ∆ , n − k is the entropy
deficiency of X, and Λ , k −m (resp., Λ , k + d −m) is the entropy loss of a strong (resp.,
non-strong) extractor. An extractor Ext is explicit if Ext can be computed in polynomial time.

We need explicit strong randomness extractors for high min-entropy source with short seed
length and small entropy loss (and some additional properties we discuss later). Specifically, we
think of the entropy deficiency ∆ as independent of n, and we require the seed length to be linear
in log ∆ and log(1/ε) (so that in our application, the number of repetition is poly(∆/ε)).

As mentioned, we need more general “average-case” extractors, which are able to extract ran-
domness from sources with only sufficient “(average) conditional min-entropy”. The following
notions are introduced in [DORS08].

Definition 11 (Conditional Min-entropy) Let (H,X) be a finite distribution. The (average)
conditional min-entropy of (X|H) is

H∞(X|H) = − log

(
E

h←H

[
2−H∞(X|H=h)

])
= − log

(∑
h

PH(h) ·max
x

PX|H(x|h)

)
.

Definition 12 (Average-case Extractor) A function Ext : {0, 1}n × {0, 1}d → {0, 1}m is a
strong average-case (k, ε)-extractor if for every joint distribution (H,X) over {0, 1}∗×{0, 1}n
with H∞(X|H) ≥ k, the distribution (Ud, H,Ext(X,Ud)) is ε-close to the distribution (Ud, H, Um).

Although average-case extractors seem more general, Dodis et. al. [DORS08] showed that, if
H∞(X|W ) ≥ k + log(1/ε′), then a (k, ε)-extractor is still able to extract the randomness from X,
at the price of increasing the error by ε′. Furthermore, Vadhan [Vad11b] observed that such a
log(1/ε′) loss in parameter is not necessary, as stated in the following lemma.
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Lemma 13 ([Vad11b]) If Ext : {0, 1}n × {0, 1}d → {0, 1}m is a strong (k, ε)-randomness extrac-
tor, then Ext is a strong average-case (k, 3ε) extractor.

In addition, we need the extractor to have the following invertible property.

Definition 14 (Invertibility) An extractor Ext : {0, 1}n × {0, 1}d → {0, 1}m is invertible if
there exists an efficient algorithm such that on input y ∈ {0, 1}m and r ∈ {0, 1}d, outputs a
uniformly random x ∈ {0, 1}n such that Ext(x, r) = y.

We use high-min-entropy extractors from Reingold, Vadhan, Wigderson [RVW01]. Their main
extractor construction, when plugged-in the best known explicit strong randomness extractor of
Guruswami, Umans, and Vadhan [GUV09] (for general source instead of high-min-entropy ones),
yields the following randomness extractor.

Lemma 15 ([RVW01, GUV09]) Let γ > 0 be an arbitrarily small constant. For every ∆, ε and
for every sufficiently large n ≥ (1 + γ) ·∆ + Ω(log(1/ε)), there exists an explicit strong4 (n−∆, ε)-
randomness extractor Ext : {0, 1}n × {0, 1}d → {0, 1}m with seed length d = O(log ∆ + log(1/ε))
and entropy loss γ ·∆ +O(log(1/ε)).

Note that the above extractor achieves very good seed length and entropy loss, in compared to
the information theoretic limit of log ∆+2 log(1/ε)−O(1) on the seed length and 2 log(1/ε)−O(1)
on the entropy loss.

However, one issue with the this extractor is that it seems not invertible. Fortunately, we
observed that a more basic version of their construction (specifically, construction stated in Propo-
sition 6.5 of [RVW01]) does yield invertible randomness extractors with slightly worse entropy loss
stated as follows.

Lemma 16 ([RVW01, GUV09]) For every ∆, ε and for every sufficiently large n ≥ Ω(∆ +
log(1/ε)), there exists an explicit strong (n−∆, ε)-randomness extractor Ext : {0, 1}n × {0, 1}d →
{0, 1}m with seed length d = O(log ∆ + log(1/ε)) and entropy loss O(∆ + log(1/ε)).

We will show that this extractor is invertible in Section 5.1.

5.1 Reconstructibility of the Extractor in Lemma 16

In this section, we show that the extractor constructed based on Proposition 6.5 of Reingold et. al. [RVW01]
(in particular, the one in Lemma 16) is invertible. We state Proposition 6.5 of [RVW01] as follows.

Lemma 17 ([RVW01], Proposition 6.5) If Ext2 : {0, 1}n2 × {0, 1}d2 → {0, 1}d1 is an explicit
strong (n2−∆− log(1/ε), ε)-extractor for d1 = ∆+2 log(1/ε)+2 with entropy loss Λ2, then for any
n = n1 +n2, there exists an explicit strong (n−∆, 3ε)-extractor RVW : {0, 1}n×{0, 1}d2 → {0, 1}n1

with entropy loss Λ2 + ∆ + 3 log(1/ε) +O(1).

The RVW extractor is obtained by composing Ext2 with a Goldreich-Wigderson extractor,
stated below.

4[RVW01] stated their result for non-strong extractors, but as they mentioned, the strong version result follows
readily by using strong extractors in their composition.
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Theorem 18 (GW extractor [GW94], Theorem 5.3 of [RVW01]) For any ε > 0 and 0 <
∆ < n, there exists an explicit (n−∆, ε)-randomness extractor

GW : {0, 1}n × {0, 1}d → {0, 1}n,

with the seed length d = ∆ + 2 log(1/ε) + 2.

The GW extractor is obtained by using d truly random bits to do a random walk on an expander
graph G of size 2n. Specifically, the source x specifies a vertex in G and the seed r specifies a
sequence of edges. The output y = GW(x, r) ∈ G is the final vertex of the walk starting from x
and using edges r. One key property of the GW extractor is that given y and r, the source x is
uniquely determined and can be computed efficiently by taking reverse walk from y.

Given the GW extractor, the RVW extractor is defined as follows.

RVW(x1 ◦ x2, r) = GW(x1,Ext2(x2, r)).

Namely, we apply Ext2 to the second part of the source x2 to extractor a short randomness, and
use it as a seed to extract randomness from the first part of the source x1 using the GW extractor.

We proceed to argue that the RVW extractor is invertible. We need to show that given an
output y ∈ {0, 1}n1 and a seed r ∈ {0, 1}d2 , we can efficiently generate a uniform x ∈ {0, 1}n such
that RVW(x, r) = y. The main observation is that, for every x2 ∈ {0, 1}n2 , there exists a unique
x1 ∈ {0, 1}n1 such that RVW(x1 ◦x2, r) = y, since x2 and r determines z = Ext2(x2, r), and then y
and z determines x1 by the property of the GW extractor. Furthermore, this x1 can be efficiently
computed given x2, y, r. Therefore, to generate a uniform x ∈ {0, 1}n such that RVW(x, r) = y, we
can simply sample a uniformly random x2 and compute the corresponding x1.

The extractor in Lemma 16 is constructed by instantiating Ext2 using the best known ex-
plicit strong randomness extractor of Guruswami, Umans, and Vadhan [GUV09], and hence it is
invertible.

5.2 Derandomized Generalized Raz’s Lemma

As mentioned, one of our main observation is that the generalized Raz’s Lemma can be deran-
domized using an average-case randomness extractor. In this section, we formalize and prove our
derandomized generalized Raz’s Lemma as follows. We will use this lemma to prove our deran-
domized parallel repetition theorem in the next section.

Lemma 19 (Derandomized Generalized Raz’s Lemma) Let Ext : {0, 1}`×{0, 1}d → {0, 1}t
be a strong average-case (` − ∆, ε)-randomness extractor. Let δ = 2−∆. Let (H,X) be a joint
distribution over {0, 1}∗×{0, 1}` such that H and X are independent, and X ≡ U` is uniform. Let
E be an event over (H,X) with Pr[E] ≥ δ. Then,

1

D

∑
i∈{0,1}d

SD((H,Ext(X, i))|E , (H|E , Ut)) ≤ ε.

Proof. Let (H̃, X̃) , (H,X)|E . We claim that

H∞(X̃|H̃) ≥ n−∆,
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and use the claim to prove the lemma first. Since H∞(X̃|H̃) ≥ n−∆, and Ext is a strong average-
case (n−∆, ε)-randomness extractor, we know that (Ud, H̃,Ext(X̃, Ud)) is ε-close to (Ud, H̃, Um).
The lemma follows by observing that

SD((Ud, H̃,Ext(X̃, Ud)), (Ud, H̃, Um))

=
1

D

∑
r∈{0,1}d

SD((H̃,Ext(X̃, r)), (H̃, Um))

=
1

D

∑
r∈{0,1}d

SD((H,Ext(X, r))|E , (H|E , Um))

It remains to show the following claim.

Claim 20 Let (H,X) be independent with X ≡ U`. Let E be an event over (H,X) with Pr[E] ≥
2−∆. Let (H̃, X̃) , (H,X)|E. Then H∞(X̃|H̃) ≥ n−∆.

Proof of claim: By definition, we need to show that∑
h

PH̃(h) ·max
x

PX̃|H̃(x|h) ≤ 2−(n−∆).

Fix any h ∈ supp(H̃). For every x ∈ {0, 1}n, we have

PX̃|H̃(x|h) = Pr[X = x|(H = h) ∧ E]

=
Pr[(X = x) ∧ E|H = h]

Pr[E|H = h]

≤ Pr[X = x|H = h]

Pr[E|H = h]

=
2−n

Pr[E|H = h]

Hence, ∑
h

PH̃(h) ·max
x

PX̃|H̃(x|h) ≤
∑
h

Pr[H = h|E] · 2−n

Pr[E|H = h]
.

By Bayes’ rule,

Pr[H = h|E] =
Pr[H = h] · Pr[E|H = h]

Pr[E]
,

so ∑
h

PH̃(h) ·max
x

PX̃|H̃(x|h) ≤
∑
h

Pr[H = h] · 2−n

Pr[E]
≤ 2−(n−∆).

2

This completes the proof of the lemma.
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6 Proof of Our Main Theorem

In this section, we prove Theorem 6, our derandomized parallel repetition theorems for public-coin
interactive proofs and arguments. As outlined in Section 4, we derandomize the parallel verifier
using randomness extractors, and we prove Theorem 6 via an efficient black-box reduction a la
H̊astad et. al. [HPWP10]. In Section 6.1, we present a formal description of our construction and
prove our main lemma (see Lemma 21). Then we prove Theorem 6 using the lemma in Section 6.2

6.1 Our Construction and Main Reduction Lemma

Let Ext : {0, 1}` × {0, 1}d → {0, 1}t be an extractor, and Π be a (m, t)-public-coin protocol. Let
D = 2d and we identify {0, 1}d with [D]. We define a D-fold derandomized parallel repetition
ΠExt = (PD, VExt) of Π, where the derandomized verifier VExt is defined in Figure 1.

Let Ext : {0, 1}` × {0, 1}d → {0, 1}t be an extractor. Define a derandomized verifier VExt:

• At each round j ∈ [m], VExt samples a uniformly random xj ← U`, computes

(yj,1, . . . , yj,D) = (Ext(xj , 1), . . . ,Ext(xj , D)),

and sends ~yj = (yj,1, . . . , yj,D) to PD.

• At the end of interaction, VExt accepts iff all D subverifiers accept.

Figure 1: Formal description of the derandomized verifier VExt in ΠExt.

Note that this implicitly defines a derandomizer G : {0, 1}m·` → {0, 1}m·D·t. We note that
since VExt’s messages in different rounds are independent, VExt can simply send xj ∈ {0, 1}` to
PD, who can compute ~yj by himself. This makes ΠExt remain public-coin and reduces the verifier
communication complexity.

We shall show that if Ext is a good randomness extractor, then G is a good oblivious deran-
domizer. We prove this by a black-box reduction, showing that there is a prover strategy P ∗ for Π
such that given oracle access to an adversary PD∗ that convinces VExt with a certain probability,
P ∗ can convince V with a much higher probability. Formally, we prove the following lemma.

Lemma 21 Let Ext : {0, 1}` × {0, 1}d → {0, 1}t be a strong, average-case (` − ∆, ε)-randomness
extractor. Let δ = 2−∆. Let Π be a (m, t)-public-coin protocol and ΠExt the corresponding deran-
domized parallel protocol. There exists a prover strategy P ∗ such that for every n ∈ N and common
input z ∈ {0, 1}n, and every parallel prover strategy PD∗, the following holds.

1. Pr[
〈
PD∗, VExt

〉
(z) = 1] ≥ δ

⇒ Pr
[〈
P ∗(P

D∗), V
〉

(z) = 1
]
≥ 1− 2 ·m · ε.

2. If in addition, Ext is invertible, then P ∗(·) runs in time poly(n, ε−1, δ−1) given oracle access
to PD∗.
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We proceed to prove the lemma. We first note that we can assume without loss of generality
that the parallel prover PD∗ is deterministic, since we can fix PD∗’s coins without hurting the
success probability of PD∗ too much. We also note that in this case, the interaction (PD∗, VExt)
can be described by VExt’s coins (x1, . . . , xm).

Definition of P ∗. We consider a reduction prover P ∗rej who interacts with V by simulating the

interaction between PD∗ and VExt and uses a rejection sampling strategy of [HPWP10]. More
precisely, P ∗rej selects a uniformly random coordinate i ∈ [D] to embed V in VExt. At each round
j ∈ [D], upon receiving the external verifier V ’s message, P ∗ interprets it as Vi’s message yj,i, and re-
peatedly samples a random continuation of (PD∗, VExt) until he finds an accepting continuation,
i.e., VExt accepts at the end of interaction. Note that sampling a random continuation amounts to
sampling a uniformly random xj conditioned on Ext(xj , i) = yj,i, and sampling uniformly random
xj+1, . . . , xm. Once an accepting continuation is found, P ∗rej chooses the corresponding xj to simu-

late VExt at this round, and forward the i-th coordinate of PD∗’s message to V . If P ∗rej fails to find

an accepting continuation in M , 1/δε trials, then P ∗rej simply aborts.
Note that when Ext is invertible, P ∗rej can sample a random continuation efficiently, and hence

P ∗rej runs in time poly(n, ε−1, δ−1), as asserted in Lemma 21. The proof of the first item is very
similar to the proof of parallel repetition theorem for public-coin protocol in [HPWP10], with the
difference that application of the generalized Raz’s Lemma is replaced by a derandomized version.

To lower bound the success probability of P ∗rej , we refer to the interaction (P ∗rej , V ) as a real
experiment, and compare it with an ideal experiment, defined as follows.

Ideal Experiment (P̃ ∗rej , Ṽ
∗
rej). The ideal experiment (P̃ ∗rej , Ṽ

∗
rej) also simulate the interaction of

(PD∗, VExt) as (P ∗rej , V ), but with the following two differences. First, at each round j the verifier

Ṽ ∗rej , instead of choosing the message yj,i uniformly at random, chooses yj,i using rejection sampling

as well. Namely, Ṽ ∗rej repeatedly simulates a random continuation of (PD∗, VExt) until an accepting
continuation is found, and choose the corresponding yj,i. Second, in the rejection sampling, instead
of using bounded number of samples, they sample unbounded number of times until an accepting
continuation is found.

Let us look at the ideal experiment closely. Let E denote the event of accepting interaction, i.e.〈
PD∗, VExt

〉
= 1. Note that performing rejection sampling is equivalent to selecting a random next

message conditioned on E, and the interaction (P̃ ∗rej , Ṽ
∗
rej) is equivalent to choosing a uniformly

random accepting interaction of (PD∗, VExt). Recall that the interaction (PD∗, VExt) can be de-
scribed by VExt’s randomness (X1, . . . , Xm). The outcome of (P̃ ∗rej , Ṽ

∗
rej) is simply (X1, . . . , Xm)|E .

Note that Ṽ ∗rej accepts iff Vi of VExt accept, we have Pr[〈P̃ ∗rej , Ṽ ∗rej〉 = 1] = 1.
We next argue that the ideal and the real experiments are statistically close, which would give

the desired lower bound on the success probability of P ∗. Recall that there are the following two
differences of the real experiment from the ideal one.

1. At each round j, V chooses a uniformly random yj,i instead of conditioning on E.

2. P ∗rej may abort when he fails to find an accepting continuation in M samples.

We will bound the statistical distance incurred by these differences round by round, and combine
it using the following hybrid argument. Consider the following hybrid experiments Hj , where in the
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first j rounds of the interaction, both parties choose messages according to the ideal experiment
(P̃ ∗rej , Ṽ

∗
rej), and for the remaining rounds, they choose messages according to the real experiment

(P ∗rej , V ). Clearly, H0 is the real experiment, and Hm is the ideal one. We will argue that the
statistical distance between hybrids Hj−1 and Hj is at most 2ε for every j ∈ [m], and hence the
statistical distance between the ideal and real experiments is at most 2mε.

Now, the only difference between Hj−1 and Hj is at the j-th round, where the differences are
precisely the above two items. We handle them separately, by further considering an intermediate
hybrid H′j , which is the same as Hj , except that at the j-th round, the prover chooses his message
according to P ∗rej instead of P̃ ∗rej , i.e., he aborts when he fails to find an accepting continuation in
M samples.

We first bound the statistical distance between Hj−1 and H′j , where the only difference is Item
(1) at the j-th round. We upper bound it by ε using the derandomized generalized Raz’s Lemma
(see Lemma 19 in Section 5.2) as follows.

Let H = (X1, . . . , Xj−1). Note that the first j − 1 rounds interaction of both Hj−1 and H′j is
simply H|E , independent of which coordinate i ∈ [D] played by the verifier. Hence, we can think
of the coordinate i ∈ [D] is chosen uniformly random at the beginning of the j-th round. At the
j-th round, the verifier in Hj−1 simply chooses a random yj,i ← Ut, and the verifer in H′j chooses
yj,i according to Ext(Xj , i)|H,E . The statistical difference is exactly

1

D

∑
i∈{0,1}d

SD((H,Ext(Xj , i))|E , (H|E , Ut)),

which is upper bounded by ε by Lemma 19.
We next bound the statistical distance between H′j and Hj , where the only difference is Item

(2) at the j-th round. Note that this amounts to bound the aborting probability of P ∗rej at the j-th
round with the history chosen according to the ideal experiment (X1, . . . , Xj−1, Yj,i)|E . This step is
exactly the same as [HPWP10], which we repeat as follows. By Lemma 2 of [HPWP10], when the
prover uses rejection sampling to find an accepting continuation, the expected number of samples
needed is 1/Pr[E] (averaging over the history). Hence, by a Markov inequality, the probability that
P ∗rej aborts is at most (1/Pr[E])/M ≤ ε. Therefore, the statistical distance between H′j and H′j is
at most ε. We refer the reader to [HPWP10] for further details about computing the expectation.

To summarize, the above hybrid argument shows that the statistical distance between the ideal
and the real experiments is at most 2mε. Since Pr[〈P̃ ∗rej , Ṽ ∗rej〉 = 1] = 1, it follows that

Pr[〈P ∗rej , V 〉 = 1] ≥ 1− 2 ·m · ε,

which completes the proof of Lemma 21.

6.2 Proof of Theorem 6

In this section we prove Theorem 6 using Lemma 21 and randomness extractors from Lemma 16 and
15. The reason for using two extractors is that in the case of interactive proofs, the reduction P ∗

does not need to be efficient, and hence we can use any strong average-case extractor. In contrast,
for interactive arguments, we need to use a invertible extractor to ensure that the reduction is
efficient.
Proof. (of Theorem 6) We derandomize (m, t)-public-coin interactive proofs using the con-
struction in previous section with the extractor from Lemma 15. More precisely, given parameters
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m, t, ε, δ, and γ, we set ∆ = log(1/δ) and the error parameter ε0 of the extractor by ε0 = ε/(8m).
By Lemma 15, there exists a strong (`−∆, ε0)-randomness extractor Ext : {0, 1}`×{0, 1}d → {0, 1}t
with d = O(log ∆ + log(1/ε0)) and ` = t + (1 + γ)∆ + O(log(1/ε0)). By Lemma 13, Ext is also a
strong average-case (`−∆, 3ε0)-randomness extractor. Let k = 2d. Let G : {0, 1}m·` → {0, 1}k·m·t
be the oblivious derandomizer constructed using this Ext in our construction in the previous section.
Note that

s = m · ` = m · (t+ (1 + γ)∆ +O(log(m/ε))), and k = poly(m, log(1/ε), log(1/δ)),

as stated in the theorem.
We proceed to show that G is an ((1 − ε) 7→ δ)-oblivious derandomizer for (m, t)-public-coin

interactive proofs. Let Π be a (m, t)-public-coin interactive proofs for a language L with soundness
error at most ε, and let ΠG be the induced derandomized parallel repetition of Π. If ΠG has
soundness error greater than δ, then there exists some P k∗ and infinitely many inputs z /∈ L such
that

Pr[
〈
P k∗, VG

〉
(z) = 1] ≥ δ.

By Lemma 21, there exists an adversary P ∗ such that on these inputs,

Pr[〈P ∗, V 〉 (z) = 1] ≥ 1− 2 ·m · (3ε0) > 1− ε,

contradicting to the fact that Π has soundness error at most 1 − ε. Therefore, ΠG has soundness
error at most δ, which completes the proof of the theorem.

The proof for the case of interactive arguments follows exactly the same line as the above proof,
except that we use a invertible extractor from Lemma 16 and add a negligible slackness to ensure
that the reduction is efficient. We omit the detail to avoid repetitive arguments.

7 Lower Bounds for Public-coin Protocols

In this section, we prove the following formal version of Theorem 2, where we present a specific
protocol for which every statistcally-sound derandomizer that reduces soundness error from 1/2 to
δ must use at least m · log(1/δ) − O(1)-bits of extra randomness, and for which the existence of
more randomness efficient computationally-sound derandomizer implies the existence of one-way
functions.

Theorem 22 For every polynomially bounded m : N → N, there exists a m-round public-coin
interactive proof Π (for the empty language L) with (statistical) soundness error at most 1/2 such
that the following holds. For every parameter δ : N→ [0, 1], there does not exist a derandomizer G
for Π that decreases the soundness error to δ and uses only

m · (log(1/δ)− 3)

extra bits of randomness.
Additionally, the existence of a computationally-sound derandomizer that decreases the sound-

ness error to δ − ngl and uses only m · (log(1/δ)− 3) extra bits of randomness instead implies the
existence of one-way functions.
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The protocol Π asserted in Theorem 22 is very simple – at each round, the prover speaks first
with the goal of guessing the verifier’s next message. More precisely, at each round i, P sends yi to
V , who sends back a random message xi ∈ {0, 1}t to P for some message length t that we choose
later, and at the end of interaction, V accepts iff at least one guess yi = xi. We refer to such
protocols as (m, t)-Guess-Next-Message Protocol. A formal description of Π can be found in
Figure 2.

Let m, t be parameters. Define (m, t)-Guess-Next-Message Protocol Π = (P, V ):

On a common input z ∈ {0, 1}n

• For each round i = 1, . . . ,m,

– P sends a random message yi ∈ {0, 1}t to V .

– V sends a random message xi ∈ {0, 1}t to P .

• V accepts iff there exists some xi = yi.

Figure 2: Formal description of the (m, t)-Guess-Next-Message protocol Π.

Clearly, no matter what the prover’s strategy is, he can guess xi correctly with probability 2−t

at each round. Hence, the soundness error of Π is ε , 1 − (1 − 2−t)m. We choose the message
length t , dlogme+ 1 so that

1/4 ≤ ε ≤ 1/2.

To prove Theorem 22, we shall show that for every derandomizer G : {0, 1}s → {0, 1}k·(m·t) for
Π, the induced derandomized parallel protocol ΠG = (P k, VG) has soundness error at least

min
{
m · 2−(s/m)−1, 1/2

}
by constructing an adversary P k∗. Note that this implies that for every derandomizer G that uses
less than m ·(log(1/δ)−3) bits of extra randomness (i.e., s ≤ m ·t+m ·(log(1/δ)−3), the soundness
error of ΠG is greater than δ (recall that we set t = dlogme+ 1). This means that there does not
exists a derandomizer G for Π that uses only m · (log(1/δ)− 3) extra bits of randomness such that
ΠG has soundness error δ, which completes the proof of Theorem 22 for the case of statistical
soundness. For the case of computational soundness, we further show that the adversary P k∗ can
be approximated efficiently with inverse polynomially small error if one-way functions do not exist.

We proceed to lower bound the soundness error of ΠG = (P k, VG) by constructing P k∗. Note
that in the interaction of ΠG, the verifier’s messages ~x = (x1, . . . , xm) ∈ {0, 1}k·t are drawn from
distribution ~X = (X1, . . . , Xm) , G(Us). For VG to accept, it suffices for P k∗ to guess some Xi

correctly. A natural adversary is to let P k∗ guess, at each round i, an optimal yi ∈ {0, 1}k·t based
on the verifier’s previous messages x<i = (x1, . . . , xi−1). Namely, P k∗ guesses yi that maximizes
the probability Pr[Xi = y1|X<i = x<i].

Indeed, it is not hard to see that P k∗ succeeds with good probability by the following simple
analysis: Define random variables αi , maxyi Pr[Xi = y1|X<i = x<i]. Clearly, P k∗ can win with

probability αi at each round i. Noting that ~x ← ~X = G(Us), we have
∏m

i=1 αi ≥ 2−s holds with
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probability 1. It follows that Pr[∃αi ≥ 2−s/m] = 1. Therefore, P k∗ can succeed with probability at
least 2−s/m.5

One can preform a more careful analysis to show that, in fact, Pr[
〈
P k∗, VG

〉
= 1] ≥ m ·2−s/m−1.

However, approximating P k∗ efficiently under the assumption that one-way functions do not exist,
while doable, is somewhat complicated.

We instead lower bound the soundness error of ΠG by a less careful adversary P̃ k∗, who simply
samples a random yi ← Xi|X<i=x<i as his guess of xi. We show in the following lemma that P̃ k∗

can already succeed with desired probability.

Lemma 23 The success probability of P̃ k∗ is at least

e−m·2
−s/m ≥ min

{
m · 2−(s/m)−1, 1/2

}
.

Proof. We instead upper bound the probability that VG rejects. Let p(·) denote the probability
mass function of ~X. For example, p(x1) = Pr[X1 = x1] and p(xi|x<i) = Pr[Xi = xi|X<i = x<i].
We can express the probability of the complement event as follows.

Pr[〈P ∗, VG〉 = 0]

≤ Pr[∀i ∈ [m], Xi 6= Yi]

=
∑
x1

Pr[X1 = x1 ∧ Y1 6= x1] ·
∑
x2

Pr[X2 = x2 ∧ Y2 6= x2|X1 = x1] · · ·
∑
xk

Pr[Xk = xk ∧ Yk 6= xk|X<k = x<k]

=
∑
x1

p(x1) · (1− p(x1)) ·
∑
x2

p(x2|x1) · (1− p(x2|x1)) · · ·
∑
xm

p(xm|x<m) · (1− p(xm|x<m))

≤
∑
~x

p(~x)e−(p(x1)+p(x2|x1)+···+p(xm|x<m))

≤
∑
~x

p(~x)e−m·(p(x1)·p(x2|x1)...p(xm|x<m))1/m

=
∑
~x

p(~x)e−m·p(~x)1/m

where the first inequality uses (1 − x) ≤ e−x and the second inequality uses the arithmetic-mean-
geometric-mean inequality and monotonicity of the exponential function. Recall that ~X = G(Us),
so p(~x) ≥ 2−s for every ~x, and ∑

~x

p(~x)e−m·p(~x)1/m

≤
∑
~x

p(~x)e−m·(2
−s)1/m

= e−m·2
−s/m

≤ max{1− (m · 2−s/m)/2, e−1},
5This simple analysis is sufficient to show that the randomness complexity of G need to depend on the round

complexity m, but only for sufficiently small soundness error δ ≤ 1/m.
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where the last inequality uses the fact that e−x ≤ 1− x/2 for 0 ≤ x ≤ 1. Therefore,

Pr[
〈
Pk∗, VG

〉
= 1] ≥ min{m · 2−(s/m)−1, 1/2},

as desired.
The above lemma shows that the soundness error of ΠG is at least min

{
m · 2−(s/m)−1, 1/2

}
,

which as argued, implies Theorem 22 for the case of statistical soundness. For the case of com-
putational soundness, recall that if one-way functions do not exist, then one can efficiently sample
a random pre-image of any efficient function [IL89] with inverse polynomially small error. This
implies that the above P̃ k∗ can be approximated efficiently with inverse polynomially small error
assuming that one-way functions do not exist, and completes the proof of the case of computational
soundness.

8 Lower Bounds for Private-coin Protocols

In this section, we present our impossibility result for non-trivial derandomization of the parallel
repetition of private-coin protocols. We exhibit a sepcific private-coin protocol such that parallel
repetition of the protocol cannot be derandomized non-trivially in the following strong sense –
decreasing the randomness complexity of the parallel verifier by one would increase the soundness
error by a factor of two. Formally, we prove the following theorem.

Theorem 24 For every polynomially bounded t : N→ N, there exists a 3-message private-coin in-
teractive proof Π (for the empty language L) with randomness complexity t and (statistical) sound-
ness error 1/2 such that the following holds. For every polynomially bounded s, k : N → N and
every efficient G : {0, 1}s → {0, 1}k·t, the corresponding derandomized parallel protocol ΠG has
(statistical) soundness error at least

ε ,
2k·(t−1)

2s + 2k·(t−1)
≥ min

{
2−(s−(t−1)·k+1), 1/2

}
.

Furthermore, if ΠG has computational soundness error less than ε − ngl, then one-way functions
exist.

Note that by padding dummy messages, Theorem 24 can be extended to m-message protocols
with m > 3 readily. We mention that Theorem 3 can be derived from Theorem 24 readily as a
simple corollary.

To prove Theorem 24, we consider the following simple “guess-with-hint” protocol Π: the
prover’s goal is to guess the verifier’s coins, with the help of a hint from the verifier. More precisely,
P first sends a hash function h : {0, 1}t → {0, 1}` to V , who sends back the hashed value z =
h(x) ∈ {0, 1}` of its coins x ∈ {0, 1}t to P . Then based on the hint z, P sends a guess y to V ,
who accepts iff x = y. We refer to this protocol as (t, `)-Guess-with-Hint protocol, and a formal
description of the protocol can be found in Figure 3.

It is not hard to see that the soundness error of Π is exactly 2−(t−`), since an adversarial prover
can readily learn ` bits of information about the secret x from the hint z, and the secret x has
only t bits of entropy. The protocol asserted in Theorem 24 is simply the (t, t−1)-Guess-with-Hint
protocol. Nevertheless, we will present our analysis for a general (t, `)-Guess-with-Hint protocol Π.
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Let t, ` be parameters, and H = {h : {0, 1}t → {0, 1}`} be a pair-wise independent hash function
family. Define (t, `)-Guess-with-Hint Protocol Π = (P, V ):

On a common input z ∈ {0, 1}n

• P picks a random h← H and sends h to V .

• V sends z = h(x) ∈ {0, 1}` to P , where x ∈ {0, 1}t is the random coins of V .

• P sends y ∈ {0, 1}t to V .

At the end, V accepts iff x = y.

Figure 3: Formal description of the (t, `)-Guess-with-Hint protocol Π.

For the parallel repetition of Π, a key observation is that the k-fold parallel repetition Πk is
simply a (k · t, k ·`)-Guess-with-Hint protocol, since the concatenation of pairwise independent hash
functions is again a pairwise independent hash function.

Let us proceed to consider a derandomizer G : {0, 1}s → {0, 1}k·t and the corresponding deran-
domized parallel protocol ΠG. Now, note that the prover can potentially learn k · ` bits information
from the hint but the secret x = (x1, . . . , xk) has only s bits of entropy, the soundness error of ΠG

could be as large as 2−(s−k·`). This turns out to be essentially true. However, since the secrete
x← G(Us) is not uniform, the analysis becomes more involved.

In what follows, we prove two lemmas regarding the soundness property of Π and ΠG respec-
tively, form which Theorem 24 follows immediately.

Lemma 25 The (t, `)-Guess-with-Hint protocol Π defined in Figure 3 has soundness error at most
2−(t−`). Furthermore, if there exists a surjective function h : {0, 1}t → {0, 1}` in the pair-wise
independent hash family H used in Π, then Π has soundness error 2−(t−`).

Lemma 26 Let G : {0, 1}s → {0, 1}k·t be a derandomizer, and ΠG be the induced derandomized
parallel repetition of the (t, `)-Guess-with-Hint protocol Π defined in Figure 3. ΠG has soundness
error at least

ε ,
2k·`

2s + 2k·`
≥ min

{
2−(s−`·k+1), 1/2

}
.

Furthermore, if ΠG has computational soundness less than ε− ngl, then one-way functions exist.

Proof. (of Lemma 25) We first upper bound the soundness error of Π. Note that it suffices to
show that for every deterministic adversary P ∗,

Pr[〈P ∗, V 〉 = 1] ≤ 2−(t−`).

Let P ∗ be a deterministic adversary, and h ∈ H be the hash function chosen by P ∗. Let X and
Z = h(X) denote the verifier’s coins and the hashed value. Note that conditioned on Z = z, X|Z=z

is simply a uniform distribution over h−1(z), and hence P ∗ can guess x ← X|Z=z correctly with

20



probability at most 1/|h−1(z)|. We have

Pr[〈P ∗, V 〉 = 1]

=
∑

z∈{0,1}`
Pr[Z = z] · Pr[P ∗(Z) = X|Z = z]

≤
∑

z∈{0,1}`

|h−1(z)|
2t

· 1

|h−1(z)|

=
∑

z∈supp(Z)

1

2t

≤ 2−(t−`).

On the other hand, to lower bound the soundness error of Π, we construct an adversary P ∗

with success probability 2−(t−`) as follows.

• In the first message, P ∗ sends a surjective hash function h ∈ H to V .

• Upon receiving the hashed value z from V , P ∗ sends an arbitrary pre-image y ∈ h−1(z) to V .

Note that as long as P ∗’s guess is in the pre-image h−1(z), P ∗’s guess would be correct with
probability 1/|h−1(z)|. We have

Pr[〈P ∗, V 〉 = 1]

=
∑

z∈{0,1}`
Pr[Z = z] · Pr[P ∗(Z) = X|Z = z]

=
∑

z∈{0,1}`

|h−1(z)|
2t

· 1

|h−1(z)|

=
∑

z∈supp(Z)

1

2t

= 2−(t−`),

where the last equality uses the fact that h is surjective.
Proof. (of Lemma 26) Recall that Πk is equivalent to the (k · t, k · `)-Guess-with-Hint protocol,
and VG generates coins according to the distribution X , G(Us). To lower bound the soundness
error of ΠG, consider the following prover strategy P ∗, who simply uses a random h and guess a
random y ← X|h(X)=z after seeing the hint z. Namely,

• In the first message, P ∗ chooses a random h← Hk and sends h to VG.

• Upon receiving z ∈ {0, 1}k·` from VG, P ∗ samples y ← X|h(X)=z as his guess of x, and sends
y to VG.

We shall show that

Pr[〈P ∗, VG〉 = 1] ≥ 2k·`

2s + 2k·`
. (1)
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By definition, we can express the success probability of P ∗ as follows.

Pr[〈P ∗, VG〉 = 1] =
∑
h

Pr[H = h] ·
∑
z

Pr[h(X) = z] · Pr[X = Y |h(X) = z].

Recall that Y is drawn from distribution X|h(X)=z, Pr[X = Y |h(X) = z] is simply the collision
probability of X|h(X)=z, which is at least 1/|h−1(z)|. Hence, we have

Pr[〈P ∗, VG〉 = 1] ≥
∑
h

Pr[H = h] ·
∑
z

Pr[h(X) = z] · 1

|h−1(z)|
= E

H,X

[
1

|H−1(H(X))|

]
.

It remains to lower bound the expectation. We shall show that for any x ∈ supp(X),

E
H

[
1

|H−1(H(x))|

]
≥ 2k·`

2s + 2k·`
.

This clearly implies Eq. (1).
For every x′ ∈ supp(X), define an indicator random variable Ax′ such that Ax′ = 1 iff H(x) =

H(x′). Note that Ax = 1 with probability 1, and for every x′ 6= x, Pr[Ax′ = 1] = 2−k·` by pairwise
independence of H. We have

E
[
|H−1(H(X))|

]
=
∑
x′

E[Ax′ ] = 1 +
supp(X)− 1

2k·`
≤ 2k·` + 2s

2k·`
,

where the last inequality follows by supp(X) ≤ 2s. Finally, by Jensen’s inequality,

E
H

[
1

|H−1(H(x))|

]
≥ 1

E [|H−1(H(X))|]
≥ 2k·`

2s + 2k·`
.

This completes the proof of the first part of Lemma 26. For the furthermore part, recall that if
one-way functions do not exist, then one can efficiently sample a random pre-image of any efficient
function [IL89] with inverse polynomially small error. This implies that the above P ∗ can be
implemented efficiently (with inverse polynomially small error) and hence ΠG has computational
soundness error at least ε− ngl.
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