
LANGUAGE SUPPORT FOR RELIABLE,
EXTENSIBLE LARGE-SCALE SOFTWARE

SYSTEMS

A Dissertation

Presented to the Faculty of the Graduate School

of Cornell University

in Partial Fulfillment of the Requirements for the Degree of

Doctor of Philosophy

by

Xin Qi

January 2010

c© 2010 Xin Qi

ALL RIGHTS RESERVED

LANGUAGE SUPPORT FOR RELIABLE, EXTENSIBLE LARGE-SCALE

SOFTWARE SYSTEMS

Xin Qi, Ph.D.

Cornell University 2010

Large software systems, which often consist of many interacting components,

are hard to develop. For example, a compiler may contain tens of components

modeling abstract syntax tree (AST) nodes, and various components for com-

piler passes, and the implementation of each component is entangled with that

of many other components, as suggested in Wadler’s expression problem [84].

This dissertation describes language-based mechanisms to improve the reliabil-

ity and extensibility of large software.

Accessing uninitialized data is a significant source of software unreliabil-

ity, causing unpredictable or exceptional behavior. Existing object-oriented lan-

guages do not guarantee that objects are correctly initialized before use. This

dissertation presents masked types to ensure the soundness of object initializa-

tion, even with class inheritance and cyclic data structures. The type system

tracks initialization in a fine-grained, modular way, and embeds a graph theo-

retic algorithm for reasoning about the construction of complex data structures.

Class inheritance is an important way to reuse code in object-oriented lan-

guages, but it has two limitations when applied to large software systems. First,

a family of interacting classes cannot be extended together while preserving

their relationships, and second, new functionality cannot be added to existing

objects in a modular way. The dissertation presents two solutions: class shar-

ing and family sharing, both addressing the two limitations at once. Class shar-

ing is heterogeneous, which allows two families of classes to share some of their

members, but at the price of complex language mechanisms. Family sharing

is homogeneous: two shared families always share all of their member classes.

Shadow classes are introduced to ensure type safety, and provide the additional

expressiveness of open families.

Finally, the dissertation presents implementation techniques that make the

sharing mechanisms practical.

BIOGRAPHICAL SKETCH

Xin Qi was born in the coastal city of Tianjin in China, in 1981. He attended

Tsinghua University in Beijing, China, and earned a Bachelor of Engineering

degree in Computer Science in 2003. Although he became fluent in several pro-

gramming languages shortly after getting his first personal computer at the age

of twelve, Xin had never thought of doing serious research in the area of pro-

gramming languages before entering Cornell University in August 2003. Since

then, he has been studying for his doctorate degree, while enjoying the weather

in Ithaca, New York.

iii

To my wife Ruijie Wang.

iv

ACKNOWLEDGMENTS

First of all, I would like to thank sincerely my advisor, Andrew Myers, who

has always provided me with great advice, kind encouragement, and insight-

ful criticism. I have learned from him so many things, including how to do

research, how to present work, and how to play Illuminati, just to name a few.

I would also like to thank the other members of my thesis committee: David

Williamson and Dexter Kozen. I have benefited a lot from their teaching and by

talking to them about my research.

During my six years at Cornell, many friends and fellow students at the

Computer Science department have helped make the process of getting a Ph.D.

easier and more fun. Nate Nystrom, Steve Chong, and Michael Clarkson have

done a lot of great work that this thesis is built upon, and have provided very

helpful feedback and suggestions on my work. Michael George, Jed Liu, K.

Vikram, Lucas Waye, Fan Yang, Lantian Zheng, and Xin Zheng have been won-

derful colleagues, who I have always enjoyed working with. Sigmund Cherem,

Maya Haridasan, Mingsheng Hong, Kan Li, Huijia Lin, Hongzhou Liu, Wo-

jciech Moczydlowski, Krzysztof Ostrowski, Hui Tan, Dustin Tseng, Jonathan

Winter, Xinyang Zhang, and Changxi Zheng have been good friends and have

made my life as a graduate student much more interesting. I would also like to

thank Becky Stewart and Bill Hogan for helping me filling out numerous forms

and support letters and for answering all kinds of questions.

Finally, I would like to thank my parents for always being supportive during

my graduate study, and to thank especially my wife Ruijie for her ccompany,

understanding, and for providing the best motivation for getting my Ph.D.

v

TABLE OF CONTENTS

Biographical Sketch . iii
Dedication . iv
Acknowledgments . v
Table of Contents . vi
List of Tables . ix
List of Figures . x

1 Introduction 1
1.1 Software as systems of interacting components 2
1.2 Object initialization and null-pointer exceptions 4
1.3 Extending and adapting class families 5
1.4 Efficient implementation . 7
1.5 Outline . 8

2 Sound Object Initialization 11
2.1 Masked types . 11

2.1.1 Types for initialization state 13
2.1.2 Mask effects . 14
2.1.3 Must-masks . 16
2.1.4 Reinitialization . 18
2.1.5 Initializing cyclic data structures 20

2.2 Abstract masks . 24
2.2.1 Modular checking of abstract masks 26
2.2.2 Mask algebra . 28

2.3 Formal semantics and soundness 30
2.3.1 Grammar . 30
2.3.2 Class member lookup . 33
2.3.3 Subtyping . 33
2.3.4 Expression typing . 36
2.3.5 Program typing . 38
2.3.6 Decidability of type checking 39
2.3.7 Operational semantics . 40
2.3.8 Type safety . 42
2.3.9 Proof of soundness . 42

2.4 Implementation . 67
2.4.1 Inserting default effects . 68
2.4.2 Transforming initialization code 69
2.4.3 Type checking . 69
2.4.4 Inner classes . 70

2.5 Experience . 70
2.5.1 LinkedList . 71
2.5.2 HashMap . 73

vi

2.5.3 TreeMap . 73
2.5.4 Summary . 73

2.6 Related work . 74

3 Improving Family Extensibility with Class Sharing 80
3.1 Sharing classes between families 81

3.1.1 Family inheritance . 81
3.1.2 Sharing declarations . 84
3.1.3 Views and view changes . 87
3.1.4 Dynamic object evolution via view change 90
3.1.5 Sharing constraints . 93

3.2 Protecting unshared state with masked types 95
3.2.1 Unshared fields . 95
3.2.2 In-place translation with unshared classes 97
3.2.3 Translation from the base family to the derived family . . 100

3.3 Formal semantics and soundness 101
3.3.1 Grammar . 101
3.3.2 Auxiliary definitions . 103
3.3.3 Class lookup . 103
3.3.4 Subclassing . 105
3.3.5 Prefix types . 105
3.3.6 Member lookup . 106
3.3.7 Final access paths and exactness 106
3.3.8 Type well-formedness . 108
3.3.9 Non-dependent bounding types 109
3.3.10 Type substitution . 109
3.3.11 Sharing relationships . 110
3.3.12 Typing rules . 111
3.3.13 Subtyping . 112
3.3.14 Program typing . 113
3.3.15 Operational semantics . 113
3.3.16 Runtime typing environments 116
3.3.17 Well-formed configurations 118
3.3.18 Soundness . 118

3.4 Experience . 133
3.4.1 Lambda compiler . 133
3.4.2 CorONA . 134

3.5 Related work . 136

4 Homogeneous Family Sharing 141
4.1 Class sharing without families . 141

4.1.1 From inheritance to sharing 141
4.1.2 Views and view changes . 143
4.1.3 Sharing relationships . 144

vii

4.2 Homogeneous family sharing . 145
4.2.1 Family inheritance . 145
4.2.2 Family sharing . 146
4.2.3 Shadow classes and shadow methods 150
4.2.4 Open families . 153

4.3 Formal semantics and soundness 156
4.3.1 Syntax . 157
4.3.2 Lookup functions . 158
4.3.3 Sharing and subclassing . 160
4.3.4 Prefix types . 160
4.3.5 Type substitution . 161
4.3.6 Static semantics . 161
4.3.7 Operational semantics . 165
4.3.8 Soundness . 167

4.4 Experience . 181

5 Efficient Implementation of Family Extensibility and Class Sharing 185
5.1 Background on implementing family inheritance 187

5.1.1 Static translation . 188
5.1.2 Dynamic representation with data structures 192

5.2 Classloader-based implementation of family inheritance 196
5.2.1 Compiler translation . 197
5.2.2 Classloader-based run-time system 200
5.2.3 Load-time optimizations . 202
5.2.4 Java compatiblity . 203

5.3 Implementing sharing . 204
5.3.1 Translating classes . 205
5.3.2 Supporting views and view changes 205
5.3.3 Implementing heterogeneous class sharing 207
5.3.4 Implementing homogeneous family sharing 209

5.4 Results . 211
5.4.1 Microbenchmarks for sharing 211
5.4.2 Jolden benchmarks . 212
5.4.3 Tree traversal . 213

5.5 More efficient implementation . 214

6 Conclusions 217

Bibliography 220

viii

LIST OF TABLES

5.1 Microbenchmarks: average time per operation, in ns. 211
5.2 Results for the jolden benchmarks. Average time over ten runs,

in seconds. 212
5.3 Comparing view changes with explicit translation. Average time

over ten runs, in seconds. 214

ix

LIST OF FIGURES

2.1 Code with an initialization bug . 12
2.2 Object recycling . 19
2.3 Initialization of a tree with parent pointers 21
2.4 Mask dependencies . 22
2.5 The tree example with abstract masks 25
2.6 Code that needs mask constraints 27
2.7 Grammar . 30
2.8 Class member lookup . 33
2.9 Static semantics . 34
2.10 Auxiliary definitions . 35
2.11 Well-formed expressions . 38
2.12 Program typing . 39
2.13 Small-step operational semantics 41
2.14 Well-formed heaps . 41

3.1 An expression family and a GUI family 82
3.2 Mixing display into expressions, with nested inheritance 82
3.3 Using class sharing to adapt Exp to TreeDisplay 86
3.4 Evolution of a network service package 92
3.5 Shared classes with unshared fields 95
3.6 Lambda calculus and pair compiler extension 98
3.7 In-place translation of the pair language 99
3.8 Grammar of the J&s calculus . 102
3.9 Classes . 104
3.10 Static semantics . 107
3.11 Paths and exactness . 108
3.12 Type well-formedness . 109
3.13 Type bounds . 109
3.14 Type substitution . 110
3.15 Program typing . 114
3.16 Definitions for operational semantics 115
3.17 Small-step operational semantics 117
3.18 Runtime typing environments . 117
3.19 Well-formed configurations . 118
3.20 Lambda compiler structure. Translator and some AST nodes not

shown. 133

4.1 A GUI button class and its extension 142
4.2 A base GUI family and an extension 145
4.3 Shadow classes and shadow methods 150
4.4 Sketch of the IMP compiler structure. Shadow classes in dashed

boxes. 154

x

4.5 In-place translation for loop statements 155
4.6 Syntax of JHS . 157
4.7 Lookup functions . 159
4.8 Sharing and subclassing . 160
4.9 Auxiliary definitions . 162
4.10 Static semantics: auxiliary judgments 163
4.11 Static semantics: sharing and subtyping 164
4.12 Static semantics: expressiong typing 164
4.13 Program typing . 165
4.14 Definitions for operational semantics 166
4.15 Small-step operational semantics 166
4.16 The view function . 167
4.17 Runtime typing environments . 168
4.18 Runtime configuration well-formedness 168
4.19 Compiler structure with heterogeneous sharing. Translator and

some AST nodes not shown. 182
4.20 Compiler structure with homogeneous sharing. Translator and

some AST nodes not shown. 182

5.1 Static class translation . 189
5.2 Updated class representation . 197
5.3 An example with a Java constructor 198
5.4 Illustration of translation of code in Figure 5.3. Name mangling

not shown for clarity. 199

xi

CHAPTER 1

INTRODUCTION

It has long been observed that much of the difficulty of building reliable soft-

ware systems arises from their size and complexity [6]. Large software systems

are challenging to develop because these systems contain many components

that interact in complex ways. Modular programming and object-oriented pro-

gramming are intended to help programmers manage interactions by allow-

ing related functions and data to be grouped together in modules or classes.

However, existing language mechanisms do not scale up to large systems con-

taining many classes, in which these classes interact both by reference and by

inheritance. As a result, practitioners have been relying on various conventions

and design patterns in order to improve the reliability and extensibility of soft-

ware systems. However, these mechanisms are usually tedious to implement

and sometimes only suitable for special cases, and the lack of language support

means that correct usage of these mechanisms is not statically enforced.

Therefore, new language mechanisms are desirable for developing reliable

and extensible software. This dissertation focuses on two problems that arise

with large collections of interacting classes:

• Accessing uninitialized data is a significant source of software unrelia-

bility. Existing object-oriented programming languages do not guarantee

that objects are correctly initialized before use; object initialization is there-

fore unsound. Accessing uninitialized data leads either to unpredictable

behavior (e.g., in C++) or to null-pointer exceptions (e.g., in Java).

• Large collections of interacting classes are hard to extend, evolve, and

1

reuse. Ordinary inheritance aims to support extension and reuse, but has

two important limitations. First, a family of interacting classes cannot be

extended at the same time while preserving their relationships, and sec-

ond, new functionality cannot be added to the objects of an existing class

without modifying the class.

This work addresses the above problems by extending existing languages

with light-weight, type-based mechanisms that help programmers initialize and

evolve interacting classes and their objects. Such a language-based solution has

the following benefits:

• Type safety. The compiler statically prevents the software from crashing

at run time due to incorrect usage of language mechanisms.

• Static reasoning. Types in source code capture valuable information about

invariants and contexts, and help programmers reason about code locally.

• Clean code. By eliminating complex, error-prone coding conventions and

design patterns, the source code becomes easier to understand and main-

tain.

1.1 Software as systems of interacting components

Large software systems often contain many interacting data structures, algo-

rithms, and interfaces. While working on these systems, developers must un-

derstand these interactions and ensure that as the code evolves, these interac-

tions are correctly preserved.

2

Programming language support has proved to be useful for helping pro-

grammers deal with the complexity of software systems. Many modern pro-

gramming languages provide modularity mechanisms that help programmers

engage in local reasoning about software components, so they can focus on one

component at a time.

Object-oriented programming has become a popular way to obtain local rea-

soning. It supports modularity through classes. Further, it supports reuse and

extensibility through class inheritance, which has many uses. In particular, in-

heritance makes possible software libraries whose classes are designed to be

conveniently inherited, and whose methods are intended to be overridden by

user-defined subclasses. In applications using these libraries, subclasses coexist

with—and sometimes replace—the superclasses they inherit from.

Unfortunately, these existing mechanisms for modularity and extensibility

do not scale up to large software systems. The problem is that large software

systems contain many classes, which interact with each other in complex ways,

creating dependencies that are hard to reason about. Classes interact by refer-

ence when objects of one class refer to objects of another, in which case the re-

ferring class depends on the publicly exposed interface of the referenced class.

Classes can also interact by inheritance, in which case the subclass depends on

the specialization interface [43]—and often on unspecified details of the superclass

implementation.

In large software systems, classes typically interact through both reference

and inheritance. The resulting complex dependencies among classes, and

among families of classes, are challenging for programmers who are design-

ing, maintaining, or reusing these software systems. This makes large software

3

systems expensive, unreliable, and even insecure.

1.2 Object initialization and null-pointer exceptions

In most object-oriented languages, objects are initialized via constructors. Dur-

ing initialization of one object, its constructor may in turn create and initialize

other referenced objects, and also invoke the object’s superclass constructor. But

in a system with many interacting classes, these other object initializations may

invoke arbitrarily complex code. There is therefore a danger that the original

object may be used before its initialization finishes.

In fact, in current object-oriented languages, object initialization is unsound:

fields of objects can be accessed before they are initialized. There is no sim-

ple fix to this problem; object-oriented programs often need to create complex

cyclic data structures where the need to manipulate partially initialized objects

is unavoidable.

Unsound initialization leads to unreliable or even insecure software. In C++,

accessing uninitialized fields has unpredictable results and may create security

vulnerabilities. The Java and C# languages avoid security problems by perform-

ing a default initialization on all fields, setting the values of all (object-typed)

fields to the special value null. However, if these null values are used in

places of the correctly initialized value, execution of the program is likely to

halt with a null-pointer exception.

The connection between unsound object initialization and null-pointer ex-

ceptions goes deeper than this argument suggests. In order to allow default

4

initialization, languages like Java and C# must treat the value null as a valid

member of every object type. Since every object can be null, almost every op-

eration on objects—invoking methods, reading or writing fields—must check

for null and potentially raise an exception that will crash the program. Null

pointer exceptions can happen almost anywhere in the code, and there is little

the compiler can do to help. This significantly hurts software reliability [10].

Recently there has been interest in controlling null-pointer exceptions

through non-null annotations and other means [25, 10, 42, 20]. But non-null an-

notations by themselves do not solve the problem of object initialization; in fact,

they make it all the more important because all non-null fields must be explicitly

initialized before use.

To solve the initialization problem, this dissertation proposes new language

mechanisms that make object initialization sound and that eliminate the possi-

bility of null-pointer exceptions.

1.3 Extending and adapting class families

The code of software systems needs to be extended, evolved, and reused. How-

ever, existing programming paradigms are not scalable in the following sense:

the programming effort required to make a change to code is not proportional

to the degree of change. Making a change to a large system often involves mak-

ing edits to many places throughout the system.

Through the mechanism of inheritance, object-oriented programming sup-

ports reuse, evolution, and extensibility. The advantage of inheritance is that it

5

is a relatively lightweight extensibility mechanism. Every object method implic-

itly serves as an interposition point where new behavior can be added through

overriding. This contrasts with more heavyweight approaches to extensibility

based on explicit parameterization of code, such as parameterized types [45],

parameterized mixins [5], and functors [54].

In our experience with the Polyglot extensible compiler framework [57], we

found that object-oriented inheritance does not adequately support extensibility

for systems containing interacting classes. To work around the limitations of

inheritance, we invented new design patterns and wrote Polyglot in a stylized

way using these design patterns. However, the design patterns were verbose,

error-prone, and not type-safe.

We (and others) have found that inheritance has two notable limitations.

The first limitation is that inheritance operates on one class at a time. Therefore,

interacting classes can only be extended individually, which does not support

coordinated changes that span multiple classes. For example, suppose there is

an inheritance hierarchy of classes rooted at class A. The programmer wants

to reuse this code by creating a second, similar hierarchy of classes with the

difference that every class has an additional field f. There is no way to use

inheritance to achieve this in a scalable, modular way. Inheritance is also inad-

equate for extending a set of classes whose objects interact according to some

protocol, a pattern that occurs in many domains ranging from compilers to user

interface toolkits.

A second limitation of inheritance is that new behavior or state cannot be

added to objects of an existing class without modifying the class definition. We

refer to this ability as adaptation, because the Adapter design pattern partially

6

addresses this problem. Adaptation differs from inheritance, where only objects

of new classes have the new behaviors. With adaptation, new behavior can be

added to instances of objects that are created by an existing library, or that are

deserialized from a file.

These limitations have been addressed separately by two lines of research. In

the first, the ability to extend classes as a group is provided by family inheritance

mechanisms, developed by the investigator and others [51, 24, 12, 71, 38, 56,

58]. The second line of research has explored language support for adaptation,

allowing modular addition of functionality to an existing class [13, 85, 3, 52].

However, no prior work has been done to fully integrate these two distinct, but

closely related approaches for software extensibility.

This dissertation presents class sharing, which I introduced in [65, 63], to pro-

vide the first full integration of the two kinds of extensibility, and to enable new

ways to develop extensible software systems.

1.4 Efficient implementation

Being expressive and type-safe does not automatically grant success to a lan-

guage mechanism. An efficient implementation would demonstrate that the

mechanism may work well in practice, and promote the adoption of the mech-

anism.

For nested inheritance and nested intersection, the original implementa-

tions presented in [56, 58] are not very satisfactory. The implementation in [56]

does not support scalable compilation, since it generates target code for implicit

7

classes that do not appear in the source code, which makes the compilation time

not proportional to the size of the source code. For example, compilation of a

small extension (less than 100 lines of code) of the Polyglot compiler framework

would take more than 30 minutes (on a 2004 laptop computer) and larger than

1GB of memory. On the other hand, the compiler in [58] is scalable, generating

code that is proportional to the size of the source code. However, the scalabil-

ity is achieved with a complex translation scheme that at run time uses various

data structures to handle operations like method dispatches and field accesses.

Therefore, the performance overhead is very large, with almost 6x slowdown

compared to Java [65]. Improvements on the implementation would reduce the

cost of applying these family extensibility mechanisms, and make these mecha-

nisms more appealing.

This dissertation demonstrates how to implement family inheritance in a

way that is both efficient and scalable, using a custom classloader on top of

a commercial Java virtual machine. The implementation is also extended to

support class sharing.

1.5 Outline

The rest of the dissertation is organized as follows. Chapter 2 presents a type

system that enforces sound object initialization, using masked types [64]. Lan-

guage mechanisms like mask effects, abstract masks, and conditional masks

make initialization safe even with interacting classes that are related through

class inheritance and mutual references. The soundness of the type system is

formally proved. Masked types are implemented in the J\mask language, a

8

mostly backward compatible extension to Java with no run-time overhead. Ex-

perience with the implementation shows that masked types introduce low an-

notation burden for the programmer, suggesting their utilities with large soft-

ware systems.

Chapter 3 and 4 describe two ways of integrating in-place extensibility and

family extensibility: (heterogeneous) class sharing [65] and homogeneous family

sharing [63]. Heterogeneous sharing supports sharing declarations between in-

dividual classes from different families, and allows families to share some of

their corresponding nested classes. Some nested classes might be left unshared,

either on purpose, or because of new subclasses introduced in one of the shared

families. Language mechanisms like sharing constraints and masked types are

used to ensure type safety, in the face of challenges created by these unshared

classes. On the contrary, homogeneous sharing lifts sharing to the level of fam-

ilies: sharing is declared between families, and is automatically applied to all

the nested classes. Shadow classes ensure that entire families are shared, even

with new subclasses introduced. The soundness of the type system is much

easier to establish, and sharing constraints and masked types are not needed.

Therefore, homogeneous family sharing presents a clean, safe, expressive, and

scalable solution to the problem of integrating in-place extensibility and family

extensibility. Soundness proofs for the type systems and experiences with the

languages are also presented.

Chapter 5 presents an efficient and scalable translation scheme for family

inheritance, and its extension to support class sharing as well. The key idea is

to use a custom classloader to synthesize code for implicit classes at run time.

Extensions for heterogeneous and homogeneous sharing are also included. The

9

performance is practical, especially considering the expressive power provided

by the language. Finally, this chapter describes ideas that may further reduce

the performance overhead.

Finally, Chapter 6 concludes the dissertation.

10

CHAPTER 2

SOUND OBJECT INITIALIZATION

Object initialization remains an unsatisfactory aspect of object-oriented pro-

gramming. In the usual approach, objects of a given class are created and initial-

ized only by class constructors. Therefore, when implementing class methods,

the programmer can assume that object fields satisfy an invariant established by

the constructors. However, in the presence of inheritance or mutual references

that form cycles, the methods of partly initialized objects may be invoked before

the invariants has been established, which may cause unexpected or unwanted

behavior—e.g., throwing null-pointer exceptions—and make reasoning about

object initialization non-modular.

This chapter presents a new solution to the object initialization problem,

based on a new type mechanism, masked types, implemented in the J\mask lan-

guage. The J\mask type system conservatively tracks initialization state of every

object, so a partially initialized object cannot be used where a fully initialized ob-

ject is expected. Mechanisms like mask effects and conditional masks make ini-

tialization safe with large-scale software systems with complicated inheritance

and referencing relationships between classes.

2.1 Masked types

Figure 2.1 illustrates a bug that can easily happen in an object-oriented language

like Java. In the class Point, representing a 2D point, the constructor calls a vir-

tual method display that prints the coordinates of the point. The two fields x

11

1 class Point {
2 int x; int y;
3 Point(int x, int y) {
4 this.x = x;
5 this.y = y;
6 display();
7 }
8 void display() {
9 System.out.println(x + " " + y);
10 }
11 }
12
13 class CPoint extends Point {
14 Color c;
15 CPoint(int x, int y, Color c) {
16 super(x, y);
17 this.c = c;
18 }
19 void display() {
20 System.out.println(x + " " + y + " " + c.name());
21 }
22 }

Figure 2.1: Code with an initialization bug

and y are properly initialized before display is called. However, in the sub-

class CPoint representing a colored point, the display method has been over-

ridden in a way that causes the added c field to be read before it is initialized,

resulting in a null pointer exception.

This example is simple, but in general, initialization bugs are difficult to pre-

vent in an automatic way. It would be too restrictive to rule out virtual method

calls on partially constructed objects. Further, the bug involves the interaction

of code from two different classes (Point and CPoint). An implementer of

CPoint might not have access to the code of Point and would not realize the

danger of overriding the display method in this seemingly reasonable way.

Our goal is to prevent code like that of class Point from type-checking, but

12

to allow complex, legitimate initialization patterns. The key observation is that

before the call to display on line 6, the fields in Point are initialized, but fields

of subclasses of Point are not. However, the type of the method display does

not prevent the partially initialized receiver from being passed to an overridden

version of the method that reads uninitialized fields, as in CPoint.

2.1.1 Types for initialization state

A masked type T\M, where M is a mask that denotes some object fields, is the

type T but without read access to the denoted fields. Masked types are a com-

pletely static mechanism, so a J\mask program is compiled by erasing masks.

No run-time penalty is paid for safe object initialization.

The simplest form of a mask is just the name of a field. For example, an object

of type CPoint\c is an instance of the CPoint class whose field c cannot be

read, perhaps because it has not been initialized. We say that the field c is masked

in this type.

A type with no mask means that the object is fully initialized. In typical

programming practice, this would be the ordinary state of the object, in which

its invariant is already established.

On entry to a constructor such as Point(), the newly created object has all

its fields masked. The actual class of the new object might be a subclass (for

example, CPoint), so on exit, subclass fields remain to be initialized. A subclass

mask, written C.sub, is used to mask all fields introduced in subclasses of C, not

including those of C itself. Therefore, just before line 4 in Figure 2.1, the object

13

being constructed has type Point\x\y\Point.sub. (While this type looks

complicated, it can be inferred automatically.)

When a field is initialized by assigning to it, the corresponding mask is re-

moved from the type of the object. For example, line 4 in Figure 2.1 assigns to

field x, so the type of this becomes Point\y\Point.sub. After the assign-

ment to y on the next line, the type of this becomes Point\Point.sub. Thus,

the initialization of various fields is recorded in the changing type of this. Be-

cause variables may have different types at different program points, J\mask has

a flow-sensitive type system.

Subclass masks such as Point.sub can be removed when the exact run-

time class of an object is known, because there are no subclass fields left to ini-

tialize. The type of a new expression is known exactly, as is the type of a value

of any class known not to have a subclass (in Java, a “final” class).

J\mask has a special mask ∗ as a convenient shorthand for masking all

fields, including those masked by the subclass mask. On entry to the CPoint

constructor, the object can be given type CPoint\∗, which is equivalent to

CPoint\x\y\c\CPoint.sub.

2.1.2 Mask effects

In J\mask, methods and constructors can have effects [48] that propagate mask

information across calls. For example, the J\mask signatures for the Point

constructor and the display method can be annotated explicitly with effect

clauses:

14

Point(int x, int y) effect * -> Point.sub

void display() effect {} -> {}

The effect of this Point constructor says that at entry to the constructor, all

fields are uninitialized (precondition mask *) and therefore unreadable; at the

end of the constructor, only fields introduced by subclasses of Point remain

uninitialized (postcondition mask Point.sub). Because the initial and final

masks of the display method are both {}, denoting the absence of any mask,

the method can be called only with a fully initialized object, and it leaves the

object fully initialized.

With these effects, the bug in Figure 2.1 would be caught statically. The

method display cannot be invoked on line 6, because there the type of this

is Point\Point.sub, which does not satisfy the precondition of display.

The J\mask compiler detects this unsafe call without inspecting any subclass of

Point.

This example suggests how mask effects make the J\mask type system mod-

ular. Mask effects explicitly represent the contract on initialization states that

a method is guaranteed to follow. This explicit contract allows the compiler

to type-check programs one class at a time, and also enables programmers to

reason about initialization locally.

Indeed, masked types and mask effects capture changes to initialization state

with enough precision that constructors in J\mask are essentially ordinary meth-

ods that remove masks from the receiver. However, for convenience and back-

ward compatibility, the J\mask language still has constructors.

15

To reduce the annotation burden, the J\mask language provides default ef-

fects for methods and constructors. Programmers do not normally have to

annotate code with effects or masks. For ordinary methods, the default is

{} -> {}; for constructors, the default effect is close to that shown above (see

Section 2.1.3).

The effects shown capture changes to the initialization state of the parameter

this, the receiver object. J\mask also supports effects on other parameters, as

shown in Section 2.1.5.

For simplicity, exceptions, which are rarely thrown during initialization any-

way, have been ignored in this paper. However, exceptions can be supported by

providing a postcondition for each exceptional exit path in the effect clause.

2.1.3 Must-masks

All the masks shown in Section 2.1.1 are simple masks. A simple mask S , e.g., f ,

∗, or C.sub, means that the fields it describe may be uninitialized. Thus, there is

a subtyping relationship T ≤ T\S , because it is safe to treat an initialized field as

one that may be uninitialized.

However, when an object is created, it is known that all the fields must be

uninitialized. J\mask uses must-masks, written S !, to describe fields that must

definitely be uninitialized. A must-masked type T\S ! is also a subtype of T\S ,

but T is not a subtype of T\S !.

One use of must-masks is for initialization of “final” fields, which is only

allowed when the field is must-masked, ensuring that the field is initialized ex-

16

actly once. Must-masks and the absence of masks roughly correspond to the no-

tions of definite unassignment and definite assignment in the Java Language Spec-

ification [31]. However, J\mask ensures that a final field cannot be read before

it is initialized, while Java does not. J\mask also lifts the limitation in Java that

final fields can only be initialized in a constructor or an initializer.

Must-masks are also used to express the default effect of a constructor of

class C, which is *! -> C.sub!. Objects start with all fields definitely unini-

tialized, which is represented with the initial mask *!. Constructors usually do

not initialize fields declared in subclasses, so the default postcondition mask is

C.sub!.

Must-masks impose restrictions on how an object can be aliased: if there

is a reference with a must-masked type, it must be the only reference through

which the object may be accessed; otherwise, the must-masked field might be

initialized through another reference to the object, invalidating the must-mask.

This does not preclude aliasing, but implies rather that other references have to

be through fields that are themselves masked.

J\mask uses typestate to keep track of initialization state. A problem with

most previous typestate mechanisms is that they require reasoning about po-

tential aliasing, to prevent aliases to the same object that disagree about the cur-

rent state. Aliasing makes it notoriously difficult to check whether clients and

implementations are compliant with protocols specified with typestate [4], and

much previous work on typestates requires complicated aliasing annotations or

linear types. J\mask is designed to work with no extra aliasing control mecha-

nism, which provides the added benefit of soundness in a multi-threading set-

ting, since operations on an object through aliases from other threads do not

17

invalidate typestates in the current thread.

The key to avoiding reasoning about aliasing is that if an assignment creates

an unmasked alias, then must-masks on both sides are conservatively converted

to corresponding simple (“may”) masks. For example, after the following code,

the type of both x and y is the simply masked type C\f:

C\f! x = ...;

C\f! y = x;

Similarly the following code also removes the must annotation from the type

binding of variable x, because z.g becomes an alias and the field g is not

masked in the type D of variable z:

C\f! x = ...;

D z = ...;

z.g = x;

The non-aliasing requirement on must-masks might seem restrictive, but it is

usually not a problem: must-masks typically appear near allocation sites, where

no alias has been created.

2.1.4 Reinitialization

Beyond initialization, masked types can help reasoning about reinitialization. A

mask can represent not only an uninitialized field, but also a field that must be

reassigned before further read accesses. To enforce reinitialization, a mask can

be introduced on the field, via the subtyping rule T ≤ T\ f .

18

For example, Figure 2.2 illustrates a custom memory management system

that manages a pool of recycled objects of the class Node. Actively used ob-

jects are not in the pool and store data in their d fields. Objects in the pool are

threaded into a freelist using their next fields. When a Node object is no longer

used, it is put into a pool by calling the recycle method; when a new instance

of Node is needed, the getNodemethod returns an object from the pool, if there

is any. Masked types can help ensure that the field d is reinitialized whenever

a Node object is retrieved from the pool and gets a second life. Of course, like

most custom memory management systems, the code in this example does not

guarantee that no alias exists after an object is recycled. Masked types are not

intended to enforce this kind of general correctness.

1 class Node {
2 Data d;
3 Node\d next;
4 }
5
6 class Pool {
7 Node\d head;
8 ...
9 Node\d\next getNode() {
10 if (head != sentinel) {
11 Node\d\next result = head;
12 head = head.next;
13 return result;
14 } else
15 return new Node();
16 }
17 void recycle(Node\next n) {
18 n.next = head;
19 head = n;
20 }
21 }

Figure 2.2: Object recycling

The type Node is a subtype of Node\d, and therefore the second assignment

(line 19) in method recycle type-checks, causing Node objects in the pool to

19

“forget” about the data stored in field d.

Masked types provide an additional benefit here. Objects in active use have

type Node\next, preventing traversal of the freelist from outside the Pool

class.

2.1.5 Initializing cyclic data structures

Many data structures that arise in practice contain circular references: for ex-

ample, doubly linked lists and trees whose nodes have parent pointers. Safe

initialization of these cyclic data structures poses a challenge. In object-oriented

languages, storing a reference to a partially initialized object is normally re-

quired, with no guarantee that the object is fully initialized before use.

J\mask explicitly tracks fields that point to partially initialized objects with

conditionally masked types, written T\ f [x1.g1, . . . , xn.gn]. The conditional mask

f [x1.g1, . . . , xn.gn] describes a field f referencing a partially initialized object,

which will become fully initialized when all fields xi.gi are initialized. In other

words, the removal of the mask on f is conditioned on the removal of all masks

on xi.gi.

Conditional masks are normally introduced by an assignment to a must-

masked field f , when the right-hand side of the assignment has more masks

than the declared field type. Consider, for example, a field assignment x.f =

y, where x has type T\ f !, y has type T ′\g, and the field f of class T has type

T ′. Note that T ′\g is not a subtype of T ′. J\mask makes this assignment safe by

changing the type of x to T\ f [y.g] after the assignment, showing that the field

20

x.f is still masked, but its mask should be removed upon the removal of the

mask on y.g.

1 class Node {
2 Node parent;
3 Node() effect *! -> *! { }
4 }
5
6 final class Leaf extends Node {
7 Leaf() effect *! -> parent! { }
8 }
9
10 final class Binary extends Node {
11 Node left, right;
12 Binary(
13 Node\parent!\Node.sub[l.parent] -> *[this.parent] l,
14 Node\parent!\Node.sub[r.parent] -> *[this.parent] r)
15 effect *! -> parent!, left[this.parent],
16 right[this.parent] {
17 this.left = l;
18 this.right = r;
19 l.parent = this;
20 r.parent = this;
21 }
22 }
23
24 Leaf\parent! l = new Leaf();
25 Leaf\parent! r = new Leaf();
26 Binary\parent!\left[root.parent]\right[root.parent]
27 root = new Binary(l, r);
28 root.parent = root; // Now root has type Binary.

Figure 2.3: Initialization of a tree with parent pointers

Figure 2.3 shows how to safely initialize a binary tree with parent pointers.

For convenience, we assume all local variables, including formal parameters,

are final. (Section 2.4 discusses how to relax this.)

Figure 2.3 also demonstrates effects on parameters other than the receiver

this: the parameters l and r of the Binary constructor both have the type

Node*[this.parent] upon the exit of the constructor.

21

In this example, initialization is bottom-up, as it would be, for example, in a

shift-reduce parser. Child nodes are created, initialized, and then used to con-

struct their parent node. However, child nodes cannot be fully initialized before

their parent fields are set, and moreover, they cannot even be considered fully

initialized before the fields of all the objects that are transitively reachable are

set. (Top-down initialization of this data structure creates similar issues.)

The parent field of a node will eventually point to an object that is created

later and that contains child pointers pointing back to the current node, creating

parent–child cycles. Of course, the parent field of the root of the tree must

point to something special. For example, it can point to the root itself, as shown

on line 28, or to a sentinel node.

The dependencies between masks after line 20 in Figure 2.3 are summarized

in Figure 2.4, where the mask at the tail of an arrow is removed when the mask

at its head is removed. The masks on this.left and this.right after line 20

transitively depend on the mask on this.parent.

!"#$%&'()*!

!"#$%+),!

+%&'()*! (%&'()*!

!"#$%(#-"!

+%./0)%$12 (%./0)%$12

Figure 2.4: Mask dependencies

The postcondition in the effect of the Binary constructor summarizes

the dependencies: parameters l and r both have mask *[this.parent],

which means that all their fields are conditionally masked, and this has

type Binary\parent!\left[this.parent]\right[this.parent], which

is compatible with the parameter type of the Binary constructor. Therefore,

22

the construction can proceed to build higher trees. Finally, the tree is fully ini-

tialized when the parent field of the root is initialized, because removing its

mask enables removing all the masks in Figure 2.4.

In general, a field f should be unreadable unless every object transitively

reachable through f has been appropriately initialized. That is, its masks have

been removed at least to the level according to the type of the field through

which the object is referenced.

Therefore, there are three ways to remove a conditional mask on field f :

• Like other kinds of masks, the conditional mask can be removed by di-

rectly initializing the field f .

• As shown in Figure 2.3, on line 28, conditional masks on root.left

and root.right are removed by removing the mask root.parent they

(transitively) depend on.

• The last way to remove a conditional mask is by creating cyclic dependen-

cies. For example, the following code creates cyclic dependencies between

x.f and y.g, which cancel each other.

// x starts with type C\f!, and y starts with D\g!

x.f = y; // now x has type C\f[y.g]

y.g = x; // now y has type D\g[x.f]

// x can be typed C, and y can be typed D

In general, if some dependencies form a strongly connected component in

which no mask depends on a mask outside the component, they can all be

removed together.

23

Subtyping generalizes to conditionally masked types: T≤T\ f [x1.g1, . . . , xn.gn]≤

T\ f . In fact, a type T with unmasked field f can be viewed as a type that has

empty conditions for the mask on f , that is, T\ f [], and a simply masked type

T\ f can be seen as having an unsatisfiable condition on f , because a simple

mask cannot be removed by removing other masks.

Conditional masks and simple masks do not impose any restriction on alias-

ing, because mask subtyping ensures that they cannot be invalidated by any fu-

ture change to the object. This property has been called heap monotonicity [26].

Conditional masks also provide a way to create temporarily unreadable

aliases for must-masked objects. Because the aliases are unreadable, the must

annotations need not be removed. In Figure 2.3, for example, the assignment

on line 17 creates an alias this.left for the left child object stored in variable

l, but l remains of type Node\parent!, since the field this.left is masked

with the conditional mask left[l.parent] after line 17. Not losing the must

information means the initialization state of l is tracked more precisely.

For simplicity, fields currently must be declared with unmasked or simply

masked types; no conditional masks or must-masks are allowed. It should be

straightforward to add support for conditionally masked field types, but this is

left for future work.

2.2 Abstract masks

With the exception of ∗ and C.sub, the masks we have seen so far are concrete,

explicitly naming instance fields. Concrete masks create difficulties for data

24

abstraction, because the fields might not be visible where the masks are needed.

For example, in Figure 2.3, if the two fields left and right of class Binary

were private, it would be impossible to declare the local variable root as shown

on line 26, because its type mentions the names of the fields outside the class

definition.

1 class Node {
2 mask Children;
3 ...
4 }
5
6 final class Binary extends Node {
7 private Node left, right;
8 mask Children += left, right;
9 Binary(...)
10 effect *! -> parent!,
11 Children[this.parent] { ... }
12 ...
13 }
14 ...
15 Binary\parent!\Children[root.parent]
16 root = new Binary(l, r);
17 root.parent = root;

Figure 2.5: The tree example with abstract masks

Therefore J\mask introduces abstract masks that abstract over sets of concrete

fields, providing a way to write types that mask fields that are not visible. Fig-

ure 2.5 shows an updated version of the code from Figure 2.3, where the two

fields left and right are now private, and an abstract mask Children is in-

troduced to mask them outside the class Binary. The Children mask is first

declared in class Node (line 2), with an empty set of fields, and is overridden in

Binary (line 8) to include the two children of a binary node. J\mask currently

allows abstract masks to be overridden only to include more fields; more com-

plex overriding is left to future work.

25

The ∗mask, introduced in Section 2.1.1, is not much different from any other

abstract mask, except that it is built-in, and is automatically overridden in every

class to include all the fields declared in that class.

2.2.1 Modular checking of abstract masks

Subclass masks. The Point/CPoint example in Section 2.1.1 showed

that unsafe calls to overridden methods could be caught in a modu-

lar way with the help of the subclass mask Point.sub. The mask

Point.sub can be connected to the abstract mask ∗ through the equiv-

alence of the two types Point\∗ and Point\x\y\Point.sub. Any

type with an abstract mask can be similarly expanded. For exam-

ple, given the code in Figure 2.5, the masked type Binary\Children

is equivalent to Binary\left\right\Binary.Children.sub, where

Binary.Children.sub represents all the concrete masks that are added

into overriding declarations of Children in subclasses of Binary, exclud-

ing Binary itself. The set that consists of masks left, right, and

Binary.Children.sub is the interpretation of Children in the context of

Binary.

In general, C.M.sub represents the subclass mask of abstract mask M with re-

spect to class C, and the interpretation of M in the context of C is a set consisting

of all the concrete masks added into M in C and its superclasses, together with

subclass mask C.M.sub. Before type checking, the J\mask compiler internally

expands all abstract masks into their interpretations.

Subclass masks are important for modular type checking, because they make

26

it possible to distinguish the current definition of an abstract mask and over-

riding definitions in subclasses, which are generally unavailable in a modular

setting.

1 class C {
2 T f;
3 mask M += f;
4 void initM() effect M -> {} {
5 this.f = ...;
6 }
7 }
8
9 class D extends C {
10 T g;
11 mask M += g;
12 void initM() effect M -> {} {
13 this.g = ...;
14 super.initM();
15 }
16 }

Figure 2.6: Code that needs mask constraints

Mask constraints. Subclass masks help prevent unsafe calls, but since they de-

scribe fields that are generally not known in the current class, safely removing

them by initialization requires some additional mechanism. Figure 2.6 illus-

trates an initialization helper method initM, which is intended to remove the

abstract mask M from its receiver. It is properly overridden in the subclass D to

handle the overridden abstract mask M. However, the initM method would not

type-check as written in Figure 2.6, because right after line 5, the type of this

is actually C\C.M.sub, rather than the unmasked type C.

J\mask uses mask constraints to solve this problem. Every J\mask method can

declare a mask constraint of the form captures M1, . . . ,Mn, where M1, . . . ,Mn

are abstract masks. This constraint means that the body of the method is type-

27

checked assuming that the masks Mi are the same as their concrete definition in

the class where the method is defined, with no subclass masks.

For example, the signature of initM on lines 4 and 12 can be updated with

a mask constraint:

void initM() effect M -> {} captures M

The example then type-checks, because at the entries to initM in classes C

and D, the type of this becomes C\f and D\f\g respectively, rather than

C\f\C.M.sub and D\f\g\D.M.sub.

However, when type-checking callers against the public signature of the

method, the abstract mask should still be interpreted to include the subclass

mask.

A method defined in class C with a mask constraint on an abstract mask M

depends on the set of fields that M denotes in C. It would be unsound to al-

low that method to be inherited by a subclass that overrides the abstract mask.

Therefore, the type system requires such methods to be overridden when the

masks they depend on are overridden. Consequently, constructors, final meth-

ods, and static methods cannot have mask constraints, because they cannot be

overridden in subclasses.

2.2.2 Mask algebra

J\mask supports two algebraic operations on masks that make abstract masks

more useful: (M1 + M2) and (M1 − M2).

28

An abstract mask can be interpreted as a set of concrete masks on fields and

possibly a subclass mask. The two operators on masks correspond to the set

union (+) and set difference (−) of the interpretations of the abstract masks.

Concrete masks can appear in algebraic masks, where they are interpreted as

singleton sets.

Algebraic masks enable the programmer to express initialization state ab-

stractly, without knowing all the fields masked by an abstract mask. For exam-

ple, suppose there is a local variable x, starting with the type T\M where M is

an abstract mask, and field x. f is initialized:

T\M x = ...;

x.f = ...; // The type of x is now T\(M - f)

Here, one needs not know which concrete masks are included in M, nor even

whether M includes f .

Mask algebra also helps programmers compose masks to keep the typestates

in J\mask compact. For example, if a class has n fields, each of which might inde-

pendently be initialized or uninitialized, it would require 2n different typestates

to represent all possible initialization states, were there no mask algebra. With

mask algebra, one can simply use the “sum” of the masks corresponding to all

the uninitialized fields.

J\mask currently only supports these two algebraic operations on masks, but

they seem to suffice. Richer operators on masks are left to future work.

29

programs Pr ::=< L, e >
class declarations L ::= class C extends C′ {F Mt}
field declarations F ::= T f
method declarations Mt ::= T m(T x) effect M1 ! M2 {e}
simple masks S ::= f | subC

masks M ::= S | S ! | S [p.S p]
paths p ::= ! | x
unmasked types U ::= ◦ | C | C!
types T ::= U | T\M
expressions e ::= (T p) | new C | e1; e2 | e. f

| (T1 p1). f = (T2 p2) | (T0 p0).m((T p))
| let T x = e1 in e2

typing environments Γ ::= ∅ | Γ, x :T | Γ, ! :T
heaps H ::= ∅ | H, ! '→ o
objects o ::= C!\M{ f = !}
evaluation contexts E ::= [·] | E. f | E; e | let T x = E in e

Figure 2.7: Grammar

2.3 Formal semantics and soundness

We now formalize masked types as part of a simple object calculus. Unfortu-

nately, previous object calculi are not suitable for modeling masked types.

2.3.1 Grammar

Figure 2.7 shows the grammar of the core J\mask calculus. We use the notation

a for both the list a1, . . . , an and the set {a1, . . . , an}, for n ≥ 0. We abbreviate terms

with list subterms in the obvious way, e.g., T x stands for T1 x1, . . . ,Tn xn, T\M

stands for T\M1\. . .\Mn, and p.S stands for p.S 1, . . . , p.S n.

A program Pr is a pair < L, e > of a set of class declarations L and an ex-

pression e (the main method). Each class C is declared with a superclass C′,

a set of field declarations F and a set of method declarations Mt. To simplify

30

presentation, all the class declarations are assumed to be global information.

J\mask only supports single inheritance. The root of the class hierarchy is

denoted by ◦. We write C !C′ to mean that class C is a direct subclass of C′, and

the relation !∗ is the reflexive and transitive closure of !.

Notably, there is no null value in the language, because none is needed for

object initialization.

There are three kinds of masks: simple masks S , must-masks S !, and condi-

tional masks S [p.S p]. The auxiliary function simple elides the must annotation

and conditions of a mask.

simple(S) = S

simple(S !) = S

simple(S [p.S p]) = S

There are two kinds of simple masks: concrete field masks f , and subclass

masks subC, that is, C.sub in the J\mask language. The calculus does not ex-

plicitly model the abstract mask *, because it can be expanded into a collection

of field masks and a subclass mask. For the simplicity of the semantics, other

abstract masks and mask constraints are omitted.

We require that in a well-formed type, no two masks mention the same field,

and every variable appearing in a condition is in the domain of the typing envi-

ronment. The order of masks in a type does not matter, so T\ f1\ f2 = T\ f2\ f1.

An unmasked type U is either a normal class type C or an exact class type

C!. An object of C! must be an instance of class C, and not of any proper sub-

class of C. (This overloads the “!” symbol, which is also used for must-masks.)

31

The source of exactly typed values is object creation, because the expression

new C has type C!. Exact types are useful because they make removal of sub-

class masks possible, as discussed in Section 2.1.1.

An object is created with expression newC, which adds a fresh memory loca-

tion to the heap, with all fields uninitialized. Uninitialized fields are not repre-

sented in the heap, so there is no need for null. Initialization is done by calling

appropriate methods.

To simplify presentation of the semantics and the proof of soundness, we

allow only paths p (local variables x at compile time, or heap locations ! at run

time) to appear in field assignments and method calls. This does not restrict

expressiveness, because of let expressions.

Every read through a path p is represented as an expression (T p), where the

annotation T is a statically known type. The annotation is primarily to make the

proof of soundness easier; in the actual J\mask implementation, T is inferred by

the compiler.

Typing environments Γ contain type bindings for both variables x and heap

locations !. Bindings for locations are extracted from the heap and are used to

type-check expressions during evaluation.

The J\mask calculus models the heap as a function from memory locations

l to objects o. The formalization attaches a type to every object on the heap,

in addition to value bindings for the fields. The object type is always based

on some exact class type, which is known at run time. The type might also

have masks, and since the base class is always exact, no subclass mask may

appear on the heap. Masks in the operational semantics are included only for

32

class C extends C′ {F Mt}
ownFields(C) = F

ownMethods(C) = Mt

fields(C) =
⋃

C′ : C!∗C′
ownFields(C′)

methods(C) =
⋃

C′ : C!∗C′
ownMethods(C′)

F = U f

fnames(F) = f

Figure 2.8: Class member lookup

the soundness proof and can be erased in the implementation.

2.3.2 Class member lookup

Figure 4.7 shows auxiliary functions for looking up class members. For a class

C, ownFields(C) and ownMethods(C) are the set of fields and methods declared

in C itself, and fields(C) and methods(C) also collect those declared in all the

superclasses of C. fnames(F) is the set of all the field names in field declarations

F. For simplicity, we assume no two fields have the same name.

2.3.3 Subtyping

Subtyping rules are defined in Figure 2.9. The judgment Γ * T1 ≤ T2 states that

type T1 is a subtype of T2 in context Γ. The judgment Γ * T1 ≈ T2 is sugar for the

pair of judgments Γ * T1 ≤ T2 and Γ * T2 ≤ T1.

Most subtyping rules are intuitive. S-COND-SUB states that adding condi-

33

Γ * T ≤ T ′

Γ * T ≤ T (S-REFL)
Γ * T1 ≤ T2 Γ * T2 ≤ T3

Γ * T1 ≤ T3
(S-TRANS)

* C !C′

Γ * C ≤C′
(S-SUP) Γ * C! ≤C (S-EXACT)

Γ * T1 ≤ T2

Γ * T1\M ≤ T2\M
(S-MASK) Γ * T\S [] ≈ T (S-EMPTY-COND) Γ * T\S [p.S p] ≤ T\S [p.S p, p′.S ′] (S-COND-SUB)

S = simple(M)

Γ * T\M ≤ T\S
(S-SIMPLE)

subC = simple(M)

Γ * C!\M ≈ C!
(S-EXACT-MASK)

p′ :C!\M ∈ Γ
Γ * T\S [p.S p, p′.subC] ≈ T\S [p.S p]

(S-EXACT-COND)

* C !C′ fnames(ownFields(C)) = f subC′ = simple(M)

Γ * T\M ≈ T\expand(M, { f , subC})
(S-SUBMASK)

* C !C′ fnames(ownFields(C)) = f

Γ * T\M[p.subC′ , p′.S] ≈ T\M[p. f , p.subC , p′.S]
(S-SUBMASK-COND)

Γ * p :T

p :T ∈ Γ
Γ * p :T

(TP-PATH)
Γ * ! :T1 Γ * T1 ≤ T2

Γ * ! :T2
(TP-SUB)

Γ * p :T\ f [p. f , p′.S]

Γ * p :T\ f [p′.S]
(TP-COND-CYCLE)

Γ * p :T\S [p′. f , p′′.S ′]
Γ * p′ :T ′ f " masked(T ′)

Γ * p :T\S [p′′.S ′′]
(TP-COND-ELIM)

Γ * p :T\S [p′.S ′, p′′.S ′′]
Γ * p′ :T ′\S ′[p′′′.S ′′′]

Γ * p :T\S [p′′.S ′′, p′′′.S ′′′]
(TP-COND-TRANS)

Γ *R e :T,Γ′

Γ * x :T x :Tx ∈ Γ
Γ′ = Γ{{x :noMust(Tx)}} Γ′ * noMust(T) ≤ T ′

Γ *R (T x) :T ′,Γ′
(TR-VAR)

Γ * ! :T Γ * T ≤ T ′ ! :T! ∈ Γ
Γ′ = Γ{{! :noMust(T!)}}
Γ *R (T !) :T ′,Γ′

(TR-LOC)

Γ * e1 :T1,Γ1 Γ1 *R e2 :T2,Γ2

Γ *R e1; e2 :T2,Γ2
(TR-SEQ)

Γ * e :T,Γ′ e # (T x) ∧ e # e1; e2

Γ *R e :T,Γ′
(TR-OTHER)

Γ * e :T,Γ′

Γ * e :T1,Γ′

Γ * T1 ≤ T2

Γ * e :T2,Γ′
(T-SUB)

Γ * p :T

Γ * (T p) :T,Γ
(T-PATH)

Γ * e1 :T1,Γ1

Γ1 * e2 :T2,Γ2

Γ * e1; e2 :T2,Γ2
(T-SEQ)

f = fnames(fields(C))

Γ * new C :C!\ f !,Γ
(T-NEW)

Γ *R e1 :T,Γ1 x " dom(Γ1)
Γ1, x :T * e2 :T2,Γ2

Γ2 = Γ
′
2, x :T ′

Γ′′2 = remove(Γ′2, x)

Γ * let T x = e1 in e2 :T2,Γ′′2
(T-LET)

Γ * e :T,Γ′

T f = ftype(T, f)

Γ * e. f :T f ,Γ′
(T-GET)

Γ * (T1 p1) :T1,Γ T1 # T ′1\ f !
Γ *R (T2 p2) : ftype(grant(T1, f), f),Γ′

p1 :T ∈ Γ′ Γ′′ = Γ′{{p1 :grant(T, f)}}
Γ * (T1 p1). f = (T2 p2) :◦\sub◦,Γ′′

(T-SET)

Γ * (T1\ f ! p1) :T1\ f !,Γ
Γ * (T2 p2) :T2,Γ T2 = U2\M

ftype(T1, f) = U f \S f Γ * U2 ≤ U f

S = {S |S ∈ simple(M) ∧ (S ! ∈ M ∨ S " S f)}
p1 :T\ f ! ∈ Γ Γ′ = Γ{{p1 :T\ f [p2.S]}}
Γ * (T1\ f ! p1). f = (T2 p2) :◦\sub◦,Γ′

(T-SET-COND)

Γ * (T0 p0) :T0,Γ T0 = U\M p0 :U0\M′ ∈ Γ
mbody(T0,m) = T ′n+1 m(T ′ x) effect M1 ! M2 {e}

Γ * T0 ≤ U\M1{p0/this}{p/x}
∀i ∈ 1..n + 1. T ′′i = T ′i {p0/this}{p/x}

∀i ∈ 1..n. Γ * (Ti pi) :T ′′i ,Γ
∀i ∈ 0..n. Ti = T ′′′\S !⇒ (T ′′i = T ′′′′\S ! ∧ ∀ j # i. pi # p j)
Γ′ = Γ{{p0 :update(p0,M′,U0\M2{p0/this}{p/x})}}

Γ * (T0 p0).m((T p)) :T ′n+1,Γ
′

(T-CALL)

Figure 2.9: Static semantics

34

masked(U) = ∅
masked(T\S !) = masked(T\S)

masked(T\S [p.S p]) = masked(T\S)

masked(T\ f) = { f } ∪masked(T)

masked(T\subC) = masked(T)

class(C) = C

class(C!) = C

class(T\M) = class(T)

C = class(T)
f " masked(T)
fields(C) = F

Fi = T f f

ftype(T, f) = T f

C = class(T) C !C′

Mt = . . . m(. . .) . . .



Mt ∈ ownMethods(C)∨
Mt " ownMethods(C)∧
mbody(C′,m) = Mt




mbody(T,m) = Mt

noMust(U) = U

noMust(T\M) =




noMust(T)\S if M = S !

noMust(T)\M otherwise
grant(T, f) =




T ′ if T = T ′\ f

T ′ if T = T ′\ f [p.S]

T ′ if T = T ′\ f !

T otherwise

remove(∅, x) = ∅
remove((Γ, p :T), x) = remove(Γ, x), p : remove(T, x)

remove(U, x) = U

remove(T\S [x.S x, . . .], x) = remove(T, x)\S

update(x,M,T) = T

update(!,M,U) = U

update(!,M,T\M′) =




update(!,M,T)\M′ if Mi = simple(M′)!

update(!,M,T)\Mi if simple(Mi) = simple(M′)

update(!,M,T) otherwise

Figure 2.10: Auxiliary definitions

tions makes a conditional mask more conservative. S-SIMPLE states that a type

with a must-mask or a conditional mask is a subtype of the corresponding sim-

ply masked type.

The subtyping rule S-SUBMASK uses an auxiliary function expand, which

expands a mask S into a set of masks S ′, while preserving any annotation on S :

expand(S , S ′) = S ′

expand(S !, S ′) = S ′!

expand(S [p.S p], S ′) = S ′[p.S p]

As shown in Figure 2.9, there are often a number of different ways of

writing equivalent types. The five type equivalence rules (S-EMPTY-COND,

S-EXACT-MASK, S-EXACT-COND, S-SUBMASK, and S-SUBMASK-COND) can be

read as normalization rules, where the types on the left-hand side of ≈ are re-

35

duced to those on the right-hand side. Note that in each of the five rules, the

type on the right-hand side is either syntactically simpler than that on the left-

hand side, or converts an occurrence of a class on the left-hand side to its sub-

class. This ensures type normalization terminates. Normalized types have the

following characteristics:

• A type C\M has at most one subclass mask, which must be subC. A type

C!\M has no subclass mask.

• The condition p.subC does not show up if the path p has an exact type.

• Conditional masks have non-empty conditions.

For convenience of presentation, from now on, types are assumed to be in

normal form, unless otherwise noted.

2.3.4 Expression typing

In the J\mask language, the evaluation of an expression might update some type

bindings. For example, initializing a field removes the mask on that field, if

there is one. Therefore, typing judgments, shown in Figure 2.9, are of the form

Γ * e : T,Γ′, where Γ′ is the typing environment after evaluating e. We write

Γ{{p :T }} for environment Γwith the type binding of p updated to T .

There are two other kinds of judgments in Figure 2.9. The judgment Γ * p :T

types a path p without updating the typing environment. The subsumption rule

TP-SUB is limited to locations l, not any variables x, to ensure that the expres-

sion (T x) has the most precise type annotation T (see T-PATH and TR-VAR).

36

The judgment Γ *R e : T,Γ′ is used in T-LET and T-SET for typing the right-

hand side of assignment, and in M-OK for typing the return expression (see Sec-

tion 2.3.5). It avoids creating aliases for variables with type bindings that have

must-masks. However, aliases are allowed if they are created with conditional

masks, as shown in T-SET-COND, where no TR- rule is used.

Figure 4.9 defines auxiliary functions used in the typing rules. Most of them

are self-explanatory. The function update, used in T-CALL, updates the type

binding of the receiver according to the effect, and ensures monotonicity if the

receiver is a location.

J\mask has several expression well-formedness rules, written * e wf, shown

in Figure 2.11. The important rule is LET-WF, which imposes two requirements

on let expressions:

• A let expression cannot end with a variable bound outside the scope

of the let. For example, one cannot write let T x = e1 in (e2; y)

where y is free in the let expression, but rather the equivalent expression

(let T x = e1 in e2); y. This helps simplify type-checking of right-hand

sides of assignments (Γ *R e : T,Γ′), so that a separate TR-LET is not neces-

sary.

• If the variable x is bound to a location already in the scope of the let ex-

pression, the declared type of x cannot have any must-mask. This prevents

x from being an alias with must-masks.

The expression well-formedness rules help simplify the proof of the substitu-

tion lemma (Lemma 2.3.10), without limiting the expressiveness of the calculus.

37

* e1 wf * e2 wf
∀x′ ∈ FV(let T x = e1 in e2). e2 # x′ ∧ e2 # e′; x′

((e1 = (T! !) ∨ e1 = e′′; (T! !)) ∧ ! ∈ locs(e2))⇒ T # T ′\S !

* let T x = e1 in e2 wf
(LET-WF)

* e1 wf * e2 wf

* e1; e2 wf
(SEQ-WF)

* e wf

* e. f wf
(GET-WF)

e # let T x = e1 in e2 e # e1; e2 e # e′. f

* e wf
(OTHER-WF)

Figure 2.11: Well-formed expressions

2.3.5 Program typing

Figure 2.12 shows the rules for checking the well-formedness of field and

method declarations in a class C.

For a field declaration, the declared type may not use must-masks or condi-

tional masks.

For a method declaration, the special variable this is assumed to have the

precondition masks M1 at the entry point of the method, and it must be typable

with the postcondition masks M2 when the method exits. Method parameters

other than the receiver should remain typable with the same types at the en-

try. J\mask permits effects on other parameters, but for simplicity, the calcu-

lus does not support this feature. M-OK also specifies some constraints on the

method effect: it cannot introduce must-masks, which is only allowed with the

new expression; a mask in the precondition that is not a must-mask can only be

replaced with a corresponding mask that is more conservative.

38

T = U\S
C * T f ok

(F-OK)

* e wf
Γ = this :C\M1, x :T
Γ *R e :Tr,Γr

Γr * this :C\M2
Γr * x :T

S ! ∈ M2 ⇒ S ! ∈ M1(
M ∈ M1 ∧ M′ ∈ M2 ∧ M # S !
∧simple(M) = simple(M′)

)
⇒ * C\M ≤C\M′

C * Tr m(T x) effect M1 ! M2 {e} ok
(M-OK)

Figure 2.12: Program typing

2.3.6 Decidability of type checking

The type system of J\mask is decidable:

• For T-SUB and TP-SUB, we disallow the use of reflexivity of subtyping, and

require all the rules about type equivalence (≈) to be used in the direction

of normalization (see Section 2.3.3).

• The three rules TP-COND-CYCLE, TP-COND-ELIM, and TP-COND-TRANS

actually characterize a graph-theoretic reachability problem on the depen-

dency graph (such as in Figure 2.4), which can be solved with depth-first

search.

All other rules are syntax-directed. Therefore, type checking is decidable for

J\mask.

39

2.3.7 Operational semantics

Figure 2.13 shows the judgments for the small-step operational semantics of

J\mask, where e,H −→ e′,H′ means that expression e and heap H step to expres-

sion e′ and heap H′.

Most of the rules in Figure 2.13 are standard, and the notable ones are those

for field assignments (R-SET and R-SET-COND), which are similar to the corre-

sponding expression typing rules (T-SET and T-SET-COND).

In the operational semantics and in the soundness proof, typing environ-

ments are extracted from the heap, represented as 2H3:

2∅3 = ∅

2H, ! '→ T { f = !}3 = 2H3, ! :T

The notation H{{! := o}} means that the value binding of ! in the heap H is

updated to another object o.

Figure 2.14 shows the heap typing rules. A heap H is well-formed, written

* H, if every field that is not masked in its container’s type is bound to a location,

and that location can be given a type compatible with the declared type of the

field.

In H-LOC, H(!, f) refers to the value binding of the field f of the object stored

in H(!).

40

e,H −→ e′,H′

e,H −→ e′,H′

E[e],H −→ E[e′],H′
(R-CONG)

let T x = (T! !) in e,H −→ e{!/x},H (R-LET)

H(!) = T { f = !} Ti = ftype(T, fi)

(T! !). fi,H −→ (Ti !i),H
(R-GET)

H(!) = T { f = !} T! # T ′\ f !
H′ = H{{! := grant(T, f) {. . . , f = !′}}}

(T! !). f = (T ′! !
′),H −→ (◦\sub◦ !′),H′

(R-SET)

H(!) = T\ f ! { f = !} ftype(T, f) = U f \S f

S = {S |S ∈ simple(M) ∧ (S ! ∈ M ∨ S " S f)}
H′ = H{{! := T\ f [!′.S] {. . . , f = !′}}}

(T!\ f ! !). f = (U\M !′),H −→ (◦\sub◦ !′),H′
(R-SET-COND)

mbody(T0,m) = Tr m(Tx x) . . . {e}
(T0 !0).m((T !)),H −→ e{!0/this}{!/x},H

(R-CALL)

! " dom(H) fnames(fields(C)) = f
H′ = H, ! '→ C!\ f !{}

new C,H −→ (C!\ f ! !),H′
(R-ALLOC)

(T !); e,H −→ e,H (R-SEQ)

Figure 2.13: Small-step operational semantics

! :C!\M ∈ 2H3
f = fnames(fields(C))

2H3 * ! :T

∀ f ∈ f .
(

f " masked(T)⇒
H(!, f) = !′ ∧ 2H3 * !′ : ftype(T, f)

)

H * !
(H-LOC)

∀! ∈ dom(H). H * !
* H

(HEAP-WF)

Figure 2.14: Well-formed heaps

41

2.3.8 Type safety

The soundness theorem of the J\mask calculus states that if an expression e is

well-typed, and it can reduce to a value (T! !), then (T! !) has the same type as

e. A corollary of this theorem is that object initialization is sound in the sense

used elsewhere in the paper: if a program tried to read an uninitialized field,

the evaluation would get stuck according to R-GET.

Theorem 2.3.1 (Soundness) If * e wf, and * e : T , and e, ∅ →∗ (T! !),H, then 2H3 *

(T! !) :T .

The proof uses the standard technique of proving subject reduction and

progress [87], shown in Section 2.3.

2.3.9 Proof of soundness

Extensions of typing environments. The definition of extensions is given in

Section 2.3.8. In order to prove Lemma 2.3.4, we first prove the following simple

lemma:

Lemma 2.3.2 If Γ2 is an extension of Γ1, and Γ1 * T1 ≤ T2, then Γ2 * T1 ≤ T2.

PROOF: The proof is by induction on the derivation of Γ1 * T1 ≤ T2. Most cases

are simple, because all the subtyping rules, except for T-EXACT-COND, do not

depend on the typing environment.

42

For S-EXACT-COND, T1 = T\S [p.S p, p′.subC], T2 = T\S [p.S p], and p′ :C!\M ∈

Γ1. By the definition of environment extensions, Γ2 * p′ : C!\M, and therefore

p′ : C!\M′ ∈ Γ2, because of the exactness of C!. Thus S-EXACT-COND can apply,

and Γ2 * T1 ≤ T2. "

Lemma 2.3.3 If Γ2 is an extension of Γ1, and Γ1 * p :T , then Γ2 * p :T .

PROOF: By induction on the derivation of Γ1 * p :T .

• TP-PATH

Then Γ1 * p : T . By the definition of extensions, Γ2 * p : T . So Γ2 * p : T by

TP-PATH.

• TP-SUB

Then p = !, and Γ1 * p : T ′, and Γ1 * T ′ ≤ T . By the induction hypothesis,

Γ2 * p :T ′. By Lemma 2.3.2, Γ2 * T ′ ≤ T . Thus by TP-SUB, Γ2 * p :T .

• TP-COND-CYCLE, TP-COND-ELIM, and TP-COND-TRANS

Apply the induction hypothesis on the premises. Then the respective path

typing rules can apply to Γ2.

"

Lemma 2.3.4 If Γ2 is an extension of Γ1, and Γ1 * e :T,Γ′1, then Γ2 * e :T,Γ′2, and Γ′2 is

an extension of Γ′1.

43

PROOF: By induction on the derivation of Γ1 * e :T,Γ′1.

• T-SUB

Then there is a type T ′ such that Γ1 * e :T ′,Γ′1, and Γ1 * T ′ ≤T . By the induc-

tion hypothesis, Γ2 * e :T ′,Γ′2, and Γ′2 is an extension of Γ′1. By Lemma 2.3.2,

Γ2 * T ′ ≤ T . Then it follows that Γ2 * e :T,Γ′2.

• T-PATH

Then e = (T p), and Γ1 * p :T , and Γ′1 = Γ1. By Lemma 2.3.3, Γ2 * p :T , Thus

Γ2 * (T p) :T,Γ2, by T-PATH.

• T-NEW

Trivial since the rule does not depend on the typing environment.

• T-SEQ

Then e = e1; e2, and Γ1 * e1 : T1,Γ′′1 , and Γ′′1 * e2 : T,Γ′1. By the induction

hypothesis, Γ2 * e1 : T1,Γ′′2 , and Γ′′2 is an extension of Γ′′1 . Again, by the

induction hypothesis, Γ′′2 * e2 :T,Γ′2, and Γ′2 is an extension of Γ′1. By T-SEQ,

Γ2 * e :T,Γ′2.

• T-GET

Then e = e1. f , and Γ1 * e1 : T1,Γ′1, and T = ftype(T1, f). By the induction

hypothesis, Γ2 * e1 : T1,Γ′2, and Γ′2 is an extension of Γ′1. Thus by T-GET,

Γ2 * e :T,Γ′2.

• T-SET

Then e = (T1 p1). f = (T2 p2), and Γ1 * (T1 p1) : T1,Γ1, and Γ1 *R (T2 p2) :

ftype(grant(T1, f), f),Γ′′1 , and Γ′1 = Γ
′′
1 {{p1 : grant(Tp1 , f)}} where p1 : Tp1 ∈

Γ′′1 , and T = ◦\sub◦. By the induction hypothesis, Γ2 * (T1 p1) : T1,Γ2. It

only remains to prove Γ2 *R (T2 p2) : ftype(grant(T1, f), f),Γ′′2 , and Γ′′2 is an

44

extension of Γ′′1 . Then it follows easily that Γ′2 = Γ
′′
2 {{p1 : grant(T ′p1

, f)}} is an

extension of Γ′1, where p1 : T ′p1
∈ Γ′′2 . There are two cases for the derivation

of Γ1 *R (T2 p2) : ftype(grant(T1, f), f),Γ′′1 :

– TR-VAR

Then p2 = x, and Γ1 * x : T2. By Lemma 2.3.3, Γ2 * x : T2. By the

definition of extensions, the type binding of x is the same in Γ1 and

Γ2. Therefore Γ′′2 = Γ2{{x :noMust(T2)}} is still an extension of Γ′′1 = Γ1{{x :

noMust(T2)}}. Then the proof easily follows.

– TR-LOC

The proof follows from Lemma 2.3.3, and the fact that removing must

annotations from Γ1 and Γ2 does not change the extension relation-

ship.

• T-SET-COND

Then e = (T1\ f ! p1). f = (T2 p2), and T2 = U2\M, and ftype(T1, f) = U f \S f ,

and Γ1 * U2 ≤ U f , and S = {S |S ∈ simple(M) ∧ (S ! ∈ M ∨ S " S f)}, and

Γ′1 = Γ1{{p1 : T ′\ f [p2.S]}}, where p1 : T ′\ f ! ∈ Γ1. We can apply the induction

hypothesis to all the typing judgments in the premises. By Lemma 2.3.2,

Γ2 * U2 ≤ U f . Note that the set S does not depend on the typing environ-

ment. Now it only remains to prove that Γ′2 is an extension of Γ′1. There are

again two cases:

– p1 = x

Then by the definition of extensions, x : T ′\ f ! ∈ Γ2. Γ′2 = Γ2{{x :

T ′\ f [p2.S]}}. Thus Γ′2 is an extension of Γ′1.

– p1 = !

45

Then by the definition of extension, ! : T ′′ ∈ Γ2, and Γ2 * T ′′ ≤ T ′\ f !.

Then it must be the case that T ′′ = T ′′′\ f ! for some T ′′′ such that Γ2 *

T ′′′ ≤ T ′, and therefore Γ′2 = Γ2{{! :T ′′′\ f [p2.S]}} and Γ′2 * T ′′′ ≤ T ′. Then

it follows that Γ′2 * T ′′′\ f [p2.S] ≤ T ′\ f [p2.S]. Thus Γ′2 is an extension

of Γ′1.

• T-CALL

Since the premise only uses typing judgments with the same typing envi-

ronment, we can just apply the induction hypothesis, and apply T-CALL

again on Γ2. It only remains to prove that Γ′2 is an extension of Γ′1, and there

are two cases for the receiver (T0 p0):

– p0 = x

By the definition of extensions, the variable x has the same type bind-

ing in Γ1 and Γ2. Then according to the definition of update, it still has

the same type binding in Γ′1 and Γ′2, and therefore Γ′2 is an extension

of Γ′1.

– p0 = !

Suppose ! :T1 ∈ Γ1, and ! :T2 ∈ Γ2, then Γ2 * T2≤T1 by the definition of

extensions. Then according to the definition of update, some masks

are removed and some must-masks are updated, simultaneously for

the type bindings T ′1 and T ′2 of ! in Γ′1 and Γ′2. By inspecting all the sub-

typing rules, we can see that Γ′2 * T ′2 ≤ T ′1. Then Γ′2 is still an extension

of Γ′1.

• T-LET

Then e = let Tx x = e1 in e2, and Γ1 *R e1 : Tx,Γ′′1 , and Γ′′1 , x : Tx * e2 : T,Γ′′′1 ,

and Γ′′′1 = Γ
′′′′
1 , x : T ′x, and Γ′1 = remove(Γ′′′′1 , x). The only hard part is to

46

prove Γ2 *R e1 : Tx,Γ′′2 , and Γ′′2 is an extension of Γ′′1 . The rest can be proved

simply by using the induction hypothesis. The proof is by induction on

the derivation of Γ1 *R e1 :Tx,Γ′′1 .

– TR-VAR

The proof is similar to the corresponding sub-case for T-SET.

– TR-LOC

The proof is similar to the corresponding sub-case for T-SET.

– TR-SEQ

Then e1 = e′1; e′2. Simply apply the outer induction hypothesis with

e′1, and the inner induction hypothesis with e′2, and then the proof

follows.

– TR-OTHER

Then Γ1 * e1 : Tx,Γ′′1 , and by the outer induction hypothesis, Γ2 * e1 :

Tx,Γ′′2 , and Γ′′2 is an extension of Γ′′1 . Then by TR-OTHER, Γ2 *R e1 :

Tx,Γ′′2 .

"

Preservation of subtyping.

Lemma 2.3.5 If 2H3 * T1 ≤ T2, and e,H −→ e′,H′, then 2H′3 * T1 ≤ T2.

PROOF: The proof is by induction on the derivation of 2H3 * T1≤T2. Most of the

cases are obvious, because all the subtyping rules, except S-EXACT-COND, do

47

not depend on the typing environment. For the case of S-EXACT-COND, it only

requires that 2H′3 preserves the exact base class of each location in 2H3, which is

obvious since the rules in the operational semantics can only change masks of

the type bindings. "

Location typing.

Lemma 2.3.6 If Γ * e : T,Γ′, and ! : T! ∈ Γ, and ! : T ′! ∈ Γ′, and T! # T ′\S ! for any T ′,

then T ′! # T ′\S ! for any T ′.

PROOF: The proof is by induction on the derivation of Γ * e :T,Γ′. In any of the

typing rules, must annotations (or even the mask itself) in the typing environ-

ment can only be removed, e.g., TR-VAR, TR-LOC, T-SET, and T-SET-COND. The

only notable case is T-CALL, where the type binding of the receiver is updated

according to the effect clause. However, by M-OK, the effect clause cannot in-

troduce new must-masks. "

Lemma 2.3.7 If ! :T! ∈ Γ, and Γ * ! :T , then

• Γ{{! :grant(T!, f)}} * ! :grant(T, f);

• Γ{{! :noMust(T!)}} * ! :noMust(T);

• remove(Γ, x) * ! : remove(T, x);

• (T! = T ′!\M ∧ ∀T ′. T # T ′\simple(M)!)⇒ Γ{{! :T ′!}} * ! :T ;

• (T! = T ′!\S ! ∧ ∀T ′. T # T ′\S !) ⇒ (T = T ′′\S ∧ Γ{{! : T ′!\S [. . .]}} * ! : T ∧ Γ{{! :

T ′!\ f }} * ! :T);

48

• (T! = T ′!\S ! ∧ T = T ′\S ! ∧ S = simple(M))⇒ Γ{{! :T ′!\M}} * ! :T ′\M.

PROOF: The proof is by induction on the derivation of Γ * ! :T . "

Substitutions.

Lemma 2.3.8 If Γ =Γ ′, ! : T!, x : Tx, and Γ′{!/x}, ! : T ′! * ! : T!{!/x}, and Γ′{!/x}, ! : T ′! *

! :Tx{!/x}, and Γ * T1 ≤ T2, then Γ′{!/x}, ! :T ′! * T1{!/x} ≤ T2{!/x}.

PROOF: The proof is by induction on the derivation of Γ * T1 ≤ T2. The only

notable case is S-EXACT-COND: if T! = C!\M! or Tx = C!\Mx, then it is easy to

see that T ′! = C!\M′!, and S-EXACT-COND can still apply after the substitution. "

Lemma 2.3.9 If Γ =Γ ′, ! : T!, x : Tx, and Γ′{!/x}, ! : T ′! * ! : T!{!/x}, and Γ′{!/x}, ! : T ′! *

! :Tx{!/x}, and Γ * p :T , then Γ′{!/x}, ! :T ′! * p{!/x} :T {!/x}.

PROOF: By induction on the derivation of Γ * p :T .

• TP-PATH

Then p :T ∈ Γ. Consider the following three cases:

– p = x

Then Tx = T and ! = p{!/x}. Therefore by the assumption, Γ′{!/x}, ! :

T ′! * p{!/x} :T {!/x}.

49

– p = !

Then T! = T and ! = p{!/x}. Therefore by the assumption, Γ′{!/x}, ! :

T ′! * p{!/x} :T {!/x}.

– p # x and p # !

Then p : T ∈ Γ′, and therefore p : T {!/x} ∈ Γ′{!/x}. By TP-PATH,

Γ′{!/x}, ! :T ′! * p :T {!/x}.

• TP-SUB

Then p = !′, which is not necessarily the same as !, and there exists a type

T ′ such that Γ * !′ :T ′ and Γ * T ′≤T . By the induction hypothesis, Γ′{!/x}, ! :

T ′! * p{!/x} : T ′{!/x}. By Lemma 2.3.8, Γ′{!/x}, ! : T ′! * T ′{!/x} ≤ T {!/x}. Thus

by TP-SUB, Γ′{!/x}, ! :T ′! * p{!/x} :T {!/x}.

• TP-COND-CYCLE

Then T = T ′\ f [p′.S], and Γ * p : T ′\ f [p. f , p′.S], and by the induc-

tion hypothesis, Γ′{!/x}, ! : T ′! * p{!/x} : T ′\ f [p. f , p′.S]{!/x}. Thus by

TP-COND-CYCLE, Γ′{!/x}, ! :T ′! * p{!/x} :T {!/x}.

• TP-COND-ELIM

Then T = T ′\S [p′′.S ′′], and Γ * p : T ′\S [p′. f , p′′.S ′′], and Γ * p′ : T ′′,

where f " masked(T ′′). By the induction hypothesis, Γ′{!/x}, ! : T ′! *

p{!/x} : T ′\S [p′. f , p′′.S ′′]{!/x}, and Γ′{!/x}, ! : T ′! * p′{!/x} : T ′′{!/x}.

Note that T ′\S [p′. f , p′′.S ′′]{!/x} = T ′{!/x}\S [p′{!/x}. f , p′′{!/x}.S ′′], and f "

masked(T ′′{!/x}). Thus by TP-COND-ELIM, Γ′{!/x}, ! :T ′! * p{!/x} :T {!/x}.

• TP-COND-TRANS

Similar to the proof of the above case for TP-COND-ELIM.

50

"

Lemma 2.3.10 shows that substituting a location for a variable preserves typ-

ing. It is used in the proof of Lemma 2.3.13 for method calls and let expres-

sions. Before stating the substitution lemma, we first define substitution for

typing environments:

An environment Γ′ is the result of substituting a location ! of type T for a

variable x in Γ, written Γ′ = Γ{{!/x; ! :T }}, if Γ =Γ ′′, ! :T!, x :Tx, and Γ′ = Γ′′{!/x}, ! :

T , and Γ′ * ! :T!{!/x}, and Γ′ * ! :Tx{!/x}.

Lemma 2.3.10 If Γ =Γ ′, ! :T!, x :Tx, and Γ * e :T,Γr, and T! # T ′\S !, and Tx # T ′\S !

when ! ∈ locs(e), then Γ{{!/x; ! :T ′!}} * e{!/x} :T {!/x},Γr{{!/x; ! :T ′′! }} for some T ′′! .

The following lemma is essentially the same as Lemma 2.3.10, with the defi-

nition of substitutions of typing environments expanded.

Lemma 2.3.11 If Γ =Γ ′, ! :T!, x :Tx, and Γ * e :T,Γr, and T! # T ′\S !, and Tx # T ′\S !

when ! ∈ locs(e), and Γ′{!/x}, ! : T ′! * ! : T!{!/x}, and Γ′{!/x}, ! : T ′! * ! : Tx{!/x}, and

Γr = Γ
′
r, ! : T r

! , x : T r
x, then Γ′{!/x}, ! : T ′! * e{!/x} : T {!/x},Γ′′r , where Γ′′r = Γ′r{!/x}, ! : T ′′! ,

and Γ′′r * ! :T r
! {!/x}, and Γ′′r * ! :T r

x{!/x}.

PROOF: By induction on the derivation of Γ * e :T,Γr.

• T-SUB

Then Γ * e : T1,Γr, and Γ * T1 ≤ T . Apply the induction hypothesis to

Γ * e : T1,Γr, and by Lemma 2.3.8, Γ′{!/x}, ! : T ′! * T1{!/x} ≤ T {!/x}, and then

the proof follows.

51

• T-PATH

Then e = (T p), and Γ * p :T . By Lemma 2.3.9, Γ′{!/x}, ! :T ′! * p{!/x} :T {!/x}.

Thus Γ′{!/x}, ! :T ′! * e{!/x} :T {!/x}, (Γ′{!/x}, ! :T ′!) by T-PATH.

• T-SEQ

Then e = e1; e2, and Γ * e1 : T1,Γ1, and Γ1 * e2 : T,Γr. Let Γ1 = Γ
′
1, ! : T 1

! , x :

T 1
x . By Lemma 2.3.6, T 1

! # T ′\S ! for any T ′ and any S . By the induction

hypothesis, Γ′{!/x}, ! : T ′! * e1{!/x} : T1{!/x}, (Γ′1{!/x}, ! : T ′′′!), and Γ′1{!/x}, ! :

T ′′′! * ! : T 1
! {!/x}, and Γ′1{!/x}, ! : T ′′′! * ! : T 1

x {!/x}. Also by the induction

hypothesis, Γ′1{!/x}, ! : T ′′′! * e2{!/x} : T {!/x},Γ′′r , and Γ′′r = Γ′r{!/x}, ! : T ′′! , and

Γ′′r * ! : T r
! {!/x}, and Γ′′r * ! : T r

x{!/x}. Thus T-SEQ applies, and Γ′{!/x} *

e{!/x} :T {!/x},Γ′′r .

• T-NEW

Trivial since the typing of a new expression is not affected by the substitu-

tion.

• T-GET

Then e = e1. f , and Γ * e1 : T1,Γr, and T = ftype(T1, f). By the definition

of ftype, f " masked(T1). It is easy to see that f " masked(T1{!/x}), so

ftype(T1{!/x}, f) is well defined. Also, T {!/x} = T since T is the declared

field type. By the induction hypothesis, Γ′{!/x}, ! : T ′! * e1{!/x} : T1{!/x},Γ′′r .

Then T-GET applies, and Γ′{!/x}, ! :T ′! * e{!/x} :T {!/x},Γ′′r .

• T-SET

Then e = (T1 p1). f = (T2 p2), and T = ◦\sub◦, and T1 # T ′′1 \ f !,

and Γ * (T1 p1) : T1,Γ, and Γ *R (T2 p2) : ftype(grant(T1, f), f),Γ2, and

Γr = Γ2{{p1 : grant(T ′1, f)}} where p1 : T ′1 ∈ Γ2. By the induction hy-

pothesis, Γ′{!/x}, ! : T ′! * (T1 p1){!/x} : T1{!/x}, (Γ′{!/x}, ! : T ′!). Note

52

that ftype(grant(T1, f){!/x}, f) is well-defined, and it is not changed by

the substitution, i.e., ftype(grant(T1, f){!/x}, f) = ftype(grant(T1, f), f){!/x} =

ftype(grant(T1, f), f). Let T f = ftype(grant(T1, f), f). There are several cases

for p2:

– p2 = x

By TR-VAR, Γ * x : T2, and Γ2 = Γ{{x : noMust(Tx)}}, that is, Γ2 = Γ
′, ! :

T!, x :noMust(Tx), and Γ2 * noMust(T2)≤T f . By the definition of noMust

and S-SIMPLE, Γ2 * T2 ≤ noMust(T2), and then by S-TRANS, Γ2 * T2 ≤

T f . Similarly Γ′{!/x}, ! : T ′! * Tx{!/x} ≤ noMust(Tx{!/x}), and therefore

Γ′{!/x}, ! : T ′! * ! : noMust(Tx{!/x}). By Lemma 2.3.9, Γ′{!/x}, ! : T ′! *

! : T2{!/x}. By Lemma 2.3.8, Γ′{!/x}, ! : T ′! * T2{!/x} ≤ T f . By TR-LOC,

Γ′{!/x}, ! :T ′! *R (T2 p2){!/x} :T f , (Γ′{!/x}, ! :noMust(T ′!)). Then by T-SET,

Γ′{!/x}, ! :T ′! * e{!/x} :T {!/x},Γ′′r . There are again several cases for p1:

∗ p1 = x

Then Γ′′r = Γ′{!/x}, ! : grant(noMust(T ′!), f), and Γr = Γ
′, ! : T!, x :

grant(noMust(Tx), f). By Lemma 2.3.7, Γ′{!/x}, ! : noMust(T ′!) *

! : T!{!/x} since T! contains no must-masks. Also, Γ′′r *

grant(noMust(T ′!), f)≤noMust(T ′!), and therefore Γ′′r is an extension

of Γ′{!/x}, ! :noMust(T ′!). Thus we have Γ′′r * ! :T!{!/x}.

∗ p1 = !

Then Γ′′r = Γ′{!/x}, ! : grant(noMust(T ′!), f), and Γr = Γ
′, ! :

grant(T!, f), x : noMust(Tx). By Lemma 2.3.7, Γ′′r * ! :

grant(T!{!/x}, f), and Γ′{!/x}, ! : noMust(T ′!) * ! : noMust(Tx{!/x}).

Then Γ′′r * ! : noMust(Tx{!/x}) since Γ′′r is an extension of Γ′{!/x}, ! :

noMust(T ′!).

∗ p1 # x and p1 # !

53

Then Γ′′r = Γ′′{!/x}, ! : noMust(T ′!), and Γr = Γ
′′, ! : T!, x : noMust(Tx),

where Γ′′ = Γ′{{p1 : grant(Tp, f)}} and p1 : Tp ∈ Γ′. Consider

the environment Γ′′′ = Γ′{{p1 : noMust(Tp)}}, and we can see that

Γ′′′{!/x}, ! : T ′! * ! : T!{!/x} and Γ′′′{!/x}, ! : T ′! * ! : Tx{!/x}, because

p1 # x and p1 # !. By Lemma 2.3.7, Γ′′′{!/x}, ! : noMust(T ′!) *

! : noMust(Tx{!/x}) and Γ′′′{!/x}, ! : noMust(T ′!) * T!{!/x}), since T!

has no must-masks. Note that Γ′′r is an extension of Γ′′′{!/x}, ! :

noMust(T ′!). By Lemma 2.3.3, Γ′′r * ! : T!{!/x}, and Γ′′r * ! :

noMust(Tx{!/x}).

– p2 = !

By TR-LOC, Γ * ! : T2, and Γ * T2 ≤ T f , and Γ2 = Γ since noMust(T!) =

T!. By Lemma 2.3.9, Γ′{!/x}, ! : T ′! * ! : T2{!/x}, and by Lemma 2.3.8,

Γ′{!/x}, ! : T ′! * T2{!/x} ≤ T f . Therefore by TR-LOC, Γ′{!/x}, ! : T ′! *R

(T2 p2){!/x} : T f , (Γ′{!/x}, ! : noMust(T ′!)). Since p2 = !, i.e., ! ∈ locs(e),

we have Tx # T ′\S !. There are several cases for p1:

∗ p1 = x

Then Γ′′r = Γ′{!/x}, ! : grant(noMust(T ′!), f), and Γr = Γ
′, ! : T!, x :

grant(Tx, f). By Lemma 2.3.7, Γ′′r * ! : grant(Tx{!/x}, f) where Tx =

noMust(Tx), and Γ′{!/x}, ! : noMust(T ′!) * ! : T!{!/x}. Since Γ′′r is an

extension of Γ′{!/x}, ! :noMust(T ′!), we have Γ′′r * ! :T!{!/x}.

∗ p1 = !

Then Γ′′r = Γ′{!/x}, ! : grant(noMust(T ′!), f), and Γr = Γ
′, ! :

grant(T!, f), x : Tx. By Lemma 2.3.7, Γ′′r * ! : grant(T!{!/x}, f), and

Γ′{!/x}, ! : noMust(T ′!) * ! : Tx{!/x} since Tx = noMust(Tx). Finally

Γ′′r * ! :Tx{!/x} since Γ′′r is an extension of Γ′{!/x}, ! :noMust(T ′!).

∗ p1 # x and p1 # !

54

Then Γ′′r = Γ′′{!/x}, ! : noMust(T ′!), and Γr = Γ
′′, ! : T!, x : Tx,

where Γ′′ = Γ′{{p1 : grant(Tp, f)}} and p1 : Tp ∈ Γ′. Note that

Tx = noMust(Tx). The proof is the same as that for the above case

p2 = x and p1 # x and p1 # !. We can get Γ′′r * ! : T!{!/x}, and

Γ′′r * ! :Tx{!/x}.

– p2 = x′ and x′ # x

By TR-VAR, Γ * x′ : T2, and Γr * noMust(T2) ≤ T f . By Lemma 2.3.9,

Γ′{!/x}, ! : T ′! * x′ : T2{!/x}. By Lemma 2.3.8, Γ′r{!/x}, ! : T ′! * T2{!/x} ≤ T f .

Obviously changing the masks on x′ is not affected by the substitu-

tion, so TR-VAR can apply, and Γ′r{!/x}, ! : T ′! *R (T2 x′){!/x} : T f ,Γ′′r .

There are several cases for p1:

∗ p1 = x

Then Γ′′r = Γ′′{!/x}, ! : grant(T ′!, f), and Γr = Γ
′′, ! : T!, x : grant(Tx, f),

where Γ′′ = Γ′{{p2 : noMust(Tp)}} and p2 : Tp ∈ Γ′. We should have

Γ′′{!/x}, ! : T ′! * ! : T!{!/x} and Γ′′{!/x}, ! : T ′! * ! : Tx{!/x}, be-

cause removing must annotations on p2 does not change the de-

pendency graph. By Lemma 2.3.7, Γ′′r * ! : grant(Tx{!/x}, f), and

Γ′′r * ! : grant(T!{!/x}, f). Moreover, Γ′′r * grant(T!{!/x}, f) ≤ T!{!/x},

because T! has no must-mask. Therefore Γ′′r * ! : T!{!/x} by

TP-SUB.

∗ p1 = !

Then Γ′′r = Γ′′{!/x}, ! : grant(T ′!, f), and Γr = Γ
′′, ! : grant(T!, f), x : Tx,

where Γ′′ = Γ′{{p2 : noMust(Tp)}} and p2 : Tp ∈ Γ′. Similar to the

above case, Γ′′{!/x}, ! :T ′! * ! :T!{!/x} and Γ′′{!/x}, ! :T ′! * ! :Tx{!/x}.

Since p1 = !, ! ∈ locs(e), and therefore Tx = noMust(Tx). Then Γ′′r *

grant(Tx{!/x}, f)≤Tx{!/x}. By Lemma 2.3.7, Γ′′r * ! :grant(T!{!/x}, f)

55

and Γ′′r * ! :grant(Tx{!/x}, f). By TP-SUB, Γ′′r * ! :Tx{!/x}.

∗ p1 # x and p1 # !

Suppose p1 : Tp ∈ Γ′ and p2 : T ′p ∈ Γ′. Consider the environment

Γ′′′ = Γ′{{p1 :noMust(Tp)}}{{p2 : noMust(T ′p)}}, and we can see that

Γ′′′{!/x}, ! : T ′! * ! : Tx{!/x} and Γ′′′{!/x}, ! : T ′! * ! : T!{!/x}. Note that

Γ′′r is an extension of Γ′′′, ! :T ′!. Then the proof follows.

– p2 = !′ and !′ # !

Similar to the case above, with TR-VAR replaced by TR-LOC.

• T-SET-COND

Then e = (T1\ f ! p1). f = (T2 p2). By the induction hypothesis, Γ′{!/x}, ! :T ′! *

(T1\ f ! p1){!/x} : T1\ f !{!/x}, (Γ′{!/x}, ! : T ′!), and Γ′{!/x}, ! : T ′! * (T2 p2){!/x} :

T2{!/x}, (Γ′{!/x}, ! :T ′!). Note that the set S in T-SET-COND is not affected by

the substitution, and therefore, Γ′{!/x}, ! :T ′! * e{!/x} :◦\sub◦,Γ′′r , where Γ′′r =

(Γ′{!/x}, ! :T ′!){{p1{!/x} : Tp\ f [p2{!/x}.S]}}, and p1{!/x} : Tp\ f ! ∈ (Γ′{!/x}, ! : T ′!).

Also note that Γr = Γ{{p1 : T ′p\ f [p2.S]}} where p1 : T ′p\ f ! ∈ Γ. There are

several cases for p1:

– p1 = x

Then T ′! = Tp\ f !, and Tx = T ′p\ f !. It is then obvious that Γ′′r * ! :Tx{!/x}.

By Lemma 2.3.7, Γ′′r * ! :T!{!/x} since T! contains no must-masks.

– p1 = !

Then T ′! = Tp\ f !, and T! = T ′p\ f !, and Tx has no must-masks by the

assumption. By Lemma 2.3.7, Γ′′r * ! : Tx{!/x}. Also, it is obvious

Γ′′r * ! :T r
! {!/x}, where T r

! = T ′p\ f [p2.S].

– p1 # x and p1 # !

56

This case is easy, because the type bindings of x and ! are not changed,

and the dependency graph only has more edges than before.

• T-CALL

Apply the induction hypothesis to the typing judgments in the premises,

and Lemma 2.3.8 to the subtyping judgments, and finally apply T-CALL

again. Note that when the substitution uses a location that is already in

the parameter list, both Tx and T! contain no must masks, and therefore

the corresponding formal types contain no must-masks. It only remains

to prove that Γ′′r * ! :T r
! {!/x} and Γ′′r * ! :T r

x{!/x}. There are several cases for

p0:

– p0 = x

Then T r
! = T!, and T r

x is obtained from Tx by replacing all the masks

with M2. By the definition of update, in order to get T ′′! , a mask in

T ′! might be removed, or if it is a must-mask, it might be converted

to a conditional mask or a simple mask. Therefore, by Lemma 2.3.7,

Γ′′r * ! :T!{!/x}, because T! has no must-mask.

Now it remains to prove that Γ′′r * ! : T r
x{!/x}. Note that T r

x = Ux\M2

and Γ * x : Ux\M1 where Tx = Ux\Mx. By Lemma 2.3.9, Γ′{!/x}, ! :

T ′! * ! :Ux\M1{!/x}. Now let us consider the change from T ′! to T ′′! and

that from Ux\M1 to Ux\M2, according to the definition of update and

M-OK, and prove that the typing of ! preserves:

∗ A mask, but not a must-mask, is added to M2, or a mask in M1 is

replaced with a more conservative mask. By TP-SUB, the typing

preserves.

∗ Corresponding masks are removed from both M1 and T ′!, i.e.,

57

grant is applied to both types. By Lemma 2.3.7, the typing pre-

serves.

∗ Both M1 and T ′! have a mask S !, which is replaced with a simple

mask S or a conditional mask S [. . .]. By Lemma 2.3.7, the typing

of ! preserves.

Therefore Γ′′r * ! :T r
x{!/x}.

– p0 = !

Then T r
x = Tx, and both T! and Tx contain no must-masks by the as-

sumption. Then by the definition of update, we can see Γ′′r * ! :T r
! {!/x},

because T ′′! and T r
! {!/x} are obtained from T ′! and T! respectively, call-

ing update with the same target masks.

Now it remains to prove that Γ′′r * ! : Tx{!/x}. Note that Γ′{!/x}, ! : T ′! *

! : Tx{!/x}. Let us inspect the change from T ′! to T ′′! according to the

definition of update, and prove that the typing of ! preserves:

∗ A mask is removed from T ′!. By Lemma 2.3.7, the typing pre-

serves, because Tx has no must-mask.

∗ T ′! has a must-mask S !, which is replaced with a simple mask S or

a conditional mask S [. . .]. By Lemma 2.3.7, the typing preserves,

because Tx has no must-mask.

Therefore Γ′′r * ! :Tx{!/x}, that is, Γ′′r * ! :T r
x{!/x}.

– p0 # x and p0 # !

Follows from that typing of ! and x is not changed.

• T-LET

Then e = let T ′ x′ = e1 in e2 where x′ # x, and Γ *R e1 : T ′,Γ1, and Γ1, x′ :

T ′ * e2 : T,Γ2, and Γ2 = Γ3, x′ : T ′′, and Γr = remove(Γ3, x′). We first prove

58

Γ′{!/x}, ! : T ′! *R e1{!/x} : T ′{!/x}, (Γ′1{!/x}, ! : T ′′′!) where Γ1 = Γ
′
1, ! : T 1

! , x : T 1
x ,

and Γ′1{!/x}, ! : T ′′′! * ! : T 1
! {!/x}, and Γ′1{!/x}, ! : T ′′′! * ! : T 1

x {!/x}. The proof is

by induction on the derivation of Γ *R e1 :T ′,Γ1:

– TR-VAR

Similar to the proof of the case for T-SET, we can show that Γ′1{!/x}, ! :

T ′′′! * ! :T 1
! {!/x}. There are then two cases:

∗ e1 = (T1 x)

Then T 1
! = T!, and T 1

x = noMust(Tx), and T ′′′! = noMust(T ′!). Note

that T 1
! = noMust(T 1

!) since it contains no must-masks. The proof

follows by Lemma 2.3.7.

∗ e1 = (T1 x′′) and x′′ # x

The proof follows by the outer induction hypothesis with Γ1, x′ :

T ′ * e2 :T,Γ2.

– TR-LOC

Similar to the proof of the case for T-SET, we can show that Γ′1{!/x}, ! :

T ′′′! * ! :T 1
! {!/x}. There are again two cases:

∗ e1 = (T1 !)

Then T 1
! = noMust(T!), and T 1

x = Tx, and T ′′′! = noMust(T ′!).

Note that T 1
x = noMust(T 1

x) by the assumption. Therefore by

Lemma 2.3.7, Γ′1{!/x}, ! : T ′′′! * ! : T 1
! {!/x}, and Γ′1{!/x}, ! : T ′′′! *

! :T 1
x {!/x}.

∗ e1 = (T1 !′) and !′ # !

The proof follows by the outer induction hypothesis with Γ1, x′ :

T ′ * e2 :T,Γ2.

– TR-SEQ

59

Then e1 = e′1; e′2. The proof is by application of the outer induction

hypothesis on e′1 and the inner induction hypothesis on e′2.

– TR-OTHER

Then just apply the outer induction hypothesis.

Then the proof follows by the induction hypothesis on e2 and by

Lemma 2.3.7.

"

Progress. Now we prove the progress lemma.

Lemma 2.3.12 (Progress) If * H, and 2H3 * e : T,Γ then either e = (T! !) or there is

an expression e′ and a heap H′ such that e,H −→ e′,H′.

PROOF: The proof is by structural induction on the expression e.

According to the definition of 2H3, there is no type bindings for variables in

2H3, and therefore the expression e does not have any free variable.

T-SUB is the only non-syntax-directed typing rule that might be used for

2H3 * e : T,Γ. However, it does not yield a subexpression of e, or a different

typing environment, and therefore the derivation 2H3 * e : T,Γ must contain an

application of a rule other than T-SUB. Thus for the remainder of the proof, only

syntax-directed typing rules are considered for typing e.

• e = (T! !)

60

Trivial.

• e = new C

Then R-ALLOC applies, and therefore e′ = (C!\ f ! !), where ! " dom(H),

and H′ = H, ! '→ C!\ f ! {}.

• e = e1; e2

If e1 = (T! !), then R-SEQ applies, and therefore e′ = e2 and H′ = H;

otherwise, by the induction hypothesis, there exists e′1 and H′1 such that

e1,H −→ e′1,H
′
1, and R-CONG applies.

• e = e1. f

If e1 = (T! !), then T-GET applies. Therefore 2H3 * ! : T! and ftype(T!, f) is

well-defined. By the definition of ftype, f " masked(T!). According to the

definition of * H, there exists !′ such that H(!, f) = !′. So R-GET applies,

and e′ = (ftype(T!, f) !′).

If e1 # (T! !), then by the induction hypothesis, there exists e′1 and H′1 such

that e1,H −→ e′1,H
′
1, and R-CONG applies.

• e = (T1 !1). f = (T2 !2)

There are two cases, depending on which of the two typing rules of field

assignments applies to 2H3 * e :T,Γ.

– T-SET

Then T1 # T ′1\ f !. Therefore R-SET can apply, and the evaluation can

progress.

– T-SET-COND

Then T1 = T ′1\ f !, and 2H3 * !1 : T ′1\ f ! by T-PATH. It is easy to see that

!1 :T ′′1 \ f ! ∈ 2H3, or otherwise it would contradict the must-mask on f

in T1. Therefore R-SET-COND can apply.

61

• e = (T0 !0).m((T !))

Then T-CALL applies, and therefore mbody(T0,m) is well-defined. Thus

R-CALL can apply, and the evaluation can make progress.

• e = let Tx x = e1 in e2

If e1 = (T! !), then R-LET can apply; otherwise, by the induction hypothe-

sis, there exists e′1 and H′1 such that e1,H −→ e′1,H
′
1, and R-CONG can apply.

"

Subject reduction. Next, we prove subject reduction.

Lemma 2.3.13 (Subject reduction) If * e wf, and * H, and 2H3 * e :T,Γ, and e,H −→

e′,H′, then * e′ wf, and * H′, and 2H′3 * e′ :T,Γ′, and Γ′ is an extension of Γ.

PROOF: We first show expression well-formedness * e wf is preserved by eval-

uation. For any let subexpression let Tx x = e1 in e2 contained in e, the only

possibility for e2 to have a new location ! is through a substitution of another

variable x′ that is free in the let expression, since e2 is not in an evaluation con-

text. Then if e1 = x′ or e1 = e′1; x′, according to TR-VAR, Tx has no must-masks.

The remaining proof is by induction on the derivation of 2H3 * e :T,Γ.

• T-SUB

Then 2H3 * e :T ′,Γ and 2H3 * T ′ ≤T . By the induction hypothesis, * H′, and

2H′3 * e : T ′,Γ′, and Γ′ is an extension of Γ. By Lemma 2.3.5, 2H′3 * T ′ ≤ T .

Thus 2H′3 * e :T,Γ′, by T-SUB.

62

• T-PATH

Vacuously true since e cannot have any free variable, and (T !) cannot take

a step.

• T-NEW

Then T = C!\ f ! and Γ = 2H3. By R-ALLOC, e′ = (C!\ f ! !), and H′ = H, ! '→

C!\ f ! {}. Therefore, 2H′3 * ! : C!\ f !, and by T-LOC, 2H′3 * e′ : T, 2H′3.

Obviously 2H′3 is an extension of 2H3. H′ is still well-formed, because !

does not appear in H, and no field of ! is bound in H′.

• T-SEQ

Then e = e1; e2. There are two cases for e1.

– e1 = (T! !)

By T-SEQ, 2H3 * e2 : T,Γ. By R-SEQ, e′ = e2, and H′ = H. Then it is

obvious that 2H′3 * e′ :T,Γ′ where Γ′ = Γ.

– e1 # (T! !)

Then R-CONG applies: e1,H −→ e′1,H
′, and e′ = e′1; e2. By T-SEQ,

2H3 * e1 : T1,Γ1, and Γ1 * e2 : T,Γ. By the induction hypothesis, 2H′3 *

e′1 :T1,Γ′1, where Γ′1 is an extension of Γ1. By Lemma 2.3.4, Γ′1 * e2 :T,Γ′,

and Γ′ is an extension of Γ.

• T-GET

Then e = e1. f , and 2H3 * e1 : T1,Γ, and T = ftype(T, f). There are two cases

for e1.

– e1 = (T! !)

Then Γ = 2H3. By the definition of ftype, f " masked(T1). By H-LOC,

H(!, f) = !′ and 2H3 * !′ : T . Finally, e′ = (ftype(T1, f) !′) and H′ = H,

63

by R-GET.

– e1 # (T! !)

Then R-CONG applies: e1,H −→ e′1,H
′. By the induction hypothesis,

* H′ and 2H′3 * e′1 : T1,Γ′ where Γ′ is an extension of Γ. Then T-GET

applies, and therefore 2H′3 * e′1. f :T,Γ′.

• T-SET

Then e = (T1 !1). f = (T2 !2), and T = ◦\sub◦, and 2H3 *R (T2 !2) :

ftype(grant(T1, f), f),Γ2, and Γ2 = 2H3{{!2 : noMust(T ′2)}} where !2 : T ′2 ∈ 2H3,

and Γ = Γ2{{!1 : grant(T ′1, f)}} where !1 : T ′1 ∈ 2H3, and T1 # T ′\ f !

for any T ′. By R-SET, e,H −→ (◦\sub◦ !2),H′, and H′ = H{{!1 :=

grant(T ′1, f) {. . . , f = !2}}}. It is easy to see that 2H′3 * (◦\sub◦ !2) :

◦\sub◦, 2H′3. Note that Γ′ = 2H′3 = 2H3{{!1 : grant(T ′1, f)}}, and Γ =

2H3{{!2 :noMust(T ′2)}}{{!1 : grant(T ′1, f)}}. Therefore Γ′ is an extension of Γ,

because !1 has the same type binding in Γ and Γ′, and !2 has a more

conservative type binding in Γ. By TR-LOC, 2H3 * !2 : T2, and 2H3 *

T2 ≤ ftype(grant(T1, f), f). Then 2H3 * !2 : ftype(grant(T1, f), f). Consider

the typing environment Γ3 = 2H3{{!1 :noMust(T ′1)}}{{!2 : noMust(T ′2)}}. We

still have Γ3 * !2 : ftype(grant(T1, f), f), because ftype(grant(T1, f), f) has no

must-masks, and removing must annotations does not affect the depen-

dency graph. It is easy to see that 2H′3 is an extension of Γ3, and therefore

2H′3 * !2 : ftype(grant(T1, f), f). Thus we have * H′.

• T-SET-COND

Then e = (T1\ f ! !1). f = (U2\M !2), and ftype(T1, f) = U f \S f , and S =

{S |S ∈ simple(M) ∧ (S ! ∈ M ∨ S " S f)}, and !1 : T ′1\ f ! ∈ 2H3, and

Γ = 2H3{{!1 : T ′1\ f [!2.S]}}, and T = ◦\sub◦. By R-SET-COND, e,H −→

64

(◦\sub◦ !2),H′, where 2H′3 = Γ. By T-PATH, 2H′3 * (◦\sub◦ !2) :◦\sub◦, 2H′3,

i.e., Γ′ = 2H′3 = Γ. It remains to show * H′: suppose there exists a

type T ′′1 such that 2H′3 * !1 : T ′′1 and f " masked(T ′′1), then we have

2H′3 * !2 : ftype(T ′′1 , f), that is, not masked by any of S , since the type

binding of !1 in 2H′3 has a mask f [!2.S].

• T-CALL

Then e = (T0 !0).m((T ′ !)), and 2H3 * !0 : T0, and mbody(T0,m) =

Tn+1 m(T x) effect M1 ! M2 {em}, and T = Tn+1{!0/this}{!/x}, and

Γ = 2H3{{!0 : update(!0,M,U0\M2{!0/this}{!/x})}}, where !0 : U0\M ∈ 2H3.

By R-CALL, e′ = em{!0/this}{!/x}, and H′ = H. Let Γm = this : C\M1, x : T

where C is the class that m is found, and then by M-OK, Γm *R em : Tn+1,Γr,

where Γr only contains type bindings for this and x. It is obvious that

em contains no locations, and we can prove that Γm * em : Tn+1,Γ′r, and

Γ′r * this : C\M2, and Γ′r * x : T , (by induction on TR-VAR, TR-SEQ, and

TR-OTHER). Since 2H3,Γm is an extension of Γm, we have 2H3,Γm * em :

Tn+1,Γ′′r , and Γ′′r is an extension of Γ′r, by Lemma 2.3.4. Then we can apply

Lemma 2.3.11 on this and x, one after the other, and the proof follows.

• T-LET

Then e = let Tx x = e1 in e2. Note that e1 cannot have a free variable.

There are two cases for e1:

– e1 = (T! !)

Then R-LET applies, and therefore e′ = e2{!/x} and H′ = H. Suppose

! : T ′! ∈ 2H3. By T-LET and TR-LOC, 2H3 *R e1 : Tx, 2H3{{! : noMust(T ′!)}},

and 2H3{{! : noMust(T ′!)}}, x : Tx * e2 : T,Γ2, and Γ2 = Γ
′
2, x : T ′x,

and Γ = remove(Γ′2, x). We have 2H3{!/x} = 2H3, Tx{!/x} = Tx, and

65

T {!/x} = T , because 2H3 contains no type bindings for variables. Also,

according to the well-formedness of e, if ! ∈ locs(e2), Tx contains no

must-masks. Then by Lemma 2.3.11, 2H3 * e2{!/x} : T,Γ′, and Γ′ is an

extension of Γ′2{!/x}. By the definition of remove, Γ′ is an extension of

Γ, because of S-SIMPLE and the fact that Γ contains no type binding

for any variable.

– e1 # (T! !)

Then R-CONG applies, and e1,H −→ e′1,H
′. By T-LET, 2H3 *R e1 :Tx,Γ1,

and Γ1, x : Tx * e2 : T,Γ2, and Γ2 = Γ
′
2, x : T ′x where Γ = remove(Γ′2, x).

By the induction hypothesis, * H′. Now we need to show 2H′3 *R

e′1 : Tx,Γ′1, and Γ′1 is an extension of Γ1. Consider all the cases for

2H3 *R e1 :Tx,Γ1:

∗ TR-VAR

Impossible since e1 contains no free variable.

∗ TR-LOC

Impossible.

∗ TR-SEQ

Then e1 = e′′1 ; e′′2 , and 2H3 * e′′1 : T ′′1 ,Γ
′′
1 , and Γ′′1 *R e′′2 : Tx,Γ1. There

are again two cases for e′′1 :

· e′′1 = (T ′! !)

Then e′1 = e′′2 , and H′ = H, and Γ′1 = Γ1.

· e′′1 ,H −→ e′′′1 ,H
′

Simply use the outer induction hypothesis, and then the

proof is similar to that of the case for T-LET in Lemma 2.3.4.

∗ TR-OTHER

Follows from the outer induction hypothesis.

66

Therefore Γ′1, x : Tx is an extension of Γ1, x : Tx, and by Lemma 2.3.4,

Γ′1, x : Tx * e2 : T,Γ′′2 , where Γ′′2 is an extension of Γ2. Γ′′2 must contain

a type binding for x, that is, Γ′′2 = Γ
′′′
2 , x : T ′′x , and Γ′ = remove(Γ′′′2 , x).

Obviously Γ′′′2 is an extension of Γ′2, and according to the definition of

remove, Γ′ is an extension of Γ.

"

Soundness. With progress and subject reduction proved, we now state the

soundness theorem.

Theorem 2.3.14 (Soundness) If * e wf, and * e : T , and e, ∅ →∗ (T! !),H, then

2H3 * (T! !) :T .

PROOF: Follows from Lemma 2.3.12 and Lemma 2.3.13. "

2.4 Implementation

We have implemented a prototype compiler of J\mask as an extension in the

Polyglot framework [57]. The extension code has about 3,700 lines of code, ex-

cluding blank lines and comments.

J\mask is implemented as a translation to Java. The translation is mostly by

erasure, that is, by erasing all the masks, effects, and mask constraints from the

code.

67

The compiler also applies several transformations to the J\mask source code,

before erasing masks. Default effects are inserted for constructors and methods

that do not have them already. To simplify type checking, initialization code,

including initializers, constructors, and new expressions, is also transformed.

J\mask requires that in a conditionally masked type T\ f [x.g], every xi, in-

cluding this, is a final local variable. However, the compiler uses a simple

analysis to automatically insert the final modifier for local variables that are

assigned only once, and for formal parameters that are never reassigned.

2.4.1 Inserting default effects

For a constructor of class C, the default effect is *! −> C.sub!, which de-

scribes the behavior of most constructors. The constructor starts with all the

fields uninitialized, and it initializes all the fields inherited from superclasses of

C—by calling the super constructor—and the fields declared by C, leaving the

fields in subclasses of C uninitialized.

The default effect for a virtual method is {} −> {} because virtual methods

normally work on fully initialized objects.

In our experience with using J\mask (see Section 2.5), these default effects

work well. Programmers only have to annotate code that uses interesting ini-

tialization patterns.

68

2.4.2 Transforming initialization code

Java field declarations can include initialization expressions that are implicitly

called from constructors in the same order that they appear in the class body.

The J\mask compiler collects all these initializers and inserts them directly in

constructors, right after super constructor calls. This initializer code is type-

checked in the same way as any other constructor code.

A constructor in J\mask is just an initialization method that is called after an

object is allocated on the heap. The J\mask compiler converts every constructor

in the source code to a final method with the same name as the class. The trans-

formed constructor can then be type-checked just as any other method. The

compiler also inserts an empty default constructor in the generated Java code.

Every new expression new C(...) is split into a call to the empty default

constructor to allocate the memory on the heap, and then a call to the initial-

ization method generated from the corresponding constructor, as shown in the

following piece of code:

final C!\(* - C.sub)! temp = new C();

temp.C(...);

Then the fresh local variable temp replaces the original expression.

2.4.3 Type checking

Flow sensitivity in the J\mask type system shows up only on masks, and not

on any of the classes appearing in masked types. Therefore, each method is

69

type-checked in two phases. The first phase is just normal Java type checking

of the erased method code; the second phase, built upon the dataflow analysis

framework provided in Polyglot, is flow-sensitive, and uses the result of the

first phase as its starting point.

Once type checking is complete, masks are erased to generate Java code. This

works because resolution of method overloading does not depend on parameter

masks.

2.4.4 Inner classes

A (nonstatic) inner class is a class that is nested in the body of another class and

contains an implicit reference to an instance (the outer instance) of the enclosing

class. Every constructor of an inner class has an implicit formal parameter for

the outer instance. J\mask assumes that the type of the outer instance has no

masks, that is, the outer instance has been fully initialized before an instance

of the inner class is created. If an inner class with a partially initialized outer

instance is really needed, a transformation as described in [37] can be applied

to make the outer instance explicit. J\mask currently does not directly support

local classes and anonymous classes, which are inner classes nested in method

bodies, although these could be converted to normal inner classes.

2.5 Experience

The language was evaluated by porting several classes in the Java Collec-

tion Framework (Java SDK version 1.4.2) to J\mask. The ported classes are

70

ArrayList, HashMap, LinkedList, TreeMap, and Vector, together with

all the classes and interfaces that they depend on. There are in total 29 source

files, comprising 18,000 lines of J\mask code (exclusive of empty lines and com-

ments).

Porting these classes to J\mask was not difficult. It was completed by one

of the authors within a couple of days, including time to debug the compiler.

Only 11 constructors and methods required annotation with effects or mask con-

straints, thanks to the default effects provided by the compiler (Section 2.4.1).

Besides effects and mask constraints, only 11 other masked types were needed,

a very small number compared to the size of the code.

The port of this code eliminated all nulls used as placeholders for initial-

ization. However, some nulls were not removed:

• Java allows storing the null value into collections and maps.

• Some method parameters and local variables can be intentionally set to

null, indicating that they are not available.

Among the classes we ported, the following three exhibited nontrivial ini-

tialization patterns:

2.5.1 LinkedList

The LinkedList class implements a doubly-linked cyclic list. When an in-

stance of LinkedList is constructed, a sentinel node, which is an instance of

the nested class Entry, needs to be created with its previous and next fields

71

both pointing to itself.

The Java code first constructs an instance of Entry with its previous and

next fields set to null, and then initializes the two fields with the header node

itself. The following code is extracted from the constructor of LinkedList,

where header is the field pointing to the sentinel node:

header = new Entry(null, null, null);

header.previous = header.next = header;

With masked types, the two fields cannot be read before they are initialized.

In the constructor of the ported LinkedList class, the field header is initial-

ized as follows:

header = createHeader();

The method createHeader is shown below:

private static Entry createHeader() {

Entry\(* - Entry.sub)! h = new Entry();

h.element = dummyElement;

h.next = h;

h.previous = h;

return h;

}

The static field dummyElement points to an object of java.lang.Object be-

cause the header node does not store any real data element. Therefore, there is

no need to use null.

72

2.5.2 HashMap

The HashMap class has an empty method init, which, according to comments

in the source code, is an “initialization hook for subclasses”. When a subclass

of HashMap is created, it should override the init method to initialize any

new subclass fields, but Java has no way to enforce this. With effects and mask

constraints, the J\mask version of HashMap can explicitly express the contract

in the signature of the method init:

void init() effect HashMap.sub -> {} captures *

2.5.3 TreeMap

TreeMap implements a map as a red-black tree where elements are sorted ac-

cording to their keys. Each node in the tree contains fields for the left and right

children, and a field pointing to its parent. A method buildFromSorted is

used to build the tree from the bottom up, similarly to the example shown in

Figure 2.3. Masked types support sound initialization of TreeMap nodes with-

out using null.

2.5.4 Summary

Our experience is that J\mask is expressive, since it was easy to port classes

with the various initialization patterns found in the Java Collection Framework.

The explicit annotations in the ported code are infrequent and seem easy to

73

understand, suggesting masked types are a natural way for programmers to

enforce proper initialization of objects.

2.6 Related work

Non-null types. The importance of distinguishing non-null references from

possibly-null references at the type level has long been recognized. Many lan-

guages, including CLU [46], Theta [47], Moby [29], Eiffel [39], ML [54], and

Haskell [40], support some form of non-null and possibly-null types in their

type system. In the context of Java, several proposals [10, 42, 20] have been

made to support non-null types.

With non-null types, sound object initialization is usually accomplished

by severely restricting expressiveness. Most existing languages with non-null

types restrict how objects can be initialized; for example, some require all (non-

null) fields to be initialized at once [29, 47]. This means fields and methods of

an object under construction cannot be used. Further, cyclic data structures are

impossible to initialize without using a placeholder value such as null.

Masked types are different from non-null types: when a field is masked, it

is potentially uninitialized and unreadable, and therefore reading that field is

statically disallowed; with non-null types, a field is always accessible regardless

of how it is declared.

Fähndrich and Leino [25] make use of raw types to represent objects that are

in the middle of being constructed, that is, objects with some non-null fields

containing nulls. Methods can be declared to expect raw objects, and therefore

74

can be called from within the constructors. Delayed types [27], extended from

[25], provide a solution to the problem of safely initializing cyclic data struc-

tures, by introducing labels on object types, which represent the time by which

an object is fully initialized. Delay times are associated with scopes, and form a

stack at run time. Objects created with a delay time remain raw until execution

exits the corresponding scope. Initialization of cyclic structures is supported by

giving objects the same delay, and they become initialized together at once.

Compared to raw types, masked types provide a finer-grained representa-

tion of objects under construction. Conditional masks and delayed types are

both means to track dependencies between objects under construction. How-

ever, delay times are an indirect way to represent dependencies, whereas condi-

tional masks capture dependencies directly and explicitly. Therefore, program-

mers may have better control of the initialization process with masked types.

Masked types also have richer subtyping relationships, which can be used to

enforce reinitialization.

Typestates. In most object-oriented programming languages, an object has the

same type for its entire lifetime. However, objects often evolve over time, that

is, having different states at different times. Typestates [76] abstractly describe

object states, and when an object is updated, its typestate may also change.

Typestates have been used to express and verify various protocols [76, 17, 18,

4, 28]. Typestates have been interpreted as abstract states in finite state machines

and as predicates over objects.

Masked types are not intended for checking general protocols, but rather

just focus on safe object initialization. However, masks cannot be easily en-

75

coded in terms of previous typestate mechanisms. Algebraic masks, for in-

stance, provide compact representations of partial initialization states without

requiring abstract states potentially exponential in the number of fields. Con-

ditional masks represent dependencies generated at use sites, rather than being

fixed at declaration sites of predicates. Mask subtyping enriches the state space,

and previous work on typestates does not appear to have anything like it.

J\mask uses subclass masks and mask constraints to ensure modular type

checking. These techniques are related to rest typestates and sliding methods

in Fugue [18]. However, Fugue requires that sliding methods are overridden in

every subclass, whereas mask constraints in J\mask force methods to be over-

ridden only when their watched abstract masks are overridden.

Aliasing has always been a hard problem for any typestate mechanism: first,

it is not easy to maintain correct typestate information in the presence of alias-

ing; second, although there are typing mechanisms like linear types that help

keep track of aliases, they are inconvenient for ordinary programmers. Previ-

ous work on typestates has proposed various treatments to the aliasing prob-

lem: Nil [76] completely rules out aliasing; Vault [17] and Fugue disallow fur-

ther state changes once an object becomes aliased unless the changes are tempo-

rary; Bierhoff and Aldrich [4] refine the two aliasing annotations “not aliased”

and “maybe aliased” in Fugue to a richer set of permissions; Fähndrich and

Leino [26] also identify a kind of typestates that are heap-monotonic and work

without aliasing information; Fink et al. [28] conduct whole-program verifica-

tion and rely on a global alias analysis. The treatment of the aliasing problem

in J\mask is inspired by [26]: simple masks and conditional masks are heap-

monotonic, and must-masks, though not heap-monotonic, are associated with

76

newly created objects whose aliasing information is easy to track. We believe

J\mask achieves a good trade-off between expressiveness and simplicity for the

aliasing problem in the context of object initialization.

Masked types are reminiscent of type-based access control mechanisms that

statically restrict access to individual fields or methods, e.g., [41, 69]. However,

masked types are very different; they are designed for reasoning about initial-

ization, and access is “granted” by the act of assignment to the resource, which

makes little sense as an access control feature.

Static analysis. J\mask, similar to other typestate mechanisms, has a flow-

sensitive type system, which can be viewed as a dataflow analysis. An alter-

native to masked types is an interprocedural def-use analysis, but this would

lose many of the advantages of masked types. Java already has an intrapro-

cedural analysis [78] to ensure that every local variable is definitely assigned

before it is used. However, Java cannot safely prevent reading from uninitial-

ized fields. There has been work on interprocedural def-use analysis in the

context of object-oriented languages [74, 73], with varying cost and precision.

This prior work detects initialization bugs on fields, but requires non-modular

whole-program def-use analyses and is subject to the typically limited accuracy

of whole-program alias/points-to analyses. By contrast, type checking in J\mask

is modular and therefore scalable. Masked types bring another benefit because

they specify the initialization contracts of methods, helping programmers rea-

son about the code. Explicitly capturing this aspect of programmer intent seems

valuable.

FindBugs [33] contains an analysis [34] that is designed specifically to detect

77

null-pointer bugs. The analysis is neither sound nor complete, but focuses on

improving accuracy. The basic analysis is interprocedural, but extensions are

proposed in which non-null annotations are inserted into method signatures to

represent contracts.

Shape analyses are aimed at extracting heap invariants that describe the

“shape” of recursive data structures [86]. Conditional masks capture some part

of the shape information of the data structure under construction. However,

conditional masks are not concerned with initialized fields, and also are more

about dependencies than the shape of references, and therefore have transitiv-

ity and cycle cancellation. Shape analyses are normally built upon alias anal-

yses, and contain explicit representation of heap locations, neither of which is

present in the J\mask language. J\mask only tracks mask changes on local vari-

ables, which gives it a flavor of local reasoning somewhat similar to the analysis

in [11].

Because they summarize a set of concrete fields, abstract masks have some

similarity to data groups [44], a mechanism used for modular program verifi-

cation. Data groups do not have the equivalent of mask algebra. Moreover,

masked types are about more than just abstracting fields; must-masks and con-

ditional masks are new mechanisms that enable sound initialization of compli-

cated data structures.

Other kinds of languages. The initialization problem is not unique to object-

oriented languages. In a purely functional programming style, values are con-

structed all at once, avoiding the creation of partially initialized values. How-

ever, functional languages typically do not easily support the construction of

78

cyclic data structures well, though it can be achieved in some cases with value

recursion [80]. The typed assembly language in [55] supports initialization flags

that are similar to the simple masks in J\mask.

79

CHAPTER 3

IMPROVING FAMILY EXTENSIBILITY WITH CLASS SHARING

Relationships (subclassing, referencing, etc.) between classes posit challenges

not only for initializing objects, but also for modularly extending existing code

with new behavior. Inheritance and adaptation are the two notable ways of

extending software modularly. Inheritance creates new classes enhanced with

new functionality, and adaptation adds new functionality to existing objects

without modifying the original class definition. However, both inheritance

and adaptation operate on individual classes and do not support coordinated

changes that span families of related, interacting classes. Therefore, extensibility

provided by these mechanisms does not scale well to large software systems.

In the context of inheritance, recent work on family inheritance, e.g., [51, 22,

56, 58, 38], supports coordinated extensions to families of classes. This chapter

presents class sharing as the first language mechanism that integrates family in-

heritance and in-place, bidirectional adaptation. Class sharing is implemented

in the J&s language, which is an extension to the J& language presented in [58]

that supports family inheritance. Class sharing in this chapter is heterogeneous:

families might not share all the classes. Masked types, presented in 2, are used

to ensure the type safety of J&s. Chapter 4 shows a homogeneous version of shar-

ing mechanism, which is more straightforward and more scalable.

80

3.1 Sharing classes between families

The new class sharing mechanism in J&s is a safe, modular mechanism that

relaxes the disjointness of class families. A family of classes may not only inherit

another family (and hence all its nested classes), but may also share some of the

classes from the family it inherits from. This enables new kinds of extensibility.

3.1.1 Family inheritance

J&s builds on the family inheritance mechanisms introduced by Nystrom et al.:

nested inheritance [56] and nested intersection [58].

Nested inheritance is inheritance at the granularity of a namespace (a package

or a class), which defines a family in which related classes are grouped. Nested

inheritance supports coordinated changes that span the entire family. When

a namespace inherits from another (base) namespace, not only are fields and

methods inherited, but also namespaces nested in the base namespace. In ad-

dition, the derived namespace can override, or further bind [50] inherited names-

paces, changing nested class declarations. Nested inheritance does not provide

adaptation, however. Nested classes in the inheriting namespace, even those

not overridden (implicit classes), are different classes than those of the same name

in the base namespace.

Nested intersection supports composing families with generalized intersection

types [68, 14]. Given classes S and T , their intersection S &T inherits all mem-

bers of S and T . When two namespaces are intersected, their common nested

namespaces are themselves intersected, i.e., (S &T).C = (S .C)&(T.C).

81

class AST {
class Exp {...}
class Value

extends Exp {...}
class Binary

extends Exp
{ Exp l, r; }
...

}

class TreeDisplay {
class Node {

void display() {...}
}
class Composite extends Node {

Node getChild(int i) {...}
}
class Leaf extends Node {...}

}

Figure 3.1: An expression family and a GUI family

1 class ASTDisplay extends AST & TreeDisplay {
2 class Exp extends Node { void display() { ... } }
3 class Value extends Exp & Leaf { ... }
4 class Binary extends Exp & Composite
5 { void display() { ... l.display(); ... } }
6 void show(Exp e) { e.display(); }
7 }

Figure 3.2: Mixing display into expressions, with nested inheritance

Figure 3.1 shows an example with two families of classes. Class AST contains

a family of classes for representing expressions, and class TreeDisplay con-

tains a family of classes for graphically visualizing trees. Figure 3.2 shows the

skeleton of code that implements the functionality of displaying an expression

as a tree—without changing the existing families. ASTDisplay inherits both

AST and TreeDisplay, and therefore inherits all nested classes from both of

them. The GUI classes are implicit in ASTDisplay, and expression classes are

further bound to inherit GUI classes in addition to their original superclasses,

and to override GUI methods with appropriate rendering code. As the show

method in Figure 3.2 demonstrates, expression classes in the new family sup-

port the added display method.

Two mechanisms are essential for nested inheritance to work: late binding

of type names and exact types. These mechanisms are also important for class

sharing.

82

Late binding of type names. Late binding of type names ensures relationships

between classes are preserved in the derived family.

When the name of a class is inherited into a new namespace, the name is

interpreted in the context of the new namespace. For example, inside the family

ASTDisplay, the type Exp refers to Exp in ASTDisplay. Consider the field l,

which is declared in AST.Binarywith type Exp, and then inherited by the class

ASTDisplay.Binary. When inherited, its type is the Exp of ASTDisplay,

not the original type. This late binding makes the call l.display() on line 5

legal. Similarly, the superclass of ASTDisplay.Binary is ASTDisplay.Exp,

not AST.Exp.

Two mechanisms make the late binding of type names type-safe: dependent

classes and prefix types. The dependent class p.class represents the run-time

class of the object referred to by the final access path p. A final access path is

either a final local variable, including this and final formal parameters, or a

field access p.f, where p is a final access path and f is a final field. In gen-

eral, the class represented by p.class is statically unknown, but fixed. A prefix

type P[T] represents the enclosing namespace of the class or interface T that

is a subtype of the namespace P, i.e., the family at the level of P that contains

T [56]. In Figure 3.2, if one writes AST[this.class], it refers to either AST or

ASTDisplay, depending on the run-time class of the value stored in this.

Type names that are not fully qualified are sugar for members of prefix types

that depend on the current class this.class, and in an inheriting family, they

will be reinterpreted. In Figure 3.1, the type Exp inside class AST is sugar for

AST[this.class].Exp.

83

Exact types. Both dependent classes and prefix types of dependent classes are

exact types [7]: all instances of these types must have the same run-time class.

Simple types may be exact too. If A is a class, the exact type A! represents

values of the run-time class A. Even if class B inherits from A, neither B nor B! is

a subtype of A!. Exactness applies to the entire type preceding “!”, so supertypes

of a simple exact type can be obtained by shifting the exactness outward. For

example, ASTDisplay.Exp! is not a subtype of AST.Exp!, but it is a subtype

of ASTDisplay!.Exp, which is a subtype of ASTDisplay.Exp.

Exact types also restrict the subtyping relationships of nested types. For ex-

ample, ASTDisplay!.Binary is not a subtype of AST!.Binary, even though

ASTDisplay.Binary is a subtype of AST.Binary. Therefore exact types can

mark the boundary of a family: classes nested in ASTDisplay! form one fam-

ily and those nested in AST! form another. Non-dependent exact types provide

a locally closed world: at compile time, one can enumerate all classes that are sub-

types of A!.C, without inspecting subclasses of A. Exact types are important for

the modularity of J&s (Section 3.1.5).

3.1.2 Sharing declarations

J&s introduces shared classes with sharing declarations in the derived family, such

as the declaration “shares A.C” in this code:

class A { class C ... } // the base family

class B extends A { // the derived family

class C extends D shares A.C { ... }

}

84

This sharing declaration establishes a sharing relationship between classes A.C

and B.C. Sharing declarations induce an equivalence relation on classes that

is the reflexive, symmetric, and transitive closure of the declared sharing rela-

tionships. If two classes have a sharing relationship, they have the same set of

object instances. However, subclasses of the two shared classes are not automat-

ically shared, unless the subclasses also have appropriate sharing declarations.

Therefore, the sharing relationship established in the above example can be rep-

resented as a relationship between two exact types, written A.C!↔ B.C!.

J&s requires that only an overriding class in a derived family (e.g., B.C) may

declare a sharing relationship with the overridden class in a base family (e.g.,

A.C). This restriction helps keep shared classes similar to each other.

Sharing vs. subtyping. The J&s language keeps subtyping largely separate

from sharing. Adding a sharing relationship does not change the subtyping

relation. In the above example, B.C is a subtype of A.C, and B!.C is not a

subtype of A!.C due to the exactness, whether there is a sharing declaration or

not. The sharing relationship does not make A.C a subtype of B.C, nor does it

create any subtyping relationship between A!.C and B!.C.

Since sharing is not subtyping, it is in general not allowed to directly treat

an object of a shared class as an instance of the other class in the sharing re-

lationship; an explicit view change may be required (see Section 3.1.3 for more

details).

Family adaptation. Sharing solves the problem of object adaptation [85], in

which the goal is to augment existing objects with new behavior or state. Adap-

85

1 class ASTDisplay extends AST & TreeDisplay {
2 class Exp extends ... shares AST.Exp { ... }
3 class Value extends ... shares AST.Value { ... }
4 class Binary extends ... shares AST.Binary
5 { void display() { ... l.display(); ... } }
6 void show(AST!.Exp e) sharing AST!.Exp = Exp {
7 Exp temp = (view Exp)e;
8 temp.display();
9 }
10 }

Figure 3.3: Using class sharing to adapt Exp to TreeDisplay

tation is different from inheritance, where only objects of new classes have the

new behaviors. J&s is the first language to fully integrate family inheritance

with in-place adaptation that preserves object identity. Moreover, because shar-

ing is an equivalence relation on classes, J&s supports bidirectional, transitive

adaptation.

Adaptation can improve the example code from Figures 3.1 and 3.2. Al-

though ASTDisplay in Figure 3.2 provides expression classes extended with

the ability to display themselves, this new functionality is not available for in-

stances of the original classes in AST. This is unfortunate, because instances of

the original classes might be created by existing library code or deserialized

from a file. We can avoid this limitation by using class sharing as shown in

Figure 3.3. Here, shares clauses cause the two families ASTDisplay and AST

to share all the expression classes. Instances of AST expression classes are also

instances of corresponding ASTDisplay expression classes.

Because of sharing, expression objects from the AST family can possess

GUI display operations, even if the implementer of AST was not aware of

TreeDisplay or ASTDisplay; client code—for example, a visualization

toolkit, which expects TreeDisplay objects—would obtain the ability to han-

86

dle existing AST objects. Thus every expression class in the ASTDisplay fam-

ily becomes an adapter [30] for the corresponding class in AST; the ASTDisplay

family provides family adaptation for AST.

Given a tree of expression objects from AST, family adaptation ensures that

the whole tree is safely adapted to ASTDisplay. The adaptation preserves the

original tree structure, and the relationships between objects in the tree. This

contrasts with prior adaptation mechanisms that work on individual objects,

which do not guarantee safety or the preservation of object relationships. With

prior mechanisms such as the adapter design pattern [30], one might forget to

adapt the left child of a Binary object, and the call l.display() on line 5

would fail.

In Figure 3.3, every expression class has a sharing declaration, which could

be tedious to write. J&s provides the adapts clause as a shorthand for

adding sharing declarations to all inherited member classes. For example,

ASTDisplay may be declared with the following class header, without any

individual sharing declarations:

class ASTDisplay extends ... adapts AST { ... }

3.1.3 Views and view changes

Views. If two classes are shared, a single object might be treated as an instance

of either one. Each class is a distinct view of that object. A J&s object can have

any number of views, all equally valid. This contrasts with an ordinary object-

oriented language like Java (or even J&), where an object has exactly one view:

87

its run-time class.

In J&s, an object reference is not just a heap location; it is essentially a pair

< !, T > of a heap location ! and a type T , where T is the view, represented as

a non-dependent exact type. The view T determines the behavior of the object

when accessed through that reference.

For example, the method display in Figure 3.3 cannot be directly called

on an object created as an instance of the class AST.Binary, because the ref-

erence has the view AST.Binary!. However, when the object obtains a new

reference—for example, by storing the object in a local variable—with the view

ASTDisplay.Binary!, it also obtains a new behavior—the method display

becomes available through the new reference. Moreover, methods that are avail-

able through the original reference might behave differently when they are

called through the new reference. See Section 3.1.4 for an example.

View changes. J&s has a view change operation (view T)e, which generates a

new reference with the same heap location but a different view. On line 7 in

Figure 3.3, the method show contains a view change expression (view Exp)e,

the result of which is a reference that still points to the same object as e but

with a new view that is a subtype of Exp. (Recall from Section 3.1.1 that within

ASTDisplay, Exp is sugar for ASTDisplay[this.class].Exp).

View changes support late binding. Although the expression (view T)e has

a statically known type T , the actual run-time view of the result is a subtype of T

that is shared with the run-time view of the value of e. For example, in line 7 of

Figure 3.3, if e evaluates to a value with the view AST.Value!, then within the

family ASTDisplay, the expression (view Exp)e produces a value with the

88

view ASTDisplay.Value!, which is a subtype of ASTDisplay!.Exp, and

shared with AST.Value.

A view change (view T)e looks syntactically like a type cast (T)e, and it

does have the same static target type T , but it is actually quite different. First,

a type cast might fail at run time, but view changes that type-check always

succeed. Second, no matter whether it is an upcast or a downcast, an ordinary

cast only works if the target type is a supertype of the run-time class of the object.

However, a view change has in general a target type that is neither a supertype

nor a subtype of the current view of the object, but from another family. For

example, if families A and B share the class C, together with all its subclasses

within each family, the following code is legal:

A!.C a = new A.C();

B!.C b = (view B!.C)a;

The initial view of the created object is A.C!. The target type B!.C in the view

change is neither a supertype nor a subtype of A.C!. Of course, if the type in a

view change is indeed a supertype of the current view of the instance, the view

change is a no-op.

Third, a type cast checks run-time typing information, but has no other ef-

fects at run time. By contrast, a view change can affect the behavior of the object.

View-dependent types. Nested inheritance uses the dependent class p.class

to indicate the family that the object referenced by p belongs to. J&s general-

izes p.class to be view-dependent, since an object may be a member of multiple

families. For example, suppose ASTDisplay contained the following code:

89

AST!.Binary a = new AST.Binary();

Binary b = (view Binary)a;

At run time, a.class would denote AST.Binary!, and b.class would de-

note ASTDisplay.Binary!. This example shows that in J&s, the dependent

classes associated with different aliases (a and b in this example) are not nec-

essarily equal; they are interpreted as the views associated with the respective

references.

Prefix types of dependent classes are also view-dependent, ensuring that

late-bound type names belong to consistent families. Consider the left child

of class Binary, stored in the field l. The type of the field is Exp, sugar for

AST[this.class].Exp, which depends on the view of the object that con-

tains the field. Accessing the left child with a.l returns an object in the family

AST, whereas accessing it with b.l returns the same object, but with a view in

the family ASTDisplay. In either case, the left child object and the contain-

ing Binary object have views that are in the same family. This means that for

a tree of objects in one family, a single explicit view change on the root object

effectively moves the whole tree to another family, implicitly triggering view

changes on child objects as they are accessed.

3.1.4 Dynamic object evolution via view change

View-based dynamic method dispatching. In J&s, method calls are dis-

patched on the current view of the receiver object, rather than on the receiver

itself as in Java. When two references to the same receiver object have different

views, the same method call may invoke different code. Therefore, when a J&s

90

class overrides a method inherited from its declared shared class, both versions

of the method become available to the object, and the choice is made at run time,

based on the view associated with the reference.

Method dispatching in J&s differs from that of nonvirtual methods in

C++ [77], and from the statically scoped adaptation in expanders [85]. For non-

virtual methods in C++, the static type of the receiver acts as a static view that

selects the method to call. By contrast, the view change operation in J&s affects

method dispatching, but still allows late binding, since the type T in a view

change (view T)e is a supertype of the statically unknown run-time view.

Expanders dispatch methods within the same family dynamically, but un-

like with class sharing, the choice between original code and expander code is

static. Expander methods can be invoked only when expanders are in scope,

and therefore the behavior of existing code written before the expanders cannot

change. Since expansion is not inheritance, expander methods can only overload

original methods rather than overriding them.

Dynamic object evolution. View-based method dispatching enables a new

form of dynamic object evolution, in which existing objects are updated with

different behavior without breaking running code. It is more powerful than

object adaptation, which generally only adds new behavior to existing objects,

whereas evolution can also make objects change behavior, even in a context

that does not mention the updated classes. J&s supports evolution at the family

level, evolving interacting objects consistently to the new family.

For example, Figure 3.4 shows a package service that implements several

network services, and a dispatcher that calls different services based on the kind

91

package service;
class SomeService {

void handle(Packet p) {...}
}
...
class Dispatcher {

SomeService s;
void dispatch(Packet p) {
switch (p.kind) {

case 0: s.handle(p);
...

}
}

}

package logService extends
service;

class SomeService shares
service.SomeService {...}

...
class Logger {...}
class Dispatcher shares

service.Dispatcher {
Logger logger;
void dispatch(Packet p) {

logger.log(...);
...

}
}

Figure 3.4: Evolution of a network service package

of the received packet. The server code has a static field storing the dispatcher,

and an event loop:

static service.Dispatcher disp;

...

while (true) { ... disp.dispatch(p); ... }

Suppose the system implemented in the service family has started run-

ning, and then an updated package logService is developed that extends

service with logging at various places (Figure 3.4 only shows the additional

logging in the dispatch method). The goal is to update the system with log-

ging ability, without having to stop it from running.

To evolve the system from service to logService, the view of the dis-

patcher object stored in the static field disp needs to be changed. This could be

done in initialization code in the extended package, as follows:

92

service!.Dispatcher d =

(service!.Dispatcher)Server.disp; // cast

Server.disp = (view Dispatcher)d; // view change

After this view change, the dispatch method overridden in the extended

package will be called.

More importantly, although just a single explicit view change is applied to

the dispatcher object, all the other objects transitively reachable from the dis-

patcher, such as through the field s of type SomeService, will also obtain new

views when they are accessed, resulting in using the versions of their methods

that have logging enabled. Thus, a single explicit view change causes a con-

sistent evolution of many objects to the new family. This kind of evolution is

simpler to implement and likely to be more efficient than going through all the

objects and updating them individually.

J&s allows the old version before the update to coexist with the new version,

because each object can have multiple views at the same time. This is useful, for

example, when an Internet service system is upgraded, to allow existing user

sessions to continue communicating with the old version, without any service

disruption or inconsistent behavior caused by the upgrade.

3.1.5 Sharing constraints

Sharing relationships between types are not always preserved by derived fam-

ilies, either by design or as the result of changed class hierarchy in the derived

family. For example, in a family inherited from ASTDisplay, one might choose

93

not to share any class, or to share classes from TreeDisplay, and in either case,

the new family no longer shares classes with the AST family.

Therefore, a view-change operation that works in the base family might

not make sense in the derived family. J&s does not try to check all inherited

method code for inapplicable view changes, but rather makes checking modu-

lar via sharing constraints. A J&s method can have sharing constraints of the form

sharing T1 = T2, which means that any value of type T1 can be viewed as of

type T2, and vice versa; in other words, the sharing relationship T1 ↔ T2 may be

assumed in the method body. A view change can only appear in a method with

an enabling sharing constraint. Outside the scope of sharing constraints, the

type checker (and programmer) need not be concerned with sharing. Therefore,

reasoning about class sharing is local.

For example, in Figure 3.3, the method show has a sharing constraint

AST!.Exp = Exp (line 6), which allows the view change (view Exp)e to be

applied to the variable e of static type AST!.Exp.

To know statically that the view change (view Exp)e will succeed, we must

know that every subclass of AST!.Exp has a corresponding shared subclass un-

der ASTDisplay!.Exp. J&s requires that some prefix of each type in the con-

straint is exact, and either non-dependent or only dependent on the path this;

thus, we can check all the subclasses in a locally closed world (Section 3.1.1),

without a whole-program analysis. In this example, the exact prefixes in ques-

tion are AST! and ASTDisplay[this.class].

The type checker verifies that sharing constraints in the base family still hold

in the derived family; base family methods whose sharing constraints do not

94

class A1 {
class B { }
class C { D g; }
class D { }

}
class A2 extends A1 {

class B shares A1.B {
T f; // a new field

}
class C shares A1.C\g { } // shared with a mask
class E extends D { } // a new subclass of D

}

Figure 3.5: Shared classes with unshared fields

hold must be overridden.

Although sharing constraints support modular type checking, they do intro-

duce an annotation burden for the programmer. Our experience suggests that

the annotation burden is manageable. While it appears possible to automati-

cally infer sharing constraints, by inspecting the type of the source expression

and the target type of every view change operation in the method body, we

leave this to future work.

3.2 Protecting unshared state with masked types

3.2.1 Unshared fields

In J&s, shared classes do not necessarily share all their fields. Unshared fields

are important for greater extensibility, but they pose challenges for the safety of

the language. J&s uses masked types [64] and duplicate fields to ensure safety in

the presence of unshared fields.

95

Figure 3.5 illustrates the two kinds of unshared fields. First, new object fields

may be introduced by shared classes in the derived family. Because these fields

do not exist in the base family, they cannot be shared. In Figure 3.5, classes A1.B

and A2.B are shared, but A2.B introduces a new field f that does not exist in

A1.B. When a view change from the base family to the derived family—for

example, from A1!.B to A2!.B—is applied, the new field (e.g., the field f in

Figure 3.5) would be uninitialized, which may be unexpected to the code in the

derived family.

J&s uses masked types to prevent the possibly uninitialized new field from

being read. A masked type, written T\ f , is the type T without read access to the

field f . We say that the field f is masked in T\ f . The mask on a field can be re-

moved with an assignment to that field. Masked types introduce the subtyping

relationship T ≤ T\ f . For the example in Figure 3.5, a view change from A1!.B

to A2!.B must have a mask on the target type:

A1!.B b1 = new A1.B();

A2!.B\f b2 = (view A2!.B\f)b1;

Therefore, after this view change, the field f of b2 cannot be read before it is

initialized.

The second kind of unshared field is those with unshared types. In Fig-

ure 3.5, the field g has type D, and it cannot be shared, because in the A2 family,

g might store an object of class E. When a view change is applied from the de-

rived family to the base family (for example, from A2!.C to A1!.C), an A2.E

object stored in g would not have a view compatible with the base family.

Therefore, J&s requires that fields with unshared types are masked in the

96

sharing declaration. A duplicate field with the same name for the shared class

is also generated automatically in the derived family. For example, in Figure 3.5,

it is as if the class A2.C has its own implicit declaration of field g:

class C shares A1.C\g {

D g;

}

An instance of A1.C and A2.C contains two copies of the field g, each ap-

pearing as a “new” field to the other class. Which copy is accessed depends on

the current view of the instance through which the field g is accessed. Field du-

plication prevents objects of an unshared class from being accidentally accessed

in other families. Therefore, interacting objects always have consistent views.

When shared classes have duplicate fields, it is up to the programmer how to

keep the copies in sync, or even whether to keep them in sync. The programmer

may choose to construct a corresponding object in the target family, storing it in

the duplicate field, as in the example in Section 3.2.2, or just to leave the field

masked in the target family.

3.2.2 In-place translation with unshared classes

J&s supports in-place translation of data structures between families in which

not all the classes are shared (translation is trivial if all classes are shared). As the

data structure is translated, some objects in the structure may remain the same,

with only a view change, and other objects, particularly those of unshared types,

are explicitly translated. One use of this kind of translation is for compilers,

97

package base;
abstract class Exp
{ ... }
class Var extends Exp {

String x;
...

}
class Abs extends Exp {

String x;
Exp e;
...

}

package pair extends base;
abstract class Exp

{ abstract base!.Exp translate
(Translator v); }

class Pair extends Exp
{ Exp fst, snd; ...}

class Translator {
base!.Abs reconstructAbs
(Abs old, String x,
base!.Exp exp) { ... }

...
}

Figure 3.6: Lambda calculus and pair compiler extension

where the data structure is an abstract syntax tree, and many parts of the AST

do not need to change during a given compiler pass.

Figure 3.6 shows the skeleton of a simple compiler implemented with fam-

ily inheritance but without class sharing, modeled on the Polyglot extensible

compiler framework [57]. This example translates the λ-calculus extended with

pairs, into the ordinary λ-calculus. The package base defines the target lan-

guage through class declarations for AST nodes of the λ-calculus (e.g., Abs for

λ abstractions); the package pair extends the source language with one addi-

tional AST node Pair. Classes inherited from base are further bound in pair

with translatemethods that recursively translate an AST from pair to base.

The class Translator provides the methods AST classes use to (re)construct

nodes in the target family using translated versions of their child nodes; the

method reconstructAbs does this for λ abstractions. However, without shar-

ing, the translation from pair to base has to recreate the whole AST, even for

trivial cases like Var, because the two families base and pair are completely

disjoint despite their structural similarity.

By contrast, Figure 3.7 shows the J&s code that does in-place translation. The

98

1 package pair extends base;
2 abstract class Exp shares base.Exp {
3 abstract base!.Exp translate(Translator v);
4 }
5 class Var extends Exp shares base.Var { ... }
6 class Abs extends Exp shares base.Abs\e {
7 base!.Exp translate(Translator v) {
8 base!.Exp exp = e.translate(v);
9 return v.reconstructAbs(this, x, exp);
10 }
11 }
12 class Pair extends Exp {
13 Exp fst, snd;
14 base!.Exp translate(Translator v) {
15 return new ...; // (λx. λy. λ f . f x y) $fst% $snd%
16 }
17 }
18 class Translator {
19 base!.Abs reconstructAbs(Abs old, String x,
20 base!.Exp exp)
21 sharing Abs\e = base!.Abs\e {
22 if (old.x == x && old.e == exp) {
23 base!.Abs\e temp = (view base!.Abs\e)old;
24 temp.e = exp;
25 return temp;
26 }
27 else return new base.Abs(x, exp);
28 }
29 ...
30 }

Figure 3.7: In-place translation of the pair language

base family remains the same as in Figure 3.6, and is omitted. Classes Var and

Abs in pair are declared to share corresponding classes in base (lines 5–6).

Pair is not shared, because it does not exist in base.

Consider the two shared classes pair.Abs and base.Abs. The type of their

field e, which is base[this.class].Exp, is interpreted as pair!.Exp and

base!.Exp in the two families. The two interpreted field types are not shared,

because a value of type pair!.Exp might have run-time class pair.Pair,

99

which has no corresponding shared class in the base family. Therefore the two

Abs classes each have their own copies of the field e, and the sharing declaration

on line 6 has a mask on e.

Similarly, the sharing constraint on line 21 also has masks, and so does the

view change operation on line 23, where the Abs instance is reused if all its

subexpressions have been translated in place. The sharing constraint, together

with the corresponding view change operation, has a mask on the field e, in

case it points to an instance of an unshared subclass of Exp, such as Pair. The

mask is removed on line 24, after which the type of the variable temp becomes

base!.Abs.

As shown in the above example, J&s uses masked types to prevent objects of

unshared types, such as Pair, from being leaked into an incompatible family

(here, base). Masked types do introduce some annotation burden. However,

class sharing is expected to be used in practice between families that are similar

to each other, where extensibility and reuse are needed and make sense. In that

case, there should not be many masks.

3.2.3 Translation from the base family to the derived family

Translations in different directions are not always of the same difficulty. Sec-

tion 3.2.2 proposes a solution for in-place translation from the derived family

(pair) to the base family (base). The complexity of the solution arises mostly

because the objects of the Pair class must be translated away. However, as

noted in [15], in-place translation in the other direction, that is, from base to

pair, should be almost trivial, by treating an AST in base as an AST in pair.

100

To capture the asymmetry, J&s supports directional sharing relationships be-

tween types that are possibly masked, represented as T1 ! T2, which means

that an object of static type T1 may be applied a view change with target type T2.

In Figure 3.7, the J&s compiler may infer the sharing relationship base!.Exp

! pair!.Exp, (the other direction pair!.Exp! base!.Exp does not hold,

because of the class Pair), and allows a constant-time in-place translation from

base to pair, by a view change from base!.Exp to pair!.Exp.

Note that in this case, the sharing declaration on line 6 in Figure 3.7 actually

induces the following two directional sharing relationships:

base.Abs!! pair.Abs!

pair.Abs!\e! base.Abs!\e

rather than just one bidirectional sharing relationship base.Abs!\e ↔

pair.Abs!\e.

3.3 Formal semantics and soundness

3.3.1 Grammar

The grammar of the language is shown in Figure 3.8. We use the notation a for

the list a1, . . . , an for n ≥ 0. The length of a is written #(a), and the empty list is

written nil. Depending on context, a sometimes denotes the set containing all

list members. Types with multiple masked fields are written as T\ f .

Every class has a shares clause. If a class C does not share any other class,

the type that appears in its shares clause is C itself.

101

programs Pr ::=< L, e >
class declarations L ::= class C extends T1 shares T2 {L F M}
field declarations F ::= [final] T f = e
method declarations M ::= T m(T x) sharing Q {e}
sharing constraints Q ::= T1 ! T2
pure types PT ::= ◦ | PT.C | p.class | P[PT] | &PT | PT !
types T ::= PT | PT\ f
pure non-dependent types PS ::= ◦ | PS .C | P[PS] | &PS | PS !
non-dependent types S ::= PS | PS \ f
classes P ::= ◦ | P.C
values v ::=< !, S >
access paths p ::= v | x | p. f
expressions e ::= v | x | e. f | x. f = e | e0.m(e) | e1; e2

| new T | (view T)e | final T x = e1; e2
typing environments Γ ::= ∅ | Γ, x :T | Γ, p1 = p2 | Γ,Q

Figure 3.8: Grammar of the J&s calculus

Unlike Featherweight Java [36] or the J& calculus [59], object allocation does

not provide any initial values for fields. Every field, in its declaration, specifies

an initial value.

Methods have sharing constraints Q, which are used to type-check view

change operations, and to control method overriding. For simplicity, the formal

semantics assumes all the classes are known, and the modular type-checking of

sharing constraints is not modeled.

In J&s, a value v, that is, a reference, is a pair of a heap location ! and a view

S , which is a non-dependent exact type that may include masks.

Expressions are mostly standard, with the addition of a view change opera-

tion (view T)e. Without loss of generality, the receiver of a field assignment is

assumed to always be a variable.

The typing environment contains aliasing information about access paths.

An entry p1 = p2 means p1 and p2 are aliases, which also have the same run-time

102

view. As in [12], this kind of information is not needed in the static semantics,

but just in the soundness proof.

3.3.2 Auxiliary definitions

Some auxiliary definitions that are straightforward are only informally ex-

plained here.

• super(P) and share(P) represent the declared supertype and shared type of

P. The set of all superclasses of S is supers(S).

• Well-formedness judgments of types and environments are represented as

Γ * T and * Γ ok.

• FV(e) and refs(e) are the sets of free variables and free references in expres-

sion e.

• pure(T) strips all the masks from type T .

3.3.3 Class lookup

The class table CT (P), defined in Figure 3.9, returns the declaration for explicit

class P, or ⊥ otherwise. In CT-OUT, the premise Pr =< L, e > indicates that the

program consists of a set of top-level class declarations L and a “main” expres-

sion e, and the “outermost” class ◦ contains all the class declarations in L.

Besides CT , there is also an extended class table CT ′, which includes implicit

classes (but not any top-level intersection types). The class table CT ′ is needed

103

CT(P)

Pr =< L, e >

CT(◦) = class ◦ extends &nil shares ◦ {L}
(CT-OUT)

CT(P) = class C′ extends T ′e shares T ′s {L′ F′ M′}
class C extends Te shares Ts {. . . } ∈ L′

CT(P.C) = class C extends Te shares Ts {. . . }
(CT-EXP)

CT′(P)

CT(P) # ⊥
CT′(P) = CT(P)

(CT′-EXP)

CT′(P) # ⊥ CT(P.C) = ⊥ * P !∗ P′ CT′(P′.C) # ⊥
Te = &P′′#fbP.C super(P′′) Ts = P.C

CT′(P.C) = class C extends Te shares Ts {}
(CT′-IMP)

mem(PS)

CT′(P) # ⊥
mem(P) = {P}

D = {Pi ∈ mem(PS) | CT′(Pi.C) # ⊥}
mem(PS .C) =

⋃
Pi∈D{Pi.C}

mem(P[PS]) = prefix(P, PS) mem(&PS) =
⋃

PS i∈PS mem(PS i) mem(PS !) = mem(PS)

* P1 !sc P2

* P1 !∗ P
CT ′(P.C) = class C extends T . . .

T {{∅; P1/this}} = PS
P2 ∈ mem(PS)

* P1.C !sc P2
(SC)

* P1 !fb P2

* P1 ! P2

* P1.C !fb P2.C
(FB)

* P1 ! P2

* P1 !sc P2

* P1 ! P2
(INH-SC)

* P1 !fb P2

* P1 ! P2
(INH-FB)

* P1 ∼ P2

* P1.C !fb P0.C
* P2.C !fb P0.C

* P1 ∼ P2
(REL-FB) * P ∼ P (REL-REFL)

* P1 ∼ P2

* P2 ∼ P1
(REL-SYM)

* P1 ∼ P2

* P2 ∼ P3

* P1 ∼ P3
(REL-TRANS)

Member lookup

CT′(P) = class C . . . {L F M}
ownFields(P) = F

ownMethods(P) = M

fields(S) =
⋃

Pi∈supers(S)
ownFields(Pi)

methods(S) =
⋃

Pi∈supers(S)
ownMethods(Pi)

F = [final] T f = e

fnames(F) = f

Γ * T $ PS fields(PS) = F
Fi = [final] T f f = e

ftypedecl(Γ,T, f) = T f

T decl
f = ftypedecl(Γ,T, f)

T f = T decl
f {{Γ; T/this}} T # T ′′\ f

ftype(Γ,T, f) = T f

Γ * T $ PS
methods(PS) = M

Mi = Tn+1 m(T x) . . . {e}
mtype(Γ,T,m) = (x :T)→ Tn+1

methods(S) = M
Mi = Tn+1 m(T x) . . . {e}

mbody(S ,m) = Mi

Figure 3.9: Classes

104

because sharing constraints must also be checked for implicit classes. In the rule

CT′-IMP, a declaration of an implicit class P.C is created: the declared supertype

Te is the intersection of the supertypes of all the classes that P.C further binds;

the shared type Ts just refers to the class itself with this.class.C. In CT′-IMP,

P′′ #fb P.C is a shorthand for * P.C !fb P′′.

3.3.4 Subclassing

Inheritance among classes is defined in Figure 3.9. The judgment * P1 !sc P2

states that P1 is a declared subclass of P2, and * P1.C !fb P2.C states that P1.C

further binds P2.C. We write * P1 ! P2 if P1 either subclasses or further binds P2.

The definition uses the mem function, also shown in Figure 3.9, which re-

turns the set of classes P comprising a pure non-dependent type PS .

3.3.5 Prefix types

The meaning of a non-dependent prefix type P[PS] is defined using the func-

tion prefix(P, PS):

prefix(P, PS) = {P′ | ∃ C,C′ . * P ∼ P′ ∧ P.C ∈ supers(PS) ∧ P′.C′ ∈ supers(PS)}

If prefixExact1(PS) = false (see Section 3.3.7 for the definition of

prefixExactk(T)), the P-prefix of a pure non-dependent type PS is the intersec-

tion of all classes P′ where P and P′ both inherit a common nested class—that

is, P and P′ are equivalent under the ∼ relation, shown in Figure 3.9—and PS

extends nested classes of both P and P′. This definition ensures that if P is a

105

subtype of P′, then P[PS] is equal to P′[PS]. If prefixExact1(PS) = true, then

P[PS] is (&prefix(P, PS))!, which keeps the exactness of the index.

Note that the index PT of a prefix type P[PT] can only be a pure type, as

shown by WF-PRE in Figure 3.12. Also, as in [59], the J&s calculus only allow

prefix types P[T] where some supertype of T is immediately enclosed by a

subclass of P, and more general prefix types can be encoded.

3.3.6 Member lookup

Figure 3.9 also shows auxiliary functions for looking up fields and methods:

the functions fields(P) and methods(P) collect all the field and method decla-

rations from P and its superclasses; fnames(F) is the set of all field names in

field declarations F; ftypedecl(Γ,T, f) returns the declared type of field f , which

might be a type dependent on this; ftype(Γ,T, f) substitute the receiver type

for this.class, assuming the receiver type has no mask on f ; mtype(Γ,T,m)

and mbody(S ,m) look up the type and the declaration of a method m.

3.3.7 Final access paths and exactness

The judgment Γ *final p : T , shown in Figure 3.10, gives the static type bound for

final access path p. Note that F-REF does not need a premise, because a reference

contains its own type.

The function paths(T) shown in Figure 3.11, returns the set of final access

paths in the structure of type T .

106

Γ *final p :T

Γ *final< !, S >:S (F-REF)
x :T ∈ Γ
Γ *final x :T

(F-VAR)
Γ *final p :T T f = ftype(Γ,T, f)

Γ *final p. f :T f
(F-GET)

Γ * p1 = p2

p1 = p2 ∈ Γ
p1 # x
p2 # x

Γ * p1 = p2
(A-ENV)

Γ * p1 = p2

Γ *final p1. f :T f

Γ *final p2. f :T f

Γ * p1. f = p2. f
(A-FIELD)

Γ *final p :T

Γ * p = p
(A-REFL)

Γ * p2 = p1

Γ * p1 = p2
(A-SYM)

Γ * p1 = p2

Γ * p2 = p3

Γ * p1 = p3
(A-TRANS)

Γ * T1 ! T2

Γ * T ! T (SH-REFL)

Γ * T1 ! T2

Γ * T2 ! T3

Γ * T1 ! T3
(SH-TRANS)

T1 ! T2 ∈ Γ
Γ * T1 ! T2

(SH-ENV)
Γ * T1 ! T2

Γ * T1\ f ! T2\ f
(SH-MASK)

share(P.C) = P′\ f
fnames(fields(P.C) − fields(P′)) = f ′

Γ * P.C!\ f \ f ′ = P′!\ f
(SH-DECL)

PS 1 = P′1!.C1 PS 2 = P′2!.C2

∀P1.



Γ * P1! ≤ PS 1 ⇒
∃!P2 . ∃ f ′′ ⊇ f . Γ * P2! ≤ PS 2 ∧ Γ * P1!\ f ′′ ! P2!\ f ′




Γ * PS 1\ f ! PS 2\ f ′
(SH-CLS)

Γ * e :T,Γ′

Γ *final p :T

Γ * p :ptype(Γ, p),Γ
(T-FIN)

Γ * e :T,Γ′

Γ * T ≤ T ′

Γ * e :T ′,Γ′
(T-SUB)

Γ * e1 :T1,Γ1

Γ1 * e2 :T2,Γ2

Γ * e1; e2 :T2,Γ2
(T-SEQ) Γ * new T :T !,Γ (T-NEW)

Γ * e :T,Γ′

ftype(Γ,T, f) = T f

Γ * e. f :T f ,Γ′
(T-GET)

x " dom(Γ1) Γ * e1 :T,Γ1

Γ1, x :T * e2 :T2,Γ2 Γ2 = Γ
′
2, x :T ′

Γ * final T x = e1; e2 :T2,Γ′2
(T-LET)

Γ * e :T ′,Γ′

Γ * T ′ ! T

Γ * (view T)e :T,Γ′
(T-VIEW)

Γ * e :T f ,Γ′ Γ′ * x :T
ftypedecl(Γ′,T ′, f) = T decl

f
T decl

f {{Γ′; T/this!}} = T f

Γ * x. f = e :T f , grant(Γ′, x. f)
(T-SET)

n = #(e) = #(x) x0 = this Γ =Γ 0

mtype(Γ,T 0
0 ,m) = (x :T 0)→ T 0

n+1
∀i ∈ 1..n + 1, j ∈ 1..i. T j−1

i {{Γi−1; T j−1
j−1 /x j−1!}} = T j

i
∀i ∈ 0..n. Γi * ei :T i

i ,Γ
′
i+1

Γ * e0.m(e) :T n+1
n+1 ,Γn+1

(T-CALL)

Γ * T ≤ T ′

Γ * T ≤ T (S-REFL)

Γ * T1 ≤ T2

Γ * T2 ≤ T3

Γ * T1 ≤ T3
(S-TRANS) Γ * T.C! ≤ T !.C (S-EXACT)

Γ * T ≤ P
super(P.C){{Γ; T/this!}} = T ′

Γ * T.C ≤ T ′
(S-SUP)

Γ *final p :T
pure(T) = PT

Γ * p.class ≤ PT
(S-FIN)

Γ *final p :T
pure(T) = PT !

Γ * p.class ≈ PT !
(S-FIN-EXACT) Γ * T ≤ T\ f (S-MASK)

Γ * T1 ≤ T2

Γ * T1\ f ≤ T2\ f
(S-SUB-MASK)

Γ * p1 = p2

Γ * p1.class ≈ p2.class
(S-ALIAS)

Γ * T Γ * T $ S

Γ * T ≤ S
(S-BOUND)

Γ * T1 ≤ T2 Γ * T2.C

Γ * T1.C ≤ T2.C
(S-NEST)

Γ * P[PT.C]

Γ * PT ≈ P[PT.C]
(S-PRE-IN)

Γ * PT ≤ P.C

Γ * PT ≤ P[PT].C
(S-PRE-OUT)

Γ * PT1 ≤ PT2 Γ * P[PT2]

Γ * P[PT1] ≤ P[PT2]
(S-PRE-1)

* P1 ∼ P2∨ * P1 !sc P2

Γ * P1[PT] Γ * P2[PT]

Γ * P1[PT] ≈ P2[PT]
(S-PRE-2) Γ * &T ≤ Ti (S-MEET-LB)

∀i. Γ * T ≤ Ti

Γ * T ≤&T
(S-MEET-G)

Figure 3.10: Static semantics

107

paths(◦) = ∅
paths(T.C) = paths(T)

paths(p.class) = {p}
paths(P[T]) = paths(T)

paths(&T) =
⋃

Ti∈T
paths(Ti)

paths(T !) = paths(T)

prefixExactk(◦) = false

prefixExactk(T.C) =




false if k = 0

prefixExactk−1(T) otherwise

prefixExactk(p.class) = true

prefixExactk(P[T]) = prefixExactk+1(T)

prefixExactk(&T) =
∨

Ti∈T
prefixExactk(Ti)

prefixExactk(T !) = true

exact(T) = prefixExact0(T)

Figure 3.11: Paths and exactness

The function prefixExactk(T) shown in Figure 3.11, is true if the kth prefix of

T is an exact type for k ≥ 0. If prefixExactk(T), then prefixExactk+1(T).

To type-check field accesses in the proof of soundness, the type system keeps

track of aliases. The judgment Γ * p1 = p2, defined in Figure 3.10, states that two

final access paths are aliases, and the two references stored in p1 and p2 have the

same view. Note that A-ENV does not allow a judgment of alias with a variable

in it, although the environment Γ can have an element in the form of x = v in it.

3.3.8 Type well-formedness

Type well-formedness is defined in Figure 3.12. The judgment Γ * T states

that type T is well-formed in a context Γ. Most of the rules are similar to the

J& calculus [59], except WF-EXACT, WF-REF, and WF-MASK, for new kinds of

types in J&s.

108

CT ′(P) # ⊥
Γ * P

(WF-SIMP)
Γ *final p :T

Γ * p.class
(WF-FIN)

Γ * T Γ * T $ PS mem(PS .C) # ∅
Γ * T.C

(WF-NEST)

Γ * P Γ * T Γ * T $ PS
pure(T) = T prefix(P, PS) # ∅

Γ * P[T]
(WF-PRE)

Γ * T T # T ′\ f
Γ * T $ PS [final] T f f ∈ fields(PS)

Γ * T\ f
(WF-MASK)

Γ * T

Γ * T !
(WF-EXACT)

∀i. Γ * Ti ∀pi, p j ∈ paths(&T). Γ * pi = p j

∀Ti,T j ∈ T , k ≥ 0. prefixExactk(Ti)⇔ prefixExactk(T j)

Γ * &T
(WF-MEET)

Figure 3.12: Type well-formedness

Γ * PS $ PS (BD-SIMP)
PS = &{PS ′ | Γ * p = p′ ∧ Γ *final p′ :T ∧ Γ * T $ PS ′}

Γ * p.class $ PS
(BD-FIN)

Γ * T $ PS

Γ * T.C $ PS .C
(BD-NEST)

Γ * T $ PS

Γ * P[T] $ P[PS]
(BD-PRE)

∀i. Γ * Ti $ PS i

Γ * &T $ &PS
(BD-MEET)

Γ * T $ PS T # PS ′

Γ * T ! $ PS
(BD-EXACT)

Γ * pure(T) $ PS

Γ * T $ PS
(BD-PURE)

Figure 3.13: Type bounds

3.3.9 Non-dependent bounding types

The judgment Γ * T $ PS , shown in Figure 3.13, states that type T has a static

type bound PS that is non-dependent and pure, i.e., Γ * pure(T)≤PS . Also, PS is

the most specific static type bound of T in the context of Γ. The most interesting

rule is BD-FIN, which ensures that the p1.class and p2.class have the same

type bound, if p1 and p2 are aliases in the context of Γ. Therefore a type T might

have different type bounds in different typing environments, but the bound is

unique in the same environment.

3.3.10 Type substitution

The rules for type substitution are shown in Figure 3.14. Type substitution

T {{Γ; Tx/x}} substitutes pure(Tx) for x.class in T in the context of Γ. The typ-

109

◦{{Γ; Tx/x}} = ◦

T.C{{Γ; Tx/x}} = T {{Γ; Tx/x}}.C

v.class{{Γ; Tx/x}} = v.class

x # y

y.class{{Γ; Tx/x}} = y.class

x.class{{Γ; Tx/x}} = pure(Tx)

p.class{{Γ; Tx/x}} = p′.class

p. f .class{{Γ; Tx/x}} = p′. f .class

p.class{{Γ; Tx/x}} = Tp

Tp # p′.class
ftype(Γ,Tp, f) = T f

p. f .class{{Γ; Tx/x}} = pure(T f)

T {{Γ; Tx/x}} = T ′

P[T]{{Γ; Tx/x}} = P[T ′]

∀i. Ti{{Γ; Tx/x}} = T ′i
&T {{Γ; Tx/x}} = &T ′

T {{Γ; Tx/x}} = T ′

T !{{Γ; Tx/x}} = T ′!

T {{Γ; Tx/x}} = T ′

T\ f {{Γ; Tx/x}} = T ′\ f

Figure 3.14: Type substitution

ing context Γ is used to look up field types when substituting a non-dependent

class into a field-path dependent class. Tx should be well-formed and a subtype

of x’s declared type.

For type safety, type substitutions on the right-hand side of a field assign-

ment or on the parameters of method calls must preserve the exactness of the

declared type. Therefore, only values from the family that is compatible with the

receiver are assigned to fields or passed to method code. Exactness-preserving

type substitution T {{Γ; Tx/x!}} is defined as follows:

T {{Γ; Tx/x}} = T ′

∀k. prefixExactk(T)⇒ prefixExactk(T ′)

T {{Γ; Tx/x!}} = T ′

3.3.11 Sharing relationships

The directional sharing judgment Γ * T1 ! T2, shown in Figure 3.10, states

that a value of type T1 can be transformed to T2 through a view change, that

is, the sharing relationship T1 ! T2 is valid. A bidirectional sharing judgment

Γ * T1 ↔ T2 is sugar for a pair of directional sharing judgments. SH-DECL

110

collects sharing relationships from class declarations, and for simplicity, it does

not model the inference of asymmetric sharing relationships, described in Sec-

tion 3.2.3. SH-CLS states that for two types to be shared, every subclass of the

source type must share a unique subclass of the target type, with appropriate

masks. The uniqueness is necessary for the view function to set the type com-

ponent in the generated reference. Moreover, the two types in SH-CLS have to

be both nested in simple exact types, and therefore we can enumerate all their

subclasses in the locally closed worlds.

3.3.12 Typing rules

Expression typing rules are shown in Figure 3.10. Evaluation of an expression

can update type bindings of some variables. For example, assignment to a

masked field removes the mask. Therefore, typing judgments are of the form

Γ * e : T,Γ′, stating that e has type T in context Γ, and that after evaluating

e, an updated environment Γ′ exists instead. Typing judgments are sometimes

written as Γ * e :T , if the updated typing environment is unused.

Masks can be introduced by T-SUB and S-MASK, and they can be removed

by field assignments. The following auxiliary function grant removes the mask,

that is, granting the access to a field: grant(Γ, e) generates an environment from

Γ, where accesses to x. f are enabled, for e = x. f .

grant(Γ, e) =




Γ1, x :T if Γ =Γ 1, x :T\ f ∧ e = x. f

Γ otherwise

111

The typing of a final access path p is complicated by the fact that p.class is

pure, and therefore p might not have p.class as its type. The auxiliary func-

tion ptype, shown below, gives a proper type to p, and it also avoids dependent

classes that have paths starting with a variable, if the typing environment con-

tains the information about the variable on the stack.

ptype(Γ, p) =




ptype(Γ, v. f) if p = x. f ∧ x = v ∈ Γ

p.class\ f if Γ *final p : PT\ f

In addition, A-ENV does not give aliasing information that includes vari-

ables. Therefore, in the proof of soundness, types that depend on paths start-

ing with variables can be avoided all together, because the stack σ contains the

value for every variable.

3.3.13 Subtyping

Subtyping rules are defined in Figure 3.10. The judgment Γ * T ≤ T ′ states that

T is a subtype of T ′ in context Γ, and type equivalence Γ * T ≈ T ′ is sugar for a

pair of subtyping judgments.

The J&s type system clearly distinguishes sharing relationships between

types from subtyping relationships. Subtyping rules in J&s do not depend on

any sharing judgment. In particular, Γ * T1 ! T2 does not imply Γ * T1 ≤ T2.

112

3.3.14 Program typing

Program typing rules are shown in Figure 3.15. P-OK is the rule for a program

to be well-formed; L-OK, F-OK, and M-OK are the rules for a class, a field, and a

method to be well-formed, respectively.

Q-OK gives the rule for a sharing constraint to be well-formed: the two types,

interpreted in the context of the current containing class, should be shared.

Also, whenever a sharing constraint in an inherited method no longer holds,

the method should be overridden.

3.3.15 Operational semantics

A small-step semantics for J&s is shown in Figures 3.16 and 3.17. A stack σ is a

function mapping variable names x to values v. A heap H is a function mapping

tuples < !, P, f > of memory locations, classes, and field names to values v. The

J&s calculus follows the approach of J\mask [64], where uninitialized fields do

not exist in the heap. A J&s object might have multiple versions of a field f ,

when the interpreted types of f are not shared for different views of the object.

The class P in the domain of the heap to indicate which copy of the possibly

unshared field f is used. Given a view P′.C!\ f ′ of ! and a field f , the indicator

class P is obtained with the following auxiliary function fclass:

fclass(P′.C, f) =




P′.C if P′.C = share(P′.C)

P′.C if f ∈ fnames(fields(P′.C) − fields(share(P′.C)))

∨share(P′.C) = T\ f

fclass(pure(share(P′.C)), f) otherwise

113

◦ * L ok ∅ * e :T ∅ * T !+ acyclic

*< L, e > ok
(P-OK)

S 1 = T1{{∅; P!/this!}} S 2 = T2{{∅; P!/this!}} ∅ * S 1 ! S 2

P * T1 ! T2 ok
(Q-OK)

∀C′. CT′(P.C.C′) # ⊥ ⇒ P.C * CT′(P.C.C′) ok
P.C * F ok P.C * M ok P * T super ok
∀Pi ∈ supers(P.C)\{P.C}. * P.C conforms to Pi

T ′ = P′\ f * P.C !∗fb P′

∀ f . final T f f . . . ∈ fields(P′)⇒ f " f
∀ f .
(
. . . T f f . . . ∈ fields(P′) ∧ f " f ⇒* T f {{∅; P′!/this}} ↔ T f {{∅; P.C!/this}}

)

P * class C extends T shares T ′ {L F M} ok
(L-OK)

T # ◦ this : P * T paths(T) ⊆ {this} ¬exact(T)

P * T super ok

CT′(P) = class C extends Te shares Ts {L F M}
CT′(P′) = class C′ extends T ′e shares T ′s {L′ F′ M′}

∀i, j.
(
Li = class D extends Ti . . . {. . . } ∧ L′j = class D extends T ′j . . . {. . . }

)
⇒ this : P * Ti ≤ T ′j

(fnames(F) ∩ fnames(F′)) = ∅
∀i, j.

(
Mi = Tn+1 m(T x) {e} ∧ M′j = T ′n+1 m(T ′ x′) {e′}

)
⇒ P * Mi overrides M′j

∀i. M′i = . . . sharing Q . . . ∧ P ! Q ok⇒ ∃ j. P * M j overrides M′i
* P conforms to P′

M = Tn+1 m(T x) . . . {e}
M′ = T ′n+1 m(T ′ x′) . . . {e′}

#(x) = #(x′) = #(y) y ∩ (x ∪ x′) = ∅
Γ = this : P, y :T {y/x} * Γ ok

Γ * T {y/x} ≈ T ′{y/x′} Γ * Tn+1{y/x} ≈ T ′n+1{y/x′}
P * M overrides M′

fnames(fields(P)) = f Γ = this : P\ f
Γ * T paths(T) ⊆ {this} exact(T) = false Γ * e :T,Γ

P * [final] T f = e ok
(F-OK)

P * Q ok Γ = this : P, x :T
* Γ ok Γ * Tn+1 Γ * e :Tn+1,Γr FV(e) ⊆ {x0, x}

n = #(x) x0 = this

∀i ∈ 1..n + 1. paths(Ti) ∈ {x0, . . . , xi−1}
P * Tn+1 m(T x) sharing Q {e} ok

(M-OK)

Figure 3.15: Program typing

114

stacks σ ::= ∅ | σ, x '→ v
heaps H ::= ∅ | H, < !, P, f > '→ v
reference sets R ::= ∅ | R, v
evaluation contexts E ::= [·] | E. f | x. f = E

| x | E; e | (view TE)e | (view S)E
| E.m(e) | v.m(v, E, e)
| new TE | final TE x = e1; e2 | final S x = E; e2

type evaluation contexts TE ::= TE.C | E.class | P[TE]
| &(S ,TE,T) | T E!
| T E\ f | v.class

Figure 3.16: Definitions for operational semantics

Stack updates and heap updates in J&s are represented as σ[x := v] and

H[< !, P, f >:= v] respectively. We do not explicitly model popping off stack

frames or garbage collection on the heap.

A reference set R, which contains all the references v that have been gener-

ated during evaluation, no matter whether they are reachable from the stack or

not, is also part of the evaluation configuration e, σ,H,R. The set R is only for

the proof of soundness: it prevents us from losing path equalities needed in the

proof.

The evaluation rules (Figure 3.17) take the form e, σ,H,R −→ e′, σ′,H′,R′.

We overload the function grant to work on σ: it updates the type components of

values < !, S > stored in σwith appropriate annotations.

R-SET assigns a value to a field, and may remove the mask on field x. f . We

overload the function grant, defined in Section 3.3.12, to work on σ: the type

components of values < !, S > stored in σ are updated with appropriate anno-

tations.

R-ALLOC is the rule for new expressions, which initialize all the fields ac-

cording to field initializers collected from class declarations. Note that other

views’ copies of unshared fields are not initialized right after the object is cre-

115

ated. Masked types ensure that after a view change, those possibly uninitialized

fields are not accessed.

The order of evaluation is captured by an evaluation context E. There is also

a type evaluation context TE for evaluating dependent types. A fully evaluated

type will always be non-dependent, since < !, S > .class can evaluate to S .

Since values can be viewed with different type S , the function view takes a

value v and a non-dependent type S , and returns a different value consisting of

the same location, with its view changed to be compatible with S . This function

is used for field accesses and view changing operations, and the rule SH-CLS

ensures that there is always a single view to change to. Note that the view in a

reference is always an exact type.

view(< !, P′!\ f ′ >, PS \ f) =




< !, P′!\ f > * P′!\ f ′ ≤ PS \ f

< !, P!\ f > ∃!P . ∃ f ′′ ⊇ f ′ . * P! ≤ PS∧ * P′!\ f ′′ ! P!\ f

In R-ALLOC, the judgment H * ! freshmeans that there is no tuple < !, P, f >

in the domain of H, for any P and any f .

3.3.16 Runtime typing environments

In the proof of soundness, run-time values are typed using a typing environ-

ment 2σ,H,R3 constructed from the stack, the heap, and the reference set. Al-

though references of different shared types might address the same heap loca-

tion, the construction of 2σ,H,R3 ensures that they are not included as aliases,

which is necessary for S-ALIAS to hold. See Figure 3.18 for details.

116

e, σ,H,R −→ e′, σ′,H′,R′

e, σ,H,R −→ e′, σ′,H′,R′

E[e], σ,H,R −→ E[e′], σ′,H′,R′
(R-CONG)

σ(x) = v

x, σ,H,R −→ v, σ,H,R
(R-VAR)

y " dom(σ) σ′ = σ[y := v1]

final S x = v1; e2, σ,H,R −→ e2{y/x}, σ′,H,R
(R-LET)

H(!, fclass(P, f), f) = v S = ftype(∅, P!\ f ′, f) R′ = R, view(v, S)

< !, P!\ f ′ > . f , σ,H,R −→ view(v, S), σ,H,R′
(R-GET)

σ(x) =< !, P!\ f ′ > σ′ = grant(σ, x. f) H′ = H[< !, fclass(P, f), f >:= v] R′ = R, < !, P!\(f ′ − f) >

x. f = v, σ,H,R −→ v, σ′,H′,R′
(R-SET)

mbody(S ,m) = Tn+1 m(T x) {e} n = #(v) = #(x) y0, y1, . . . , yn " dom(σ) σ′ = σ[y0 :=< !, S >, y := v]

< !, S > .m(v), σ,H,R −→ e{y0/this, y/x}, σ′,H,R
(R-CALL)

H * ! fresh x " dom(σ) fields(S) = [final] T f f = e v =< !, S !\ f > R′ = R, v

new S , σ,H,R −→ final S !\ f x = v; x. f = e{x/this}; x, σ,H,R′
(R-ALLOC)

v; e, σ,H,R −→ e, σ,H,R (R-SEQ)

R′ = R, view(v, S)

(view S)v, σ,H,R −→ view(v, S), σ,H,R′
(R-VIEW)

Figure 3.17: Small-step operational semantics

σ(x) =< !, S >

x :S , x =< !, S >∈ 2σ,H,R3

< !, PS \ f >∈ R < !, PS \ f ′ >∈ R

< !, PS \ f >=< !, PS \ f ′ >∈ 2σ,H,R3

< !, S >∈ R S = P!\ f ′

v = view(H(!, fclass(P, f), f),T f)
ftype(∅, S , f) = T f final T decl

f f = e ∈ fields(S)

< !, S > . f = v ∈ 2σ,H,R3

Figure 3.18: Runtime typing environments

117

FV(e) ⊆ dom(σ) refs(e) ⊆ R

∀ < !, P!\ f ′ >∈ R. ∀ f " f ′. ∃!′ . ∃S ′ .




H(!, fclass(P, f), f) =< !′, S ′ > ∧
(* S ′ ≤ ftype(∅, S , f) ∨ ∃S ′′ . * S ′′ ≤ ftype(∅, S , f)∧ * S ′ ! S ′′)




* e, σ,H,R
(CONFIG)

Figure 3.19: Well-formed configurations

3.3.17 Well-formed configurations

The well-formedness of a configuration e, σ,H,R is given in Figure 3.19.

A configuration e, σ,H,R is well-formed, if every value pointed to by an un-

masked field has (or can be transformed to) a view compatible with its container.

This ensures that field accesses always succeed. Also, all the free variables in e

must be in the domain of σ, and all the references in e must be in R.

3.3.18 Soundness

We prove soundness using subject reduction and progress [87]. The proof of

subject reduction is the hard part. There are two notable issues:

• The typing environment 2σ′,H′,R′3 after an evaluation step is not a simple

superset of the environment 2σ,H,R3 before the step, because some field

assignment might update variable typing (R-SET). However the updated

type is always a subtype of the original type. Therefore, we define the

environment extension as follows: Γ2 extends Γ1 if

– For every p1 = p2 ∈ Γ1, there is p1 = p2 ∈ Γ2;

– For every T1 ! T2 ∈ Γ1, there is T1 ! T2 ∈ Γ2;

– For every x :T ∈ Γ1, there is x :T ′ ∈ Γ2 and Γ2 * T ′ ≤ T .

118

• Method calls are evaluated by adding a set of fresh variable bindings (es-

sentially, a new stack frame) into σ, rather than directly substituting actual

parameters for formal arguments.

We first prove some lemmas about extensions of typing environments:

Lemma 3.3.1 If e, σ,H,R −→ e′, σ′,H′,R′, then 2σ′,H′,R′3 is an extension of

2σ,H,R3.

PROOF: By induction on the operational semantic derivation.

• R-CONG

By the induction hypothesis.

• R-VAR, and R-SEQ

Trivial, because σ′ = σ, H′ = H, and R′ = R in these cases.

• R-LET

Then H′ = H, R′ = R, and σ′ = σ[y := v1] where y is fresh. We will have

2σ′,H,R3 = 2σ,H,R3, y :S , y = v1, and 2σ′,H,R3 is an extension of 2σ,H,R3.

• R-GET

Then σ′ = σ, H′ = H, and R′ might be a superset of R. By the definition

of run-time typing environments, 2σ,H,R′3 can only contain some aliasing

information other than elements in 2σ,H,R3. Thus 2σ,H,R′3 is an extension

of 2σ,H,R3.

• R-SET

Then σ′ = grant(σ, x. f), S = P!\ f ′, H′ = H[< !, fclass(P, f), f >:= v], and

R′ might be a superset of R. Compared to 2σ,H,R3, the new environment

119

2σ′,H′,R′3 adds some aliasing relationships, and it might update the type

binding of x from T\ f to T for some type T . By S-MASK, 2σ′,H′,R′3 *

T ≤ T\ f . Thus 2σ′,H′,R′3 is an extension of 2σ,H,R3.

• R-CALL

Similar to the case of R-LET.

• R-ALLOC

Similar to the case of R-GET.

• R-VIEW

Similar to the case of R-GET.

"

Lemma 3.3.2 If Γ2 is an extension of Γ1, then all of the following hold:

• If Γ1 * T , then Γ2 * T .

• If Γ1 * T $ S , then Γ2 * T $ S .

• If ftype(Γ1,T, f) = T f , then ftype(Γ2,T, f) = T f .

• If mtype(Γ1,T,m) = (x :T)→ Tn+1, then mtype(Γ2,T,m) = (x :T)→ Tn+1.

• If Γ1 * p = p′, then Γ2 * p = p′.

• if ptype(Γ1, p) = T , then ptype(Γ2, p) = T .

• If T {{Γ1; Tx/x}} = T ′, then T {{Γ2; Tx/x}} = T ′.

• If Γ1 * T1 ≤ T2, then Γ2 * T1 ≤ T2.

• If Γ1 * v :T , then Γ2 * v :T .

120

PROOF: The proof is by induction on the derivation of the appropriate judg-

ment. "

Note that although Lemma 3.3.2 states that value typing does not change

during the execution, it does not directly apply to more general expression typ-

ing, because variables can change their types during the execution.

The following lemma is about type substitution of dependent classes.

Lemma 3.3.3 If x : Tx ∈ Γ, paths(Tx) = ∅, Γ * S x! ≤ Tx, and Γ * e : T , then

Γ{{∅; S x!/x}} * e :T {{∅; S x!/x}}.

PROOF: The proof is by induction on the typing derivation Γ * e :T . "

Type substitution is generalized to the typing environment Γ, where substi-

tution is applied to the type of every variable in Γ.

The following lemma establishes connections between type substitutions

and subtyping relationships. It is generally used together with Lemma 3.3.3.

Lemma 3.3.4 If Γ * T1 ≤ T2, then Γ * T {{Γ; T1/x}} ≤ T {{Γ; T2/x}}.

PROOF: By induction on the structure of T . Note that there is no first-order

function type, and therefore a type substitution does not occur at a contravari-

ant position. "

121

Lemma 3.3.5 If * p, σ,H,R, and 2σ,H,R3 *final p : T , and p, σ,H,R −→ p′, σ′,H′,R′,

and 2σ′,H′,R′3 *final p′ :T ′, then 2σ,H,R3 * ptype(2σ,H,R3, p) ≈ ptype(2σ,H,R3, p′).

PROOF: There are the following three cases:

• p = x. f , where f may be empty

Then by F-GET and F-VAR, x : Tx ∈ 2σ,H,R3, which implies σ(x) =< !, Tx >

and x =< !, Tx >∈ 2σ,H,R3 by the definition of 2σ,H,R3, and by R-VAR

and R-CONG, p′ =< !,Tx > . f . By the definition of ptype, we have

ptype(2σ,H,R3, p) = ptype(2σ,H,R3, p′). Therefore, by S-REFL, 2σ,H,R3 *

ptype(2σ,H,R3, p) ≈ ptype(2σ,H,R3, p′).

• p = v

Vacuously true, since it cannot make any progress.

• p = v. f . f ′, where v =< !, P!\ f ′′ >

Then by R-GET and R-CONG, we have p′ = v′. f ′, H(!, fclass(P, f), f) = v′′,

and v′ = view(v′′, ftype(∅, P!\ f ′′, f)). Therefore, by the definition of 2σ,H,R3,

we have v. f = v′ ∈ 2σ,H,R3. By A-ENV, 2σ,H,R3 * v. f = v′. By A-FIELD,

2σ,H,R3 * p = p′. By S-ALIAS, 2σ,H,R3 * p.class ≈ p′.class. Now we

need to show that T and T ′ have the same set of masks. There are again

two cases:

– f ′ = ∅

By the definition of the auxiliary function view, T ′ has the same set of

masks as ftype(∅, P!\ f ′′, f), which is T .

– f ′ # ∅

Then T and T ′ have the same set of masks, because they are the type

of the same field (the last field in f ′).

122

"

In the proof of subject reduction, Lemma 3.3.2 proves the case where T-SUB

is the last derivation; Lemma 3.3.3 is used to prove type preservation for the

evaluation of a method call.

Lemma 3.3.6 (Subject reduction) If * e, σ,H,R, and 2σ,H,R3 * e : T , and

e, σ,H,R −→ e′, σ′,H′,R′, then * e′, σ′,H′,R′, and 2σ′,H′,R′3 * e′ :T .

PROOF: The proof is by induction on the typing derivation 2σ,H,R3 * e :T,Γ′.

In order to handle the flow-sensitivity of the type system, the induction hy-

pothesis is strengthened to:

If * e, σ,H,R, and 2σ,H,R3 * e : T,Γ, and e, σ,H,R −→ e′, σ′,H′,R′, then *

e′, σ′,H′,R′, and 2σ′,H′,R′3 * e′ :T,Γ′, and Γ′ is an extension of Γ

In order to prove * e′, σ′,H′,R′, we only need to consider evaluation steps

where H′ # H or R′ # R. The congruence rule R-CONG can be proved by the

induction hypothesis directly. The remaining cases are R-GET, R-SET, R-ALLOC,

and R-VIEW, and the interesting cases are R-GET, R-VIEW, and R-SET, where

R is updated with a value as the result of view or a new value with one of its

masks removed. The proof is according to L-OK: when two classes are declared

as being shared, their unmasked fields have shared types.

Now it remains to prove 2σ′,H′,R′3 * e′ :T,Γ′, where Γ′ is an extension of Γ.

First, if the last derivation uses T-SUB, then it follows from the induction

hypothesis and Lemma 3.3.2. Now it is only necessary to consider derivations

123

that do not end with T-SUB. Consider different cases of e:

• e = v.

Vacuously true, since evaluation cannot continue.

• e = x

The evaluation is x, σ,H,R −→ v, σ,H,R by R-VAR, where σ(x) = v. Sup-

pose v =< !, P!\ f >, and then by T-FIN and the definition of 2σ,H,R3, we

have T = v.class\ f and 2σ,H,R3 * x : T, 2σ,H,R3. Then by F-REF and

T-FIN, 2σ,H,R3 * v :v.class\ f , 2σ,H,R3.

• e = e0. f

– e = v. f

Let v =< !, S >. There are also two cases for the derivation 2σ,H,R3 *

v. f :T,Γ: T-FIN and T-GET.

∗ T-FIN

Then T = ptype(2σ,H,R3, v. f), where f is a final field. The

evaluation is v. f , σ,H,R −→ v′, σ,H,R′, where S = P!\ f ′ and

H(!, fclass(P, f), f) = v′. According to Lemma 3.3.5, 2σ,H,R3 *

ptype(2σ,H,R3, v. f) ≈ ptype(2σ,H,R3, v′). Then by T-FIN and

T-SUB, 2σ,H,R3 * v′ :ptype(2σ,H,R3, v. f), 2σ,H,R3.

∗ T-GET

Let ftype(2σ,H,R3, S , f) = T f . By T-GET, T = T f , and Γ = 2σ,H,R3

since e = v. f . According to R-GET and the definition of the auxil-

iary function view, 2σ,H,R3 * v′ : T, 2σ,H,R3. The applicability of

view is based on the well-formedness of the heap.

– e = e0. f where e0 # x and e0 # v

124

Then R-CONG is the only rule that can apply, and e0, σ,H,R −→

e′0, σ
′,H′,R′. There are also two cases for the derivation of 2σ,H,R3 *

e0. f :T,Γ.

∗ T-FIN

The proof is based on Lemma 3.3.5, which is similar to the corre-

sponding case in the proof for e = v. f .

∗ T-GET

Then 2σ,H,R3 * e0 :T0,Γ and ftype(2σ,H,R3,T0, f) = T f = T . By the

induction hypothesis, 2σ′,H′,R′3 * e′0 :T0,Γ′, where Γ′ is an exten-

sion of Γ. According to Lemma 3.3.2, ftype(2σ′,H′,R′3,T0, f) = T f .

Thus by T-GET, 2σ′,H′,R′3 * e′0. f :T f ,Γ′.

• e = (x. f = e0)

– e = (x. f = v)

Then x. f = v, σ,H,R −→ v, σ′,H′,R′ where σ′ = grant(σ, x. f), σ(x) =<

!, S >, H′ = H[< !, fclass(P, f), f >:= v] where S = P!\ f ′, and R′ =

R, < P!\(f ′ − f) >. Then T-SET applies to the derivation of 2σ,H,R3 *

e : T,Γ: Γ = grant(2σ,H,R3, x. f), and 2σ′,H′,R3 = grant(2σ,H,R3, x. f),

so 2σ′,H′,R3 is a trivial extension of Γ. According to the definition of

runtime typing environment, 2σ′,H′,R′3 may add to 2σ′,H′,R3 sev-

eral path equivalence relationships, and therefore an extension of

2σ′,H′,R3, which means that 2σ′,H′,R′3 is an extension of Γ.

– e = (x. f = e0) where e0 # v

Then R-CONG can apply, and the induction hypothesis can be directly

used.

• e = (final S x = e1; e2)

125

– e = (final S x = v; e2)

R-LET is the only rule that can apply: e, σ,H,R −→ e2, σ′,H,R where

σ′ = σ[x := v] and x is fresh variable. By T-LET and T-FIN, 2σ,H,R3 *

v : S , 2σ,H,R3 and 2σ,H,R3, x : S * e2 : T,Γ2, and Γ2 = Γ, x : T ′ for some

T ′. Since σ′ = σ[x := v] and x is fresh, we have 2σ′,H,R3 = 2σ,H,R3, x :

T ′′ for some T ′′, where * T ′ ≤ S , according to the definition of the

run-time typing environment. Therefore 2σ′,H,R3 * e2 : T,Γ′2, where

Γ′2 = Γ
′, x :T ′′′ for some T ′′′. It is then easy to see that Γ′ is an extension

of Γ.

– e = (final S x = e1; e2) where e1 # v

Then R-CONG can apply, and therefore the induction hypothesis can

be used.

• e = e0.m(e)

– e =< !, S > .m(v)

Then R-CALL is the only rule that can apply: < !, S > .m(v), σ,H,R −→

em{y0/this, y/x}, σ′,H,R, where σ′ = σ[y0 :=< !, S >, y := v], and

y0, y1, . . . , yn " dom(σ). Therefore, 2σ′,H,R3 is an extension of 2σ,H,R3.

According to M-OK and simple α renaming, 2σ,H,R3, y0 : T0, y : T *

em{y0/this, y/x} : Tn+1, where mbody(S ,m) = Tn+1 m(T x) {em}. Now

applying Lemma 3.3.3 and Lemma 3.3.4, for y0, y1, . . . , yn, we can get

2σ′,H,R3 * em :T n+1
n+1 , where T 0

i = Ti and T j
i = T j−1

i {{2σ′,H,R3; T j−1
j−1/y j−1}}.

T n+1
n+1 = T in T-CALL. Let 2σ,H,R3 * e : T,Γ and 2σ′,H,R3 *

em{y0/this, y/x} : T,Γ′. It is obvious that Γ′ is an extension of Γ, be-

cause FV(em) ⊆ {this, x}.

– e = e0.m(e) where ei # v for some i ∈ {0, 1, . . . , n}

126

Then R-CONG can apply. This case is easy to prove by the induction

hypothesis.

• e = new S

Then R-ALLOC can apply: new S , σ,H,R −→ e′, σ,H,R′, where e′ =

final S !\ f x = v; x. f = e{x/this}; x, and fields(S) = [final] T f f = e,

and v =< !, S !\ f >, and R′ = R, v. It is easy to see that 2σ,H,R′3 * e′ : S !,

because all the masks are going to be removed by the field initializers. It

is also obvious that 2σ,H,R′3 is an extension of 2σ,H,R3 by the definition

of run-time typing environments.

• e = e1; e2

– e = v; e2

Then R-SEQ can apply: e, σ,H,R −→ e2, σ,H,R. By T-SEQ, 2σ,H,R3 *

v : T1,Γ1 and Γ1 * e2 : T,Γ. Also, it is easy to see that Γ1 = 2σ,H,R3.

Therefore 2σ,H,R3 * e2 :T,Γ.

– e = e1; e2 where e1 # v

Then R-CONG can apply, and the proof is by the induction hypothe-

sis.

• e = (view S)e0

– e = (view S)< !, S ′ >

Then R-VIEW is the only rule that can apply. By T-VIEW, 2σ,H,R3 *

(view S)< !, S ′ > : S , and there is a type T such that 2σ,H,R3 *<

!, S ′ >: T and 2σ,H,R3 * T ! S . According to the definition of

view, 2σ,H,R3 * view(< !, S ′ >, S) : S , and since 2σ,H,R′3, where

R′ = R, view(< !, S ′ >, S), is an extension of 2σ,H,R3, we have

2σ,H,R′3 * view(< !, S ′ >, S) :S .

127

Now it remains to prove that the application of the auxiliary function

view is well-defined. If S ′ ≤S , it is obviously well-defined. Otherwise,

let S ′ = P′!\ f ′, and S = PS \ f , and we need to prove that ∃!P . ∃ f ′′ ⊇

f ′ . * P! ≤ PS∧ * P′!\ f ′′ ! P!\ f .

As shown above, there is a type T such that 2σ,H,R3 * T ! S , and

therefore ∅ * T ! S , according to the definition of 2σ,H,R3. Then T

has to be non-dependent. Also, it is obvious that * P′!\ f ′ ≤ T , so f ′

must be a subset of the masks in T , which is f ′′. Now the proof goes

on by induction on the derivation of ∅ * T ! S :

∗ SH-REFL

Vacuously true, since it implies that * S ′ ≤ S , which is the first

case of the definition of view.

∗ SH-TRANS

By the inner induction hypothesis.

∗ SH-ENV

Vacuously true.

∗ SH-MASK

By the inner induction hypothesis.

∗ SH-DECL

Then both T and S are exact types, and therefore S = P!\ f and

T = P′!\ f ′′, by the definition of exact types.

∗ SH-CLS

The premise of SH-CLS is exactly what we want to prove.

– e = (view S)e0 where e0 # v

Then R-CONG can apply. This case can be easily proved using the

induction hypothesis.

128

"

Lemma 3.3.7 (Progress) If * e, σ,H,R and 2σ,H,R3 * e : T , then e = v, or there is a

configuration e′, σ′,H′,R′ such that e, σ,H,R −→ e′, σ′,H′,R′.

PROOF: The proof is by structural induction on e.

• e = v

Trivial.

• e = x

Then 2σ,H,R3 * x : T , and by the definition of 2σ,H,R3, σ(x) =< !,T >.

Therefore R-VAR applies, and we have e′ =< !, T >, σ′ = σ, H′ = H, and

R′ = R.

• e = e0. f

If e0 # v, then it is easy to see that R-CONG applies, and the evaluation can

make progress.

If e0 = v where v =< !, P!\ f ′ >, then by T-GET, and the defini-

tion of ftype, we know f " f ′. Then according to configuration well-

formedness CONFIG, H(!, fclass(P), f) = v′, and view(v′, S) is well-defined

(S = ftype(∅, P!\ f ′, f)). Therefore R-GET applies, and the evaluation can

make progress.

• e = x. f = e0

If e0 # v, then R-CONG applies.

129

Suppose e0 = v. By T-SET and T-FIN, 2σ,H,R3 * v : Tv, 2σ,H,R3, and then

by T-SET, 2σ,H,R3 * x : Tx. By the definition of 2σ,H,R3, we have σ(x) =<

!,Tx >. It must be the case that Tx = P!\ f ′, for some P and f ′, because the

view Tx is always a non-dependent exact type. Then R-SET applies, and

e′ = v, σ′ = grant(σ, x. f), H′ = H[< !, fclass(P, f), f >:= v], and R′ = R.

• e = e0.m(e)

If e0 or any ei of e is not a value, R-CONG applies, and the evaluation can

make progress.

Otherwise, e = v0.m(v), where v0 =< !0, S 0 >. By T-CALL, and

the definitions of mtype and mbody, method lookup succeeds and we

have mbody(S ,m) = Tn+1 m(T x) {em}. Then R-CALL applies, and e′ =

em{y0/this, y/x} where all the yi are fresh variables, σ′ = σ[y0 :=< !0, S 0 >

, y = v], H′ = H, and R′ = R.

• e = e1; e2

If e1 = v, then R-SEQ applies, and e′ = e2, σ′ = σ, H′ = H, and R′ = R;

otherwise, by the induction hypothesis, there exists e′1, σ′, H′, and R′, such

that e1, σ,H,R −→ e′1, σ
′,H′,R′. Then R-CONG applies.

• e = new T

If T is not a non-dependent type, then the type T can be further evaluated.

Now suppose T = S . By R-ALLOC, e′ = final S !\ f x = v; x. f =

e{x/this}; x, where f is the set of all fields of S , x is a fresh variable, and

v =< !, S !\ f > with a fresh location !. We also have σ′ = σ, H′ = H, and

R′ = R, v.

• e = (view T)e0

If e0 # v or T # S , then R-CONG can apply.

130

If e0 = v and T = S where S is a non-dependent type, then e′ = view(v, S),

σ′ = σ, H′ = H, and R′ = R, view(v, S). We only need to prove that view(v, S)

is well-defined. Let S = PS \ f and v =< !, P′!\ f ′ >. By T-FIN and T-VIEW,

2σ,H,R3 * P′!\ f ′′ ! PS \ f and f ′ ⊆ f ′′. Now the proof is by induction on

the derivation of 2σ,H,R3 * P′!\ f ′′ ! PS \ f :

– SH-REFL

Then P′!\ f ′′ = PS \ f , and view(v, S) is trivially well-defined.

– SH-TRANS

Then there exists a non-dependent type T ′, such that 2σ,H,R3 *

P′!\ f ′′ ! T ′ and 2σ,H,R3 * T ′ ! S . Note that 2σ,H,R3 contains

no sharing relationships, which means that the T ′ has to be non-

dependent, and 2σ,H,R3 can actually be replaced with empty envi-

ronment in the above two judgments. By the induction hypothesis,

view(v,T ′) =< !, P′′!\ f ′′′ > is well-formed, and view(< !, P′′!\ f ′′′ >, S)

is also well-formed. Now just observe that any combination of the

two cases in the definition of the auxiliary function view implies the

well-formedness of view(v, S).

– SH-ENV

Vacuously true, because 2σ,H,R3 does not contain any sharing rela-

tionships.

– SH-MASK

It is easy to see that adding a mask on both types does not affect the

applicability of view.

– SH-DECL

Then S is an exact type, and is itself the unique target type in the

131

result of the view function.

– SH-CLS

The premise directly implies that view(v, S) is well-defined.

• e = final T x = e1; e2

If e1 # v for any value v, then by T-LET, 2σ,H,R3 * e1 : T1,Γ. There-

fore, by the induction hypothesis, there exists e′1, σ′, H′, and R′, such that

e1, σ,H,R −→ e′1, σ
′,H′,R′. Then R-CONG applies.

If e1 = v, then R-LET applies, and e′ = e2{y/x} where y is a fresh variable,

σ′ = σ[y := v], H′ = H, and R′ = R.

"

Now we can prove the soundness theorem of the J&s calculus.

Theorem 3.3.8 (Soundness) If *< L, e > ok, and ∅ * e :T , and e, ∅, ∅, ∅ →∗ e′, σ,H,R,

then either e′ = v and 2σ,H,R3 * v :T , or ∃e′′, σ′,H′,R′ . e′, σ,H,R −→ e′′, σ′,H′,R′.

PROOF: Follows from Lemma 3.3.6 and Lemma 3.3.7. "

132

!"#$!"#

$%&

!"#

$%&

!"#

$%&'()* +(&,

%"&' #()

#()%"&' !"#

$%&'()* +(&,

Figure 3.20: Lambda compiler structure. Translator and some AST nodes not
shown.

3.4 Experience

3.4.1 Lambda compiler

The J&s implementation successfully compiles and executes the completed ver-

sion of the lambda compiler shown in Figure 3.6, which compiles λ-calculus

enhanced with sums and pairs down to simple λ-calculus.

The structure of the lambda compiler is illustrated in Figure 3.20. Solid ar-

rows represent class and family inheritance, and dashed arrows represent shar-

ing declarations.

The lambda compiler has a base family with classes representing AST nodes

for simple λ-calculus. There are two families directly derived from the base fam-

ily, extended with sums and pairs respectively. The sum family and the pair

family each share AST classes from the base family, and each implement in-

place translation to simple λ-calculus, as shown in Figure 3.6. The last derived

family sumpair composes the sum family and the pair family, leading to a

133

compiler that supports both sums and pairs. The sumpair family shares Abs

and other AST classes from the simple λ-calculus with the base family, and by

transitivity, with sum and pair. The code of sumpair just sets up the sharing

relationships, without a single line of translation code. The in-place translation

code from sum and pair is composed to translate away sums and pairs.

This program is about 250 lines long, but uses the features of J&s in a so-

phisticated way. For example, families have both shared and unshared classes,

masked types are used to ensure objects of new AST classes (pair and sum) are

translated away, and the two translations are composed to translate pairs and

sums at once. The lambda compiler example is inspired by the Polyglot frame-

work, and it encapsulates most of the interesting issues that arise in making

Polyglot extensible. The results suggest Polyglot would be simpler in J&s, but

this is left for future work.

3.4.2 CorONA

Our second significant example shows that the adaptation capability of J&s can

be used to seamlessly upgrade a running server and its existing state with en-

tirely new functionality. We ported CorONA, an RSS feed aggregation sys-

tem [66], to J&s, and successfully used class sharing to update the system at

run time with a new caching algorithm.

CorONA is originally an extension of Beehive [67], which is itself an ex-

tension of Pastry [70] that provides a distributed hash table. Beehive extends

Pastry with active replication, whereas PC-Pastry [67] extends Pastry with pas-

sive caching. We refactored the ported CorONA, and composed it with PC-

134

Pastry and Beehive respectively, creating two applications (named PCCorONA

and BeeCorONA) with different caching strategies. The system is tested by first

running PCCorONA for a while, and then evolving the running system from

passive caching to active caching by compiling and loading a new package,

BeeCorONA.

Sharing declarations are added so that classes representing host nodes, data

objects, and network addresses are shared between CorONA and its two de-

rived families. Classes for network messages and cache management are not

shared. The evolution code goes over all the host nodes, which are the top-level

objects in the system, changing their views, and creating new caching managers.

The amount of code to implement evolution is relatively small (less than

40 lines of code, compared to 8300 for the whole system, excluding comments

and empty lines). Very little code is needed because we only need to change

the views of host nodes; all the other referenced objects will have their views

changed implicitly when they are accessed. In the host node class, fields storing

the caching managers are not shared, and masked types ensure that they are

initialized in the evolved system. With a slightly different configuration, we can

actually run the two variants of the system at the same time, using the same set

of host node objects. View-dependent types ensure that network messages of

correct versions are created and accepted for each of the systems.

On the other hand, if we were to use other mechanisms, e.g., the adapter de-

sign pattern, dynamic software updating would be much harder, if not impos-

sible, to implement. The reason is that the adapter and the adaptee classes in

general are not related through subtyping, and therefore a lot more code needs

to be updated to switch to using the adapter type.

135

3.5 Related work

Adaptation. The Adapter design pattern [30] is a protocol for implementing

adaptation. However, this and other related patterns are tedious and error-

prone to implement, rely on statically unsafe type casts, and do not preserve

object identity or provide bidirectional adaptation as J&s does.

Expanders [85] are a mechanism for adaptation. New fields, methods, and

superinterfaces can be added into existing classes. Expanders are more expres-

sive than open classes [13], which can only add new methods. Method dispatch

is statically scoped, so expanders do not change the behavior of existing clients.

New state is added by wrapper classes; a map from objects to wrappers ensures

uniqueness of wrapper instances.

CaesarJ [52, 1] is an aspect-oriented language that supports adaptation with

wrappers called aspect binders. Wrappers and expanders are similar. They both

can extend wrapped classes with new states, operations, and superinterfaces;

no duplicate wrappers are created for objects; and dynamic wrapper selection

is similar to expander overriding. Wrappers in CaesarJ are less transparent:

a wrapper constructor must be called to get a wrapper instance, whereas ex-

pander operations can be applied directly to objects. Multiple inheritance in

CaesarJ makes wrapper selection ambiguous; J&s disambiguates via views.

Both expanders and CaesarJ wrappers share limitations: it is impossible to

override methods in the original family, and therefore there is no dynamic dis-

patching across families; object identity is not preserved; the use of expanders

and wrappers is limited to adaptation, since the adapter family cannot be used

independently of its original family. Class sharing in J&s provides more flexibil-

136

ity.

The FickleIII [16] language has a re-classification operation for objects to

change their classes. Re-classifications are similar to view changes in J&s, but

directly change the behavior of all existing references to the object; therefore,

effects are needed to track the change. A re-classification might leave fields

uninitialized, while masked types in J&s ensure that after a view change, fields

are initialized before use. FickleIII does not support class families.

Chai3 [72] allows traits to be dynamically substituted to change object behav-

iors, similar to view changes in J&s. However, Chai3 does not support families,

and the fact that traits do not have fields makes it harder to support manipula-

tion of data structures.

Some work on adaptation, including pluggable composite adapters [53], ob-

ject teams [32], and delegation layers [62], also has some notion of families of

classes. However, family extensibility does not apply to the relationship be-

tween the family of adapter classes and the family of adaptee classes. There-

fore, these mechanisms either do not support method overriding and dynamic

dispatch between the adapter and adaptee families [53, 32], or have a weaker

notion of families in which programmers have to manually “wire” inheritance

relationships between the base family and the delegation family [62]. These

mechanisms all use lifting and lowering, introduced in [53], to convert between

adapter and adaptee classes. Lifting and lowering are similar to view changes

in J&s, but are not symmetric and do not support late binding.

Family inheritance. Several different mechanisms have been proposed to sup-

port family inheritance, including virtual classes, nested inheritance, variant

137

path types, mixin layers, etc. In all these family inheritance mechanisms, fam-

ilies of classes are disjoint, whereas with class sharing, different families can

share classes and their instances.

Virtual classes [50, 51, 21, 24, 12] are inner classes that can be overridden

just like methods. Path-dependent types are used to ensure type safety. The

soundness of virtual classes has been formally proved by Ernst et al. [24], and

by Clarke et al. [12].

Nested inheritance [56] supports overriding of nested classes, which are sim-

ilar to virtual classes. Nested intersection [58] adds and generalizes intersection

types [68, 14] in the context of nested inheritance to provide the ability to com-

pose extensions.

Both virtual classes and nested inheritance support higher-order hierar-

chies [23].

Virtual classes support family polymorphism [22], where families are identified

by the enclosing instance. Nested inheritance supports what Clarke et al. [12]

called class-based family polymorphism, where each dependent class defines a fam-

ily of classes nested within and also enclosing it. With prefix types, any instance

of a class in the family can be used to name the family.

Although virtual classes differ from nested inheritance, class sharing should

be applicable to any family inheritance mechanism.

Variant path types [38] support family inheritance without dependent types,

using exact types and relative path types (similar to this.class) for type

safety. These exact types are very different from those in J&s: in a J&s exact

138

type A.B!.C, exactness applies to the whole prefix before !, that is, A.B; in an ex-

act type A@B.C in [38], exactness applies to the simple type name right after @,

that is, B.

Mixin layers [71] generalizes mixins [5]. Mixins are classes that can be instan-

tiated with different superclasses, and mixin layers are mixins that encapsulate

other mixins. Mixin layers support family inheritance: when a mixin layer is

instantiated, all the inner mixins are instantiated correspondingly.

Virtual types [81, 8, 82, 35] are type declarations that can be overridden. Vir-

tual types are more limited than virtual classes: they provide family polymor-

phism but not family inheritance. Scala [60, 61] supports family polymorphism

and composition through virtual types, path-dependent types, and mixin com-

position. It also supports parametric polymorphism. Scala does not have vir-

tual classes and does not support family inheritance. Scala has views that are

implicitly-called conversion functions. Scala views do not provide adaptation:

they create new instances in the target types.

Sharing in functional languages. Wadler’s views [83] are an isomorphism be-

tween a new data type and an existing one, which is similar to a sharing decla-

ration. Of course, there are obvious differences: Wadler’s views are for a func-

tional setting, and primarily relate abstract data types and types inductively

defined with pattern matching, whereas J&s creates sharing relationships only

between overridden and overriding classes.

The SML module system [49] has sharing constraints, which require func-

tor module parameters to agree on type components. SML sharing constraints

dictate applicability of functors; J&s sharing constraints dictate applicability of

139

method bodies.

More recently, Dreyer and Rossberg [?] propose MixML that generalizes ML

modules and mixin modules into a unified framework. MixML also supports

merging of recursive modules, which has some similarity with nested intersec-

tion, although there is no overriding and therefore the merged modules have to

be statically conflict-free.

Safe dynamic software updating. There is prior work on the problem of safely

updating software without downtime.

Barr and Eisenbach [2] propose a framework to support dynamic update of

Java components that satisfy the binary compatibility requirement [78], which

also includes a custom classloader. The goal is to provide a tool that keeps Java

libraries up to date, rather than to improve the extensibility of the language.

Duggan [19] describes a calculus that combines Wadler’s views and SML

sharing constraints to support hot-swapping modules. J&s differs because it

does not copy values across different versions; instead, it generates different

views on the same object.

Proteus [75] finds proper timing for a given global update with static anal-

ysis. Abstract and concrete types in Proteus bear some resemblance to inexact

and exact types in J&s: abstractly typed variables allow values of different con-

crete types, and inexactly typed variables may store objects with different exact

views.

140

CHAPTER 4

HOMOGENEOUS FAMILY SHARING

Homogeneous family sharing lifts the sharing mechanism from class-level shar-

ing to true family-level sharing. When a derived family is declared as sharing

with the base family, every pair of corresponding classes from the two families

are shared, without explicit sharing declarations for individual nested classes.

For each new class introduced in the shared derived family, an implicit shadow

class is generated in the base family, which ensures that all nested classes are still

homogeneously shared, and provides a new kind of extensibility. Compared

to heterogeneous sharing shown in Chapter 3, homogeneous family sharing

presents a cleaner, more scalable solution to the problem of integrating in-place

extensibility and family extensibility. For this reason, we believe that homoge-

neous sharing is the right way to support sharing, and include it in the latest

version of the J& language.

4.1 Class sharing without families

4.1.1 From inheritance to sharing

In an object-oriented language like Java, inheritance offers a way to reuse and

extend existing code. For example, as shown in Figure 4.1, a graphical user in-

terface (GUI) library may contain a class for describing a button, with a method

draw for drawing the button. Suppose the programmer would like to have

buttons that are rendered with a shadow underneath. The programmer could

declare a PrettyButton class that extends the original Button class through

141

class Button {
void draw(...) {

...
}

}

class PrettyButton extends Button {
void draw(...) {

... draw the shadow ...
}

}

Figure 4.1: A GUI button class and its extension

inheritance. In Figure 4.1, the subclass PrettyButton overrides the draw

method, originally introduced in the superclass Button, so when the draw

method is called with an object of PrettyButton, the overriding version in

the subclass is executed.

However, inheritance has the limitation that the new functionality of draw-

ing a shadow is not available to any object of the existing Button class. An

application that creates instances of the Button class cannot enjoy the prettier

GUI element without code changes, nor can a running application with Button

objects be easily upgraded to the new look.

The ability to augment existing objects with extended functionality is called

adaptation. The adapter design pattern [30] may be used to implement adap-

tation, but it requires the programmer to write much code that is error-prone,

and relies on statically unsafe type casts. The programmer also has to manually

manage the relationship between the adapter object and the adapted object.

Class sharing, as proposed in this paper, provides a language-based solution

to the problem of adaptation. In this approach, the new PrettyButton class

may be declared to share with the Button class, rather than to inherit it, as

shown below.

class PrettyButton shares Button { ... }

142

The meaning of the declaration above is twofold: first, PrettyButton is a

subtype of Button as in the case of inheritance; second, every Button object

is also an object of PrettyButton, and vice versa. The functionality imple-

mented in PrettyButton is available to every object of Button, even if the

object were created before PrettyButton was loaded. An object created as

a PrettyButton may also access the original version of the draw method.

Therefore, sharing can be seen as symmetric subclassing: an object of either of

the two classes inherits functionality from the other class, and each class may

also override the other. It also provides symmetric adaptation that preserves

object identity.

The original form of class sharing in J&s [65] does not support the sharing

declaration shown above, which is sharing between two top-level classes that

are not nested in another class or package. J&s only allows sharing between

corresponding classes—classes of the same name—from different families. The

homogeneous sharing proposed in this paper generalizes to sharing between

individual classes that are top-level, and to sharing between those contained in

the same class or package.

4.1.2 Views and view changes

When two classes are declared as being shared, a single object might be treated

as an instance of either one. Each class is a distinct view of that object. At run

time, an object reference may be modeled as a pair < !,C! > of a heap location

! and an exact type [7] C! as the view. The exact type C! here represents the fact

that at run time, the view on that object through the reference is known to be

143

exactly class C, not any subclass of it.

The view defines the behavior of the object when it is accessed through

the reference. For example, an object of class Button uses the overriding

version of the draw method if accessed through a reference with the view

PrettyButton!, but not through a Button! view.

In order for an object to obtain a new reference with a new view, the view

change operation—written (view T)e, where T is the target type, and e is the

source expression to apply the view change on—should be used. For exam-

ple, a Button object may obtain a new reference, through which the new draw

method can be called, although the receiver object is still the same.

Button! b1 = new Button(...);

PrettyButton! b2 = (view PrettyButton!)b1;

b1.draw(...); // the old draw method in Button

b2.draw(...); // the new draw method in PrettyButton

4.1.3 Sharing relationships

A sharing declaration establishes a sharing relationship between the two

classes. For example, there is a sharing relationship between Button and

PrettyButton, represented as Button!↔ PrettyButton!.

All the sharing declarations together induce an equivalence relation on

classes that is the reflexive, symmetric, and transitive closure of the declared

sharing relationships. The J& type system maintains the sharing relation, and

uses it to type-check view change operations.

144

package GUI;
class Button {...}
class RadioButton

extends Button {...}
class Window {

Button close; ...
}
...

package xlucentGUI extends GUI;
class Button {

void draw(...) {...}
}
class Window {

void draw(...) {...}
}
...

Figure 4.2: A base GUI family and an extension

4.2 Homogeneous family sharing

4.2.1 Family inheritance

The J& language supports nested inheritance [56] and nested intersection [58].

Nested inheritance is inheritance at the granularity of a namespace (a package or

a class), which defines a family in which related classes are grouped. When a

namespace inherits from another (base) namespace, all the namespaces nested

in the base namespace are inherited, and the derived namespace can override,

or further bind [50] inherited namespaces, changing nested class declarations,

similarly to virtual classes [50, 51, 21, 24, 12]. In addition, nested intersection

supports composing families with generalized intersection types [68, 14], which is

essentially multiple inheritance at the family level.

Family inheritance is useful, because in real software systems, the function-

ality that needs to be extended often spans multiple classes that are related to

each other, through inheritance or mutual references. For example, as shown in

Figure 4.2, the GUI library mentioned in Section 4.1.1 should also include classes

for various GUI elements, including the Button class in Figure 4.1. Suppose we

would like to extend the entire GUI library to support translucent widgets. With

the J& language, the extension can be declared at the family level, as shown on

145

the right of Figure 4.2. Every class in the base package GUI has a corresponding

subclass with the same class name in the derived package xlucentGUI.

J& supports scalable extensibility [56], where there is no need to declare cross-

family inheritance for individual classes, and the code that needs to be written

in the derived family is proportional to the added functionality.

The relationships between classes in GUI are preserved in xlucentGUI

with late binding of type names. For example, the Window class has a field for

the “close” button with the type Button. In GUI.Window, it refers to the

Button class in GUI, and in xlucentGUI.Window, it refers to that class of

xlucentGUI. The type safety of late-bound type names is ensured with prefix

types and dependent classes: the unqualified field type Button is actually sugar

for the prefix type GUI[this.class].Button, which means that the container

package of Button is a subtype of GUI, and encloses the run-time class of the

special variable this. Therefore, the Window object stored in this and the

Button object stored in the field close will always be in the same family.

Family inheritance in J& preserves all three kinds relationships in the de-

rived family: referencing, subclassing, and sharing. On the contrary, J&s does

not preserved sharing relationships.

4.2.2 Family sharing

This paper introduces a new version of J& that scales sharing to the granularity

of a family, analogously to the way that J& scales inheritance to the granularity

of a family. For example, in order to adapt existing objects from the GUI family

146

with the new drawing methods declared in xlucentGUI, the following family

sharing declaration may be used, with the rest of the code shown in Figure 4.2

remaining the same.

package xlucentGUI shares GUI;

With the sharing declaration, the xlucentGUI is a derived family of GUI,

just as with the inheritance declaration in Figure 4.2. Therefore, the shared de-

rived family xlucentGUI inherits all the nested classes from the base fam-

ily GUI, and preserves all the relationships among them, including sharing

relationships. If the GUI package contains the PrettyButton class that is

declared to share with Button, in the xlucentGUI package, Button and

PrettyButton are still shared.

The difference from nested inheritance is that corresponding classes from

the two families (e.g., GUI.Button and xlucentGUI.Button) also become

shared, and view changes can be used to move an object from one family to

another. For example, a Button object from the GUI family may acquire the

ability to be translucent:

GUI!.Button b1 = ...;

xlucentGUI!.Button b2 = (view xlucentGUI!.Button)b1;

In J&, a sharing relationship between two namespaces recursively applies

to all their corresponding nested namespaces. Therefore, family sharing is ho-

mogeneous. This compares to the original heterogeneous class sharing [65], where

sharing is declared for individual pairs of corresponding classes between two

families, but not all nested classes need be shared.

147

Homogeneous family sharing has several advantages over heterogeneous

sharing:

• It is a more scalable extensibility mechanism.

There is no need to declare sharing for individual pairs of classes from

two different families, which might be tedious and error-prone. This also

makes the sharing mechanism more scalable, because if a class only needs

to be shared but not overridden, its declaration may be omitted from the

source code of the derived family.

• It provides modular type checking with reduced annotation burden on the pro-

grammer.

In particular, homogeneous sharing does not require sharing con-

straints [65], because it is easier to prove that two types are shared. If

two types T1 and T2 are declared to be shared, all corresponding nested

types are also shared, that is, T1!.C ↔ T2!.C. (See Section 4.3 for a formal

treatment.)

For example, a variable b1 of type GUI!.Button might point to an ob-

ject of the GUI.RadioButton class or to one of the GUI.PrettyButton

class. In either case, the view change (view xlucentGUI!.Button)b1 is

type-safe, because sharing is declared between GUI and xlucentGUI—

therefore, all classes in GUI that are subtypes of GUI!.Button have

shared counterparts in xlucentGUI.

View changes support late binding, where the actual run-time view of the

result of (view T)e is a subtype of the target type T that is shared with

the run-time view of the value of e. With heterogeneous sharing, in order

to prove that the view change is valid, the type system has to inspect all

148

the subclasses of both the source type (the type of e) and the target type

T , and it has to recheck it every time the view change code is inherited by

a different family. Therefore, heterogeneous sharing in J&s uses sharing

constraints to make type-checking modular. With homogeneous sharing,

these constraints are superfluous.

• A data structure consisting of multiple interconnected objects may safely change

its view from one family to another.

For example, a non-translucent GUI would typically be represented

as a tree data structure with a Window object as the root, and vari-

ous other objects for buttons, menus, etc.. When a view change to

xlucentGUI!.Window is applied to the Window object, any reachable

object in the GUI family (e.g., the one stored in the field close in the

Window class) would definitely have a view in xlucentGUI to change

to. In fact, field accesses in J& automatically and lazily trigger these view

changes.

In heterogeneous sharing, a shared class may contain a field with an un-

shared type, in which case the field actually has several duplicates, one

for each class that is shared with the class that declares the field. Masked

types are used to ensure unshared objects stored in these fields do not leak

into incompatible families. This adds to the annotation burden, and com-

plicates reasoning about the code. Homogeneous family sharing does not

need masked types for this purpose.

149

class A1 {
class B {

void m() {...}
}

}
class A2 shares A1 {

class C extends B { // introduces a shadow class in A1
shadow void m() // a shadow method
{ ... }

}
}

Figure 4.3: Shadow classes and shadow methods

4.2.3 Shadow classes and shadow methods

Declaring shadow classes and methods. In the J& language, a derived family

may introduce new nested classes not present in a base family it shares with. In

order to keep sharing homogeneous and type-safe, these new nested classes in

general need to be shared as well. Shadow classes are introduced in the base

family to make this possible.

Figure 4.3 shows a simple example that illustrates the situation. The derived

family enclosed in A2 is shared with the base family in A1. A2 inherits the nested

class B from A1, and introduces a new class C that is a subclass of A2.B. Because

sharing is homogeneous, the two types A1!.B and A2!.B must be shared, and

therefore a view change from A2!.B to A1!.B must be allowed. But as shown

in following code, the source expression b2 of type A2!.B may actually refer

to an object of class A2.C. For the view change to work, A1 needs to contain a

class that is shared with A2.C.

150

A2!.B b2 = new A2.C();

A1!.B b1 = (view A1!.B)b2;

b1.m(); // invokes the shadow method

J& introduces shadow classes to ensure sharing is still homogeneous and to

enable the above view change. When a shared derived family (e.g., A2) intro-

duces a new nested class (e.g., A2.C), a shadow class (A1.C in the example)

with the same name as the new nested class is created in the base family. The

derived family that introduces the new nested class is called the originating fam-

ily for the shadow class, and the nested class is called the originating class. The

shadow class is shared with its originating class, and inherits all the relation-

ships from the originating family. Thus, the shadow class is a class that the base

family inherits from the derived family.

The shadow class may need to behave differently than the originating class

in order to be consistent with other classes in the base family. J& allows the

originating class to declare shadow methods, with the method modifier shadow.

Though shadow methods are declared in the derived (originating) family, the

semantics of shadow methods is as if they were defined within an explicit dec-

laration of the shadow class in the base family.

Modular type-checking of shadow classes Shadow classes are generated

from their originating classes. Therefore, the type system needs to know the

originating class before a shadow class is mentioned. On the other hand, mod-

ularity of the type system requires that it should be possible to type-check a

base family without knowing about its derived families that are not used in the

source code of the base family. For example, inside class A1 in Figure 4.3, the

151

type name C does not have a meaning before knowing the existence of A2.C.

J& ensures the modularity of the type system by disallowing direct nam-

ing of a shadow class in the source code. For example, given the declarations

shown in Figure 4.3, one cannot mention A1.C, the fully qualified name of the

shadow class, anywhere in the source code, nor can she mention just C in the

context of A1. Instead, the language overloads the disambiguation usage of pre-

fix types [58] to provide an indirect way of naming a shadow class that embeds

the name of the originating class: in the J& source code, a shadow class is re-

ferred to as P[T].C, where P is the originating family, T is a type in the same

family as the shadow class, and C is the simple name of the originating class.

Therefore, the shadow class in Figure 4.3 may be mentioned as A2[A1.B].C.

This naming scheme also solves the problem of name conflicts between

shadow classes. Suppose in addition to the declarations in Figure 4.3, there

is another shared derived family A3, which introduces a new nested class that

happens to have the name C as well:

class A3 shares A1 {

class C extends B {...}

}

Then there will be two shadow classes in A1, both having the same name C,

and there is no modular way to detect this situation. However, indirect naming

in J& prevents the potential name conflict, by naming the two shadow classes

differently, as A2[A1.B].C and A3[A1.B].C respectively.

The syntax for naming shadow classes looks somewhat heavy, but it is un-

likely to be used frequently. We expect shadow classes to be normally used as a

152

way to introduce new subclasses of some known, normal class in the base fam-

ily. The base family would generally use objects of the shadow class through the

known superclass, without explicitly mentioning the shadow class. The syntax

is also not necessary in the originating family, e.g., inside the declaration of a

shadow method, where the syntax coincides with the automatic desugaring of

unqualified type names.

4.2.4 Open families

Shadow classes and shadow methods provide a new kind of extensibility. Fam-

ilies are now open, analogously to open classes [13]. An existing family can be

extended in a modular way with new functionality, including new classes, with-

out modifying the code of the family. This contrasts both with heterogeneous

sharing and the original version of J&, where families are locally closed worlds

that do not allow adding new nested classes without modifying existing code.

In that prior work, it is possible to statically enumerate all the nested classes of

a family.

This kind of extensibility is also different from that provided by sharing it-

self. Family sharing modularly adds new functionality to objects that belong

to an existing family, but the new behavior is only accessible by viewing the

objects in the shared derived family. On the other hand, shadow classes are

available in the base family. For example, the shadow method m() declared

by A2.C in Figure 4.3 may be invoked through a receiver object of static type

A1!.B—definitely in the base family—if the receiver object is an instance of the

shadow class A2[A1.B].C.

153

IMP Node

Exp Stmt

If For While

IMP_for Node

Exp Stmt

If For While

IMP_while Node

Exp Stmt

If For While

shar
es shares

Figure 4.4: Sketch of the IMP compiler structure. Shadow classes in dashed
boxes.

To show the extensibility provided by homogeneous family sharing and

open families, let us consider an example of in-place translation [65] in the con-

text of a simple compiler.

J& supports type-safe translation of data structures between shared families,

in a mostly in-place fashion. When a data structure (in this case, an AST) is

translated from the source family to the target family, it is possible that only

a fraction of the objects in the structure needs to be explicitly translated, and

the rest of them remain structurally the same. If the source family and the tar-

get family are shared, one can simply apply view changes to objects that do

not need translation, avoiding the generation of many new objects, while still

ensuring the entire data structure behaves consistently in the target family.

Figure 4.4 shows a sketch of the class hierarchy of a compiler for a small im-

perative language and its extensions. The base family IMP describes a simple

core language without any loop construct. The two derived families IMP for

and IMP while respectively extend the base family with for-loops and while-

loops. The compiler translates a program from IMP for to IMP while, rewrit-

154

1 package IMP;
2 abstract class Node { ... }
3 ...
4 class If extends Stmt {
5 Exp cond; Stmt body;
6 If(cond, body) { this.cond = cond; this.body = body; }
7 }
8
9 package IMP_for shares IMP;
10 abstract class Node {
11 Node translate() {
12 return this; // by default, no translation
13 }
14 }
15 class If extends Stmt {
16 Stmt translate() { // covariant return type
17 Exp cond = this.cond.translate();
18 Stmt body = this.body.translate();
19 if (cond != this.cond || body != this.body)
20 return new If(cond, body);
21 else
22 return this;
23 }
24 }
25 class For extends Stmt {
26 Exp init, cond, inc;
27 Stmt body;
28 Stmt translate() {
29 ... new IMP_while[this.class].While(...); ...
30 }
31 }

Figure 4.5: In-place translation for loop statements

ing for-loops to while-loops.

Figure 4.5 illustrates J& code that does in-place translation from IMP for

to IMP while. The two derived families are both shared with the base family

IMP, and by transitivity, they are also shared. The class For in IMP for and

the class While in IMP while both introduce shadow classes in IMP, which are

then inherited by the other derived family. Since there is a shadow class While

in IMP for, the translation code implemented in Figure 4.5 actually generates

155

objects still in the IMP for family. Objects of the shadow class are generated

on line 29. Translation of If (lines 17–22) lazily generates a new If node only

if its children have changed. After the recursive translation is done on an AST,

a single view change operation applied to the root moves the entire AST to the

IMP while family:

IMP_for!.Node source = ...;

IMP_for!.Node temp = source.translate();

IMP_while!.Node target = (view IMP_while!.Node)temp;

In this example, the use of shadow classes facilitates the translation, which is

between two “sibling” families without going through the base family. In fact,

it is not easy, if not impossible, to first translate to IMP, and then to IMP while.

This example is different from the in-place translation example considered be-

fore in [65], which only supports translation from a derived family to its base

family.

4.3 Formal semantics and soundness

This section formalizes homogeneous family sharing in a core language called

JHS. Not all the features of the J& language are modeled in JHS, in order to

focus on sharing. For example, virtual types, explicit multiple inheritance and

intersection types are omitted.

156

programs Pr ::=< L, e >
class declarations L ::= class C ES {L F M}
superclass declarations ES ::= extends T | shares T
field declarations F ::= [final] T f = e
method declarations M ::= [shadow] T m(T x) {e}
types T ::= < | ◦ | T.C | p.class | P[T] | T !
classes P ::= < | ◦ | P.C
values v ::=< !, P! >
access paths p ::= v | x | p. f
expressions e ::= v | x | e. f | e0. f = e1 | e0.m(e) | e1; e2 | new T (f = e)

| (view T)e
typing environments Γ ::= ∅ | Γ, x :T | Γ, p1 = p2

Figure 4.6: Syntax of JHS

4.3.1 Syntax

Figure 4.6 shows the syntax of the JHS core language. The notation a is used for

both the list a1, . . . , an and the set {a1, . . . , an}, for n ≥ 0.

A program Pr is a pair < L, e > of a set of class declarations L and an expres-

sion e (the main method). Each class C has a superclass declaration, which is

either a normal superclass declaration extends T , or a shared superclass dec-

laration shares T . There are two special classes: < is the superclass of all the

other classes, similar to Object in Java; ◦ is the single top-level class that all

other classes are nested within.

Method declarations may have an extra modifier shadow for declaring

shadow methods.

JHS supports explicit exact types, and exactness applies to the entire type

preceding “!”. T !.C! is considered equivalent to T.C!, and T ! is equivalent to T

if T is already exact.

157

A value v, also called a reference, is a pair of a heap location ! and the associ-

ated view P!, which is a class in its exact form. Expressions are mostly standard,

with the addition of a view change operation (view T)e.

For simplicity, we omit the null value from JHS, and require that all field

declarations come with default initializations.

The typing environment contains aliasing information about access paths.

An entry p1 = p2 means p1 and p2 are aliases that also have the same run-time

view. As in [12], this kind of information is not needed in the static semantics,

but just in the soundness proof.

4.3.2 Lookup functions

The class table CT , defined in Figure 4.7, contains the declaration for any ex-

plicit or implicit class that is not a shadow class. The extended class table CT ′

contains synthesized declarations for all the shadow classes, in addition to the

declarations in CT . Both CT and CT ′ are assumed to be global information.

CT′-SHADOW states that if P′ introduces a nested class C, that is, no super-

class of P′ contains a normal nested class named C, it also introduces a shadow

class in any of its shared superclasses P—P′.C is the originating class of these

shadow classes. Shadow methods in P′.C are treated as if they were normal

methods declared in shadow classes.

Figure 4.7 also shows auxiliary functions for looking up various class mem-

bers like fields and methods: super(P) gives the superclass declaration of P,

either a normal superclass or a shared one; shadowMethods(P) collects all the

158

CT(P)

Pr =< L, e >

CT(◦) = class ◦ extends < {L}
(CT-OUT)

CT(P) = class C′ ES {L F M} Li = class C . . .

CT(P.C) = Li
(CT-EXP)

CT(P) = class C′ . . . {L F M} class C . . . " L * P !∗ P′ CT(P′.C) = class C ES {. . .}
CT(P.C) = class C ES {}

(CT-IMP)

CT′(P)

CT(P) # ⊥
CT′(P) = CT(P)

(CT′-NORM)

CT′(P) # ⊥ CT(P.C) = ⊥ * P′ !↔
∗ P

CT(P′.C) = class C ES {L F M}
"P′′ . CT (P′′.C) # ⊥∧ * P′ ! P′′

CT′(P.C) = class C ES {shadowMethods(P′.C)}
(CT′-SHADOW)

Member lookup

CT′(P) = class C ES {L F M}
super(P) = ES

ownFields(P) = F
ownMethods(P) = M − shadowMethods(M)
shadowMethods(P) = {M′ | shadow M′ ∈ M}

fields(P) =
⋃

*P!∗Pi

ownFields(Pi)

methods(P) =
⋃

*P!∗Pi

ownMethods(Pi)

F = [final] T f = e

fnames(F) = f

Γ * T $ S fields(S) = F
Fi = [final] T f f = e

ftypedecl(Γ,T, f) = T f

T decl
f = ftypedecl(Γ,T, f)

ftype(Γ,T, f) = T decl
f {{Γ; T/this}}

Γ * T $ P methods(P) = M
Mi = Tn+1 m(T x) {e}

mtype(Γ,T,m) = (x :T)→ Tn+1

methods(P) = M Mi = Tn+1 m(T x) {e}
mbody(P,m) = Mi

Figure 4.7: Lookup functions

shadow method declarations from P, with the shadow modifier removed; the

functions fields(P) and methods(P) collect all the field and method declarations

from P and its superclasses, excluding shadow methods, which are treated as

declared in shadow classes; fnames(F) is the set of all field names in field dec-

larations F; ftypedecl(Γ,T, f) returns the declared type of field f , which might

be a type dependent on this; ftype(Γ,T, f) substitutes the receiver type T for

this.class; mtype(Γ,T,m) and mbody(P,m) look up the type and the declara-

tion of a method m.

For simplicity, we assume there are no name conflicts in JHS, that is, all the

159

* P1 !↔ P2

super(P.C) = shares T
* P1 !∗ P T {{∅; P1/this}} = P2

* P1.C !↔ P2
(SHARE-DECL)

* P1 !↔ P2

* P1.C !↔ P2.C
(SHARE-FB)

* P1 ! P2

super(P.C) = extends T
* P1 !∗ P T {{∅; P1/this}} = P2

* P1.C ! P2
(SC-DECL)

* P1 ! P2

* P1.C ! P2.C
(SC-FB)

* P1 !↔ P2

* P1 ! P2
(SC-SHARE)

Figure 4.8: Sharing and subclassing

field declarations use different field names, unrelated methods have different

names, and classes that do not override each other also have different names.

4.3.3 Sharing and subclassing

Subclassing relationships among classes are defined in Figure 4.8. The judgment

* P1 !↔ P2 states that P1 is a shared subclass of P2. With homogeneous family

sharing, when two classes are declared to be shared, all the nested classes are

also automatically shared, according to SHARE-FB. On the other hand, * P1!P2

states that P1 is a subclass of P2, either shared or not.

4.3.4 Prefix types

The meaning of a non-dependent prefix type P[P′] is either a subclass of P

that nests P′, or a shared superclass of P that nests P′, as captured in the aux-

iliary function prefix(P, P′), shown in Figure 4.9. JHS generalizes prefix types to

include the second case, for naming shadow classes.

As in [59], we only consider prefix types P[T] where the index T is exactly

160

one level deeper in the nesting hierarchy than the bound P. However, more

general prefix types can be encoded.

4.3.5 Type substitution

The rules for type substitution are shown in Figure 4.9. Type substitution

T {{Γ; Tx/x}} substitutes Tx for x.class in T in the context of Γ. The typing con-

text Γ is used to look up field types when substituting a non-dependent class

into a field-path dependent class.

For type safety, type substitutions on the right-hand side of a field assign-

ment or on the parameters of method calls must preserve the exactness of the

declared type. Therefore, only values from the family that is compatible with the

receiver are assigned to fields or passed to method code. Exactness-preserving

type substitution T {{Γ; Tx/x!}} is also shown in Figure 4.9.

4.3.6 Static semantics

The static semantics of JHS is summarized in Figure 4.10, Figure 4.11, Fig-

ure 4.12, and Figure 4.13. Figure 4.10 shows rules for type well-formedness,

type bounds, final path typing, and final path equalities. Figure 4.11 shows

type sharing and subtyping rules. Figure 4.12 shows expression typing rules.

Figure 4.13 defines program well-formedness.

Sharing relationships between types. The sharing judgment Γ * T1 ↔ T2,

shown in Figure 4.11, states that a value of type T1 may become a value of T2

161

paths(<) = ∅
paths(◦) = ∅

paths(T.C) = paths(T)

paths(p.class) = {p}
paths(P[T]) = paths(T)

paths(T !) = paths(T)

prefixExactk(<) = false

prefixExactk(◦) = true

prefixExactk(T.C) =




false if k = 0

prefixExactk−1(T) otherwise

prefixExactk(p.class) = true

prefixExactk(P[T]) = prefixExactk+1(T)

prefixExactk(T !) = true

prefix(P, P′) =




P′′ if P′ = P′′.C∧ * P′′ !∗ P

P′′ if P′ = P′′.C∧ * P !↔
∗ P′′

⊥ otherwise

<{{Γ; Tx/x}} = <

◦{{Γ; Tx/x}} = ◦

T.C{{Γ; Tx/x}} = T {{Γ; Tx/x}}.C

v.class{{Γ; Tx/x}} = v.class

x.class{{Γ; Tx/x}} = Tx

x # y

y.class{{Γ; Tx/x}} = y.class

p.class{{Γ; Tx/x}} = p′.class

p. f .class{{Γ; Tx/x}} = p′. f .class

p.class{{Γ; Tx/x}} = Tp

Tp # p′.class
ftype(Γ,Tp, f) = T f

p. f .class{{Γ; Tx/x}} = T f

T {{Γ; Tx/x}} = T ′

P[T]{{Γ; Tx/x}} = P[T ′]

T {{Γ; Tx/x}} = T ′

T !{{Γ; Tx/x}} = T ′!

T {{Γ; Tx/x}} = T ′

∀k. prefixExactk(T)⇒ prefixExactk(T ′)

T {{Γ; Tx/x!}} = T ′

Figure 4.9: Auxiliary definitions

through a view change, and vice versa. SH-NEST states that sharing is between

families: when two classes are shared, all the corresponding nested types are

also shared. SH-DECL collects sharing relationships from class declarations.

Shadow classes ensure that the two shared families are symmetric in the

sharing relation, and therefore JHS does not need directional sharing relation-

ships as in the J&s calculus, simplifying the semantics.

Subtyping. The subtyping judgment Γ * T ≤ T ′ states that T is a subtype of T ′

in context Γ, and type equivalence Γ * T ≈ T ′ is sugar for a pair of subtyping

judgments.

162

Γ * T
CT ′(P) # ⊥
Γ * P

(WF-SIMP)
Γ *final p :T

Γ * p.class
(WF-FIN)

Γ * T

Γ * T !
(WF-EXACT)

Γ * T Γ * T $ P CT′(P.C) # ⊥
Γ * T.C

(WF-NEST)
Γ * P Γ * T Γ * T $ P′ prefix(P, P′) # ⊥

Γ * P[T]
(WF-PRE)

Γ * T $ P

Γ * P $ P (BD-REFL)
Γ * T $ P

Γ * T.C $ P.C
(BD-NEST)

Γ * P[T] Γ * T $ P′

Γ * P[T] $ prefix(P, P′)
(BD-PRE)

Γ * T $ P

Γ * T ! $ P
(BD-EXACT)

Γ *final p :T Γ * T $ P

Γ * p.class $ P
(BD-FIN)

Γ *final p :T

Γ *final< !, P! > : P! (F-REF)
x :T ∈ Γ
Γ *final x :T

(F-VAR)
Γ *final p :T T f = ftype(Γ,T, f)

Γ *final p. f :T f
(F-GET)

Γ * p1 = p2

p1 = p2 ∈ Γ
Γ * p1 = p2

(A-ENV)
Γ *final p :T

Γ * p = p
(A-REFL)

Γ * p2 = p1

Γ * p1 = p2
(A-SYM)

Γ * p1 = p2 Γ * p2 = p3

Γ * p1 = p3
(A-TRANS)

Γ * p1 = p2 Γ *final p1. f :T f Γ *final p2. f :T f

Γ * p1. f = p2. f
(A-FIELD)

Figure 4.10: Static semantics: auxiliary judgments

Most subtyping rules are similar to those in Chapter 3, but without any rule

about masked types or intersection types. S-SHARE states that the subtyping

relationships are preserved by a shared family, and implies that shadow classes

in the base family inherit subtyping relationships from the originating family.

Expression typing. The rules for expression typing Γ * e : T (Figure 4.12) are

mostly standard, with the addition of T-VIEW that states a view change expres-

sion is valid when the source and the target types are shared.

Program typing. Program typing rules are in Figure 4.13. P-OK states the

rule for a program to be well-formed; L-OK, F-OK, and M-OK are the well-

formedness rules for declarations of classes, fields, and methods. EXT-OK and

SH-OK are the well-formedness rules for inheritance and sharing declarations.

163

Γ * T1 ↔ T2

Γ * T ↔ T (SH-REFL)
Γ * T1 ↔ T2

Γ * T2 ↔ T1
(SH-SYM)

Γ * T1 ↔ T2 Γ * T2 ↔ T3

Γ * T1 ↔ T3
(SH-TRANS)

Γ * T1 ↔ T2

Γ * T1!↔ T2!
(SH-EXACT)

Γ * T1 ↔ T2

Γ * T2.C

Γ * T1.C ↔ T2.C
(SH-NEST)

Γ * T $ P
super(P.C) = shares T ′

T ′{{Γ; T/this}} = T ′′

Γ * T.C!↔ T ′′!
(SH-DECL)

Γ * T ≤ T ′

Γ * T ≤ < (S-TOP) Γ * T ≤ T (S-REFL)
Γ * T1 ≤ T2 Γ * T2 ≤ T3

Γ * T1 ≤ T3
(S-TRANS)

Γ * T.C! ≤ T !.C (S-EXACT)
Γ *final p :T

Γ * p.class ≤ T
(S-FIN)

Γ * T Γ * T $ P

Γ * T ≤ P
(S-BOUND)

Γ *final p :T !

Γ * p.class ≈ T !
(S-FIN-EXACT)

Γ * p1 = p2

Γ * p1.class ≈ p2.class
(S-ALIAS)

Γ * T1 ≤ T2 Γ * T2.C

Γ * T1.C ≤ T2.C
(S-NEST)

Γ * P[T.C]

Γ * P[T.C] ≈ T
(S-PRE-E1)

Γ * P[T] = T ′

Γ * P[T !] ≈ T ′!
(S-PRE-E2)

Γ * T1 ↔ T2 Γ * T1.C ≤ T1.C′

Γ * T2.C ≤ T2.C′
(S-SHARE)

Γ * T1 ≤ T2

Γ * P[T1] Γ * P[T2]

Γ * P[T1] ≤ P[T2]
(S-PRE-I)

* P1 ! P2

Γ * P1[T] Γ * P2[T]

Γ * P1[T] ≈ P2[T]
(S-PRE-B)

Γ * T $ P
super(P.C) = . . . T ′

T ′{{Γ; T/this}} = T ′′

Γ * T.C ≤ T ′′
(S-DECL)

Figure 4.11: Static semantics: sharing and subtyping

Γ * e :T
Γ *final p :T

Γ * p : p.class
(T-FIN)

Γ * e :T Γ * T ≤ T ′

Γ * e :T ′
(T-SUB)

Γ * e1 :T1 Γ * e2 :T2

Γ * e1; e2 :T2
(T-SEQ)

Γ * e :T
Γ * T ↔ T ′

Γ * (view T ′)e :T ′
(T-VIEW)

Γ * e :T
ftype(Γ,T, f) = T f

Γ * e. f :T f
(T-GET)

Γ * T Γ * e :T
T = ftypedecl(Γ,T, f){{Γ; T !/this!}}

Γ * new T (f = e) :T !
(T-NEW)

Γ * e :T f Γ * x :T
ftypedecl(Γ,T, f) = T decl

f
T decl

f {{Γ; T/this!}} = T f

Γ * x. f = e :T f
(T-SET)

n = #(e) = #(x) Γ * e0 :T0 Γ * e :T ′

mtype(Γ,T0,m) = (x :T)→ Tn+1

∀i ∈ 1..n + 1. Ti{{Γ; T0/this!}} = T ′i
Γ * e0.m(e) :T ′n+1

(T-CALL)

Figure 4.12: Static semantics: expressiong typing

164

◦ * L ok ∅ * e :T ∅ * T !+ acyclic

*< L, e > ok
(P-OK)

∀C′. CT′(P.C.C′) # ⊥ ⇒ P.C * CT′(P.C.C′) ok
P.C * F ok P.C * ownMethods(P.C) ok P * ES ok

∀Pi. * P.C !+ Pi ⇒* P.C conforms to Pi

P * class C ES {L F M} ok
(L-OK)

T # ◦ this : P * T paths(T) ⊆ {this} ¬prefixExact0(T)

P * extends T ok
(EXT-OK)

this : P * T T {{∅; P/this}} = P.C

P * shares T ok
(SH-OK)

CT′(P) = class C ES {L F M}
CT′(P′) = class C′ ES ′ {L′ F′ M′}

∀i, j.
(
Li = class D ES i . . . ∧ L′j = class D ES ′j . . .

)
⇒ ES i = ES ′j

∀i, j.
(
Mi = Tn+1 m(T x) {e} ∧ M′j = T ′n+1 m(T ′ x′) {e′}

)
⇒ P * Mi overrides M′j

* P conforms to P′

M = Tn+1 m(T x) . . . {e}
M′ = T ′n+1 m(T ′ x′) . . . {e′}

#(x) = #(x′) = #(y) y ∩ (x ∪ x′) = ∅
Γ = this : P, y :T {y/x} * Γ ok

Γ * T {y/x} ≈ T ′{y/x′} Γ * Tn+1{y/x} ≈ T ′n+1{y/x′}
P * M overrides M′

this : P * T paths(T) ⊆ {this} ¬prefixExact0(T) this : P * e :T

P * [final] T f = e ok
(F-OK)

Γ = this : P, x :T * Γ ok n = #(x) x0 = this

Γ * Tn+1 Γ * e :Tn+1 FV(e) ⊆ {x0, x} paths(T ,Tn+1) ⊆ {this}
P * Tn+1 m(T x) {e} ok

(M-OK)

Figure 4.13: Program typing

4.3.7 Operational semantics

A small-step operational semantics for JHS is shown in Figures 4.14 and 4.15.

A heap H is a function mapping pairs < !, f > of memory locations and field

names to values v. Heap updates are represented as H[< !, f >:= v].

A reference set R, which contains all the references v that have been gen-

erated during evaluation, no matter whether they are reachable from e, is also

part of the evaluation configuration e,H,R. The set R is only for the proof of

soundness: it prevents us from losing path equalities needed in the proof.

165

heaps H ::= ∅ | H, < !, f >'→ v
reference sets R ::= ∅ | R, v
evaluation contexts E ::= [·] | E. f | E. f = v

| E; e | (view TE)e | (view P!.C)E
| E.m(e) | v.m(v, E, e) | new TE(f = e)
| new P!.C(f = v, f = E, f ′ = e)

type evaluation contexts TE ::= TE.C | E.class | P[TE] | T E!

Figure 4.14: Definitions for operational semantics

e,H,R −→ e′,H′,R′

e,H,R −→ e′,H′,R′

E[e],H,R −→ E[e′],H′,R′
(R-CONG)

H(!, f) = v ftype(∅, P!, f) = P′!.C R′ = R, view(v, P′!.C)

< !, P! > . f ,H,R −→ view(v, P′!.C),H,R′
(R-GET)

H′ = H[< !, f >:= v]

< !, P! > . f = v,H,R −→ v,H′,R
(R-SET)

mbody(P,m) = Tn+1 m(T x) {e} n = #(v) = #(x)

< !, P! > .m(v),H,R −→ e{< !, P! > /this, v/x},H,R
(R-CALL)

! fresh H′ = H[(!, f) := v] R′ = R, < !, P.C! >

new P!.C(f = v),H,R −→< !, P.C! >,H′,R′
(R-ALLOC)

v; e,H,R −→ e,H,R (R-SEQ)

R′ = R, view(v, P!.C)

(view P!.C)v,H,R −→ view(v, P!.C),H,R′
(R-VIEW)

Figure 4.15: Small-step operational semantics

The evaluation rules (Figure 4.15) take the form e,H,R −→ e′,H′,R′. Most

of them are standard. R-GET shows that field accesses implicitly trigger view

changes, which ensures that objects that reference each other always behave

consistently.

Type evaluation. Types in new expressions and view change expressions may

be dependent, and therefore need to be evaluated according to the type evalu-

166

view(< !, P! >, P′!.C) =< !, P′.C′! >

where P = P′′.C′ and * P′!↔ P′′!

Figure 4.16: The view function

ation contexts TE (Figure 4.14) and the type equivalence rules (Figure 4.11). A

fully evaluated type has the form P!.C, which is a simple class that has an ex-

act prefix and is not dependent on any access path. There is always an exact

prefix, because ◦ is exact. Dependent class < !, P! > .class evaluates to P!.

Prefix types are evaluated according to rules S-PRE-E1 and S-PRE-E2, which can

be seen as normalization rules, reducing the types on the left-hand side of ≈ to

those on the right-hand side.

View changes. As shown in Figure 4.16, the auxiliary function view defines

the operational semantics for view changes. Because sharing is homogeneous,

the generated run-time view P′.C′! is well defined, shares with the original view

P′′.C′!, and is a subtype of the target type P′!.C. Therefore, as long as the source

type and target type are shared, a view change expression is well-formed.

4.3.8 Soundness

We prove the following soundness theorem of the JHS core language, using the

standard technique of proving progress and subject reduction [87].

Theorem 4.3.1 (Soundness) If *< L, e > ok, and * e : T , and e, ∅, ∅ →∗ e′,H,R, then

either e′ = v and 2H,R3 * v :T , or ∃e′′,H′,R′, such that e′,H,R −→ e′′,H′,R′.

167

< !, P! >∈ R * ftype(∅, P, f) $ P f
< !′, P′! >= view(H(!, f), P f) final T f f = e ∈ fields(P)

< !, P! > . f =< !′, P′! >∈ 2H,R3

Figure 4.17: Runtime typing environments

FV(e) = ∅ refs(e) ⊆ R
< l, P! >, < l, P′! >∈ R⇒* P!↔ P′!

H(!, f) = v⇒ ∃P . < !, P! >∈ R∧ * v : ftype(∅, P!, f)

* e,H,R

Figure 4.18: Runtime configuration well-formedness

The proof requires several preliminary definitions and lemmas, especially

for proving subject reduction.

Runtime typing. In the soundness proof, expressions are typed using a typ-

ing environment 2H,R3 constructed from the heap H and the reference set R,

which contains aliasing information for fields. Figure 4.17 shows the definition

of 2H,R3.

A run-time configuration is well-formed, represented as * e,H,R, shown in

Figure 4.18, if e has no free variable, all the references in e are included in R, ref-

erences with the same location in R have shared views, and the type of the value

stored in a field is consistent with at least one view of the containing object.

Extensions of typing environments A typing environment Γ′ is an extension

of Γ, if Γ ⊆ Γ′. Extensions preserve almost all the typing judgments, as described

in Lemma 4.3.2.

Lemma 4.3.2 If Γ2 is an extension of Γ1, then the following statements are true:

• If Γ1 * T , then Γ2 * T .

168

• If Γ1 * T $ P, then Γ2 * T $ P.

• If ftype(Γ1,T, f) = T f , then ftype(Γ2,T, f) = T f .

• If mtype(Γ1,T,m) = (x :T)→ Tn+1, then mtype(Γ2,T,m) = (x :T)→ Tn+1.

• If Γ1 * p = p′, then Γ2 * p = p′.

• If T {{Γ1; Tx/x}} = T ′, then T {{Γ2; Tx/x}} = T ′.

• If Γ1 * T1 ≤ T2, then Γ2 * T1 ≤ T2.

• If Γ1 * v :T , then Γ2 * v :T .

PROOF: The proof is by induction on the derivation of these judgments. "

Substitutions. This section describes several preliminary lemmas about both

type and value substitutions.

The typing of field accesses and that of method calls both depend on the typ-

ing of their receivers, although the static type of the receiver might not be as pre-

cise of the dynamic type of the receiver object. Therefore, we need Lemma 4.3.3,

which states that type substitution is covariant.

Lemma 4.3.3 If Γ * T1≤T2, then for any type T , we have Γ * T {{Γ; T1/x}}≤T {{Γ; T2/x}}.

PROOF: The proof is by structural induction on T . Note that there is no arrow

type in JHS. "

As a corollary of Lemma 4.3.3, we can prove Lemma 4.3.4, since the ftype

function basically just involves a type substitution.

169

Lemma 4.3.4 If Γ * T1 ≤ T2, and ftype(Γ,T1, f) = T f , and ftype(Γ,T2, f) = T ′f , then

Γ * T f ≤ T ′f .

JHS supports dependent types, and therefore value substitution may also

apply to types. The following lemma states that value substitution preserves

subtyping.

Lemma 4.3.5 If Γ, x :Tx * T1 ≤ T2, and Γ * v :Tx, then Γ{v/x} * T1{v/x} :T2{v/x}.

PROOF: The proof is by induction on the derivation of Γ, x :Tx * T1 ≤ T2. "

Lemma 4.3.6 states that sharing is preserved by value substitutions.

Lemma 4.3.6 If Γ, x :Tx * T1 ↔ T2, and Γ * v :Tx, then Γ{v/x} * T1{v/x} ↔ T2{v/x}.

PROOF: The proof is by induction on the derivation of Γ, x :Tx * T1 ↔ T2. "

Now we can proof the value substitution lemma:

Lemma 4.3.7 (Value substitution) If Γ, x : Tx * e : T , and Γ * v : Tx, then Γ{v/x} *

e{v/x} :T {v/x}.

PROOF: The proof is by induction on the derivation of Γ, x : Tx * e : T , using

Lemma 4.3.5 and Lemma 4.3.6. "

170

The following lemma helps make the value substitution lemma applicable to

the case of proving preservation for method calls, since T-CALL uses exactness-

preserving substitution.

Lemma 4.3.8 If Γ, x :Tx * T , and Γ * v :Tx, then Γ{v/x} * T {v/x} ≤ T {{Γ; Tx/x!}}.

PROOF: Note that T {v/x} is actually T {{Γ; v.class/x!}}, and Γ * v :Tx implies that

Γ * v.class ≤ Tx. Then we can apply Lemma 4.3.3 to get the proof. "

Sharing of field types. Unlike the J&s calculus, the homogeneous sharing JHS

core language ensure that field types are always shared for all the shared views

of the containing object. Therefore, there is no need to duplicate fields or to use

masked types. This property is proved in Lemma 4.3.9.

Lemma 4.3.9 If * P! ↔ P′!, and ftype(∅, P!, f) = T f , and ftype(∅, P′!, f) = T ′f , then

* T f ↔ T ′f .

PROOF: It is easy to see that both ftype(∅, P!, f) and ftype(∅, P′!, f) are obtained

from the same declared field type T decl
f = ftypedecl(∅, P!, f).

If T decl
f is not dependent, then the proof is trivial. If T decl

f is a dependent type

without any prefix types in it, that is, this.class.C, the proof is also not hard,

by SH-NEST. The interesting case is when T decl
f is a prefix type, which can be

proved using Lemma 4.3.10. "

171

Lemma 4.3.10 If * P1!.C1 ↔ P2!.C2, and * P[P1!.C1], and * P[P2!.C2], then *

P[P1!.C1]↔ P[P2!.C2].

PROOF: By induction on the derivation of * P1!.C1 ↔ P2!.C2. There are several

cases:

• SH-REFL

Trivial.

• SH-SYM

Proved by directly using the induction hypothesis.

• SH-TRANS

Proved by directly using the induction hypothesis.

• SH-EXACT

Then both prefix types are evaluated using S-PRE-E2, P1!.C1 = P1!, and

P2!.C2 = P2!. By SH-EXACT, we have * T1 ↔ T2, and T1! = P1! and T2! =

P2!, i.e., T1 and T2 are just P1 and P2 with exactness inserted somewhere.

Then by the induction hypothesis, * P[T1] ↔ P[T2]. By S-PRE-E2, we

know that P[P1!] evaluates to P[T1]!, and P[P2!] evaluates to P[T2]!.

Therefore, by SH-EXACT, the proof follows.

• SH-NEST

Then both P[P1!.C1] and P[P2!.C2] can be evaluated according to

S-PRE-E1, since they are not exact. By SH-NEST, P1!.C1 = T1.C, P2!.C2 =

T2.C, and * T1 ↔ T2. By S-PRE-E1, P[P1!.C1] evaluates to T1, and

P[P2!.C2] evaluates to T2. Then the proof follows.

172

• SH-DECL

Then there exists P′ and C, such that P1!.C1 = P1! = P′.C!, and P2!.C2 = P2!,

and CT ′(P′.C) = . . . shares T ′ . . ., and T ′{{∅; P′/this}} = P2. By SH-OK

in Figure 4.13, T ′{{∅; P′/this}} = P′.C′. Now we can see that P2 = P′.C′.

Therefore P[P1!] = P′! = P[P2!]. Then the proof follows by SH-REFL.

"

Progress. We first prove the progress lemma (Lemma 4.3.11), which is the eas-

ier than proving subject reduction.

Lemma 4.3.11 (Progress) If * e,H,R, and 2H,R3 * e : T , then either e = v or

∃e′,H′,R′, such that e,H,R −→ e′,H′,R′.

PROOF: The proof is by structural induction on e. There are the following cases:

• e = v

Trivial.

• e = x

Vacuously true, since e has no free variable.

• e = e0. f

There are two cases:

– e0 # v

Then by the induction hypothesis, ∃e′0,H
′,R′ . e0,H,R −→ e′0,H

′,R′.

Then R-CONG applies.

173

– e0 =< !, P! >

Then by R-GET, e′ = view(H(!, f), ftype(∅, P!, f)), and H′ = H, and

R′ = R, view(H(!, f), ftype(∅, P!, f)).

• e = (e0. f = e1)

There are again two cases:

– e0 # v or e1 # v

Then the induction hypothesis and R-CONG applies.

– e0 = v0 and e1 = v1

The proof is similar to that for the second case with e = e0. f , using

R-SET instead of R-GET.

• e = e0.m(e)

There are two cases:

– ei # v for some i (0 ≤ i ≤ n)

The proof follows from the induction hypothesis and R-CONG.

– ei = vi (0 ≤ i ≤ n)

Suppose v0 =< !, P! >. By T-CALL, we know that mtype(P,m) is well-

defined. Then mbody(P,m) is also well-defined according to their def-

initions. Therefore R-CALL applies.

• e = e1; e2

There are two cases:

– e1 # v

The proof follows from the induction hypothesis and R-CONG.

174

– e1 = v

Then R-SEQ applies.

• e = new T (f = e)

There are three cases:

– T # P!.C

Then we should continue evaluating the type T , as described in Sec-

tion 4.3.7.

– T = P!.C and ei # v for some i (1 ≤ i ≤ n)

The proof follows from the induction hypothesis and R-CONG.

– T = P!.C and ei = vi (1 ≤ i ≤ n)

Then R-ALLOW applies.

• e = (view T)e0

There are again three cases:

– T # P!.C

Then we need to continue evaluating the type T .

– T = P!.C and e0 # v

The proof follows from the induction hypothesis and R-CONG.

– T = P!.C and e0 = v

Then R-VIEW applies.

"

175

Subject reduction. Before proving that typing is preserved by evaluating an

expression, we first prove that evaluation of a final access path preserves the

typing.

Lemma 4.3.12 If * e,H,R, and 2H,R3 *final p : T , and p,H,R −→ p′,H′,R′, then

* p′,H′,R′, and 2H′,R′3 *final p′ :T ′, and 2H′,R′3 * T ′ ≤ T .

PROOF: The proof is by induction on the derivation of 2H,R3 *final p : T . Since

the final access path p can take a step, it must be of the form p0. f . There are then

two cases:

• p0 # v

Then R-CONG applies, and p0,H,R −→ p′0,H
′,R′. By F-GET, 2H,R3 *final

p0 : T0, and T = ftype(2H,R3,T0, f). Then by the induction hypothesis,

2H′,R′3 *final p′0 :T ′0, and 2H′,R′3 * T ′0 ≤ T0. Then by F-GET, 2H′,R′3 *final p′0. f :

ftype(2H′,R′3,T ′0, f), that is, T ′ = ftype(2H′,R′3,T ′0, f). Then by Lemma 4.3.4,

2H′,R′3 * T ′ ≤ T .

• p0 =< !, P! >

Then R-GET applies. Let H(!, f) = v, and ftype(∅, P!, f) = P′!.C, and <

!′, P′′! >= view(v, P′!.C). Then p′ =< !′, P′′! >. By F-REF, 2H,R3 *final p0 : P!.

By F-GET, T = ftype(2H,R3, P!, f). By S-FIN, 2H,R3 * p.class ≤ T , and

by the definition of run-time typing environment, 2H,R3 * p = p′. Thus

by S-ALIAS, 2H,R3 * p′.class ≤ T . Since H′ = H and R′ = R, p′, 2H′,R′3

is an extension of 2H,R3. By Lemma 4.3.2, 2H′,R′3 * p′.class ≤ T . By

F-REF, 2H′,R′3 *final p′ : P′′!, that is, T ′ = P′′!. By S-FIN-EXACT, 2H′,R′3 *

p′.class ≈ P′′!. Therefore 2H′,R′3 * P′′! ≤ T by S-TRANS, that is, 2H′,R′3 *

T ′ ≤ T .

176

"

Now let us prove subject reduction (Lemma 4.3.13).

Lemma 4.3.13 (Subject reduction) If * e,H,R, and 2H,R3 * e : T , and e,H,R −→

e′,H′,R′, then * e′,H′,R′ and 2H′,R′3 * e′ :T .

PROOF: It is not hard to prove that the resulting run-time configuration

e′,H′,R′ is still well-formed, by inspecting the definition of configuration well-

formedness, and how the configuration can change for each of the operational

semantic rule.

Now let us prove 2H′,R′3 * e′ :T , by induction on the derivation of 2H,R3 * e :

T .

First, if the derivation ends with T-SUB, we can use the induction hypothesis

and the extension lemma to do the proof. Therefore, let us now only consider the

case without T-SUB as the last rule in the derivation. We also consider different

cases for e. (Note that most of the congruence cases are very easy to prove, just

using the induction hypothesis and the appropriate typing rules).

• e = v

Vacuously true, because there is no step to take.

• e = x

Vacuously true, because 2H,R3 does not have variable bindings, and there-

fore e contains no free variables.

177

• e = e0. f

There are several cases for e0:

– e0 =< !, P! >

There are again two cases for the rule used for typing e, depending

on whether f is a final field or not.

∗ T-FIN

Then by R-GET, e,H,R −→ v,H,R′, where H(!, f) = v′, and v =

view(v′, ftype(∅, P!, f)), and R′ = R, v.

We can still use T-FIN to type v. According to Lemma 4.3.12, the

proof follows.

∗ T-GET

Then operationally, it is still R-GET, the same as in the previous

case. We still have e,H,R −→ v,H,R′, where H(!, f) = v′, and

v = view(v′, ftype(∅, P!, f)), and R′ = R, v.

Although the typing of < !, P! >might not be as precise as P!, by

Lemma 4.3.4, we only need to consider P! as the receiver type.

Let ftype(∅, P!, f) = T f . We need to prove 2H,R′3 * v :T f .

By the definition of * e,H,R, we have H(!, f) = v′ ⇒ ∃ < !, P′′! >∈

R∧ * v : ftype(∅, P′′!, f). Since < !, P! >, < !, P′′! >∈ R, we

have * P! ↔ P′′!. Then by Lemma 4.3.9, * ftype(∅, P!, f) ↔

ftype(∅, P′′!, f). Then by the definition of the auxiliary function

view, * view(v′,T f) :T f , and therefore 2H,R′3 * v :T f .

– e0 # v

Then R-CONG applies. There are two cases for deriving 2H,R3 * e0. f :

T .

178

∗ T-FIN

The proof goes similarly to the corresponding case above, using

Lemma 4.3.12.

∗ T-GET

Then 2H,R3 * e0 : T0, and ftype(2H,R3,T0, f) = T . By the induction

hypothesis, 2H′,R′3 * e′0 :T0. Also, 2H′,R′3 is an extension of 2H,R3.

Therefore, ftype(2H′,R′3,T0, f) = T . Then 2H′,R′3 * e′0. f :T .

• e = (e0. f = e1)

There are several cases for e0.

– e0 =< !, P! >

Again, there are two cases for e1:

∗ e1 = v

Then R-SET applies. By T-SET, 2H,R3 * v : T , where T =

ftype(2H,R3, P!, f). Here, we still only consider P! with the same

reason mentioned before for the case of e =< !, P! > . f . Since

2H′,R3 is an extension of 2H,R3, we still have 2H′,R3 * v :T .

∗ e1 # v

This is the congruence case.

– e0 # v

This is the congruence case.

• e = e0.m(e)

There are two cases:

– ei # v for any i (0 ≤ i ≤ n)

This is the congruence case.

179

– e0 =< !, P! >, and e = v

Then R-CALL applies, and H′ = H, R′ = R, and e′ = em{< !, P! >

/this, v/x}, where mbody(P,m) = Tn+1 m(T x) {em}. We also have

2H,R3 * e : T ′n+1, where T ′i = Ti{{2H,R3; P!/this}} (i = 1, . . . , n + 1).

According to M-OK, this : P′, x : T * em : Tn+1, where * P! ≤ P′. Then

the proof follows from Lemma 4.3.7 and Lemma 4.3.8.

• e = e1; e2

There are two cases:

– e1 # v

This is the congruence case.

– e1 = v

Then R-SEQ applies. We also have e′ = e2, H′ = H, and R′ = R. The

proof follows easily.

• e = newP!.C(f = e)

There are two cases:

– ei # v for any i (1 ≤ i ≤ n)

This is the congruence case.

– e = v

Then R-ALLOC applies, and e′ =< !, P.C! >. By T-NEW, T = P.C!.

Then by T-FIN, 2H′,R′3 *< !, P.C! >: P.C!.

• e = (view P!.C)e0

By T-VIEW, T = P!.C. There are two cases for e0:

180

– e0 # v

This is the congruence case.

– e0 =< !, P0! >

Then R-VIEW applies. We have e′ = view(< !, P0! >, P!.C). By T-VIEW,

there exists T! such that 2H,R3 *< !, P0! >: T! and 2H,R3 * T! ↔ P!.C.

Now it is easy to see that T! has the form of P′!.C, otherwise it cannot

be shared with P!.C. Therefore 2H,R3 * P0! ≤ P′!.C, and * P! ↔ P′!.

Since 2H′,R′3 is an extension of 2H,R3, 2H′,R′3 * P0! ≤ P′!.C. By the

definition of the view function, e′ =< !, P.C′! >, where P0 = P′.C′. By

S-SHARE, 2H′,R′3 * P!.C′ ≤ P!.C. Therefore 2H′,R′3 * P.C′! ≤ T , which

implies that 2H′,R′3 * e′ :T .

"

Soundness. Finally, the soundness theorem (Theorem 4.3.1) can be proved. It

follows directly from Lemma 4.3.11 and Lemma 4.3.13.

4.4 Experience

This section presents our experience with implementing in-place translation for

a compiler for the λ-calculus. This is not a large example, but uses the lan-

guage features in a sophisticated way—combining multiple levels of sharing

and family-level intersection. The example compiler is inspired by the Polyglot

framework, and it encapsulates most of the interesting issues that arise in mak-

ing Polyglot extensible, while demonstrating the advantages of homogeneous

181

base Exp

Abs

pair Exp

AbsPair

sum Exp

Abs Case

sumpair Exp

Abs CasePair

Figure 4.19: Compiler structure with heterogeneous sharing. Translator and
some AST nodes not shown.

base Exp

Abs

pair Exp

AbsPair

sum Exp

Abs Case

sumpair Exp

Abs CasePair

sha
res shares

sha
res

CasePair

PairCase

Figure 4.20: Compiler structure with homogeneous sharing. Translator and
some AST nodes not shown.

family sharing. Therefore, lessons learned from the experience with it will prove

useful for dealing with larger software systems such as Polyglot.

Implementing translations for sums and pairs. The compiler example trans-

lates the λ-calculus extended with sums and pairs to the simple lambda calculus.

A way to accomplish this goal as an in-place translation was first demonstrated

182

for heterogeneous sharing [65], so this example offers a way to compare the

expressive power of homogeneous and heterogeneous sharing.

The compiler is implemented as four families of classes. The base family de-

scribes simple λ-calculus as the target language. Two derived families, sum and

pair, share AST classes with the base family but extend it with sums and pairs

respectively. They also implement in-place translation to the simple λ-calculus.

The last derived family, sumpair, composes the sum and pair families, lead-

ing to a compiler that supports both sums and pairs.

Comparing the two kinds of sharing. Figure 4.19 and Figure 4.20 show the

structures of the compiler when implemented with heterogeneous sharing and

with homogeneous sharing.

The J&s version has about 250 lines. Sharing is declared between individual

pairs of classes, represented with dashed arrows that go across family bound-

aries. The class hierarchy is more complex with these interfamily relationships,

and several class declarations have to be written just to declare sharing, mak-

ing the code less scalable. Among the 23 class declarations, 12 of them are just

for sharing declarations. Moreover, the existence of new subclasses (Pair and

Case) in the pair and sum families means the Exp type cannot be shared.

Therefore, all subexpression fields with type Exp must be masked in sharing

relationships. There are in total 17 masked types in the J&s code, and 3 sharing

constraints. The extra syntax increases the annotation burden for the program-

mer.

The J& version has about 200 lines. There are only three sharing declara-

tions, shown in Figure 4.20, and they are all between families. None of the 12

183

class declarations in the J&s version that were needed for declaring sharing are

necessary, making the code simpler and more scalable. For example, the decla-

ration of sumpair is reduced to just one line:

class sumpair extends pair shares sum { }

All the masked types and sharing constraints from the J&s version are also re-

moved.

Although it is only declared explicitly to share with sum, sumpair also

shares with pair and base, because of transitivity. It is equivalent to declare

sumpair to share with pair, or even with base in a more “symmetric” decla-

ration:

class sumpair extends pair & sum shares base { }

The comparison shows that homogeneous sharing is simpler and more scal-

able, and has a lower annotation burden. The annotation burden is low even

in an absolute sense given what is achieved. Therefore, homogeneous sharing

seems more likely to be adopted by ordinary programmers.

184

CHAPTER 5

EFFICIENT IMPLEMENTATION OF FAMILY EXTENSIBILITY AND

CLASS SHARING

Besides improved expressiveness, provable type-safety, and accessible syntax,

a good implementation is also important for the success of a new language de-

sign. First of all, we would like the target code generated by the compiler to

have a good performance. Therefore, programmers are not paying too much

run-time overhead for the benefits of the new language. Another less obvious,

but also important issue is the performance of the compiler itself. There is a

generally higher tolerance for the running time of a compiler, but nevertheless,

it should have an acceptable performance. Moreover, in order to compile large-

scale software systems, the compiler should be scalable: the compilation time is

proportional to the size of the source code.

All the implementations presented in this chapter are source-to-source trans-

lation to Java, and are implemented in Java using the Polyglot compiler frame-

work [57]. When the target language is Java, the primary challenge for im-

proving run-time performance is the simulation of multiple inheritance—either

implicit as the result of family inheritance, or explicit as introduced by the J&

language—with single inheritance in Java. The compiler and the runtime sys-

tem have to explicitly route method calls to their correct implementations, and

field accesses to correct containing objects. For example, with declarations in the

following J& code, the class A2.B2 inherits from both A1.B2 and A2.B1, either

of which could be the target of a method dispatch: calling m1 on an instance

of A2.B2 would dispatch to the implementation in A1.B2, and calling m2 on

the same object would dispatch to the implementation in A2.B1. The dispatch

185

cannot directly use mechanisms in Java; either compiler generated code or the

runtime system has to figure out where to route a call.

class A1 {

class B1 { }

class B2 extends B1 {

void m1() { ... }

}

}

class A2 extends A1 {

class B1 {

void m2() { ... }

}

}

Operations like method calls and field accesses are fairly common in object-

oriented languages, and highly optimized in most modern compilers and run-

time systems. Therefore, our implementations need to do a good job on them as

well in order to achieve a good performance.

On the other hand, the main challenge for making the J& compiler scalable

is how to deal with implicit classes, which are inherited by a derived family,

and which do not have any source code. Extensible software systems written

in the J& language usually have a large number of implicit classes. Therefore,

the compiler, especially the code generation phase, should do little work on any

implicit class, in order to be scalable.

Previous work [56, 58] presents two implementations for family inheritance,

which are summarized in Section 5.1. The first implementation in [56] pro-

186

duces target code that has acceptable performance, but the compilation is not

scalable—for an extensible software system like the Polyglot compiler frame-

work, which has many implicit classes in the extensions, the time and space

required by the compiler becomes unacceptable. The second implementation

in [58] supports scalable compilation, but uses complicated run-time data struc-

tures for method dispatching, field accesses, etc., and therefore has poor run-

time performance.

This chapter describes a new kind of implementation for family inheritance,

which is based on the Java classloader. A custom classloader is included in the

run-time system to synthesize code for implicit classes. This implementation

achieves the best run-time performance and the best compiler scalability among

all the existing J& implementations. Extensions for supporting heterogeneous

and homogeneous sharing are also presented in this chapter.

One of the benefits of a classloader-based implementation, compared to

building a new virtual machine from scratch (e.g., as in [?]), is that the class-

loader can be easily used with most existing Java VMs, which are ubiquitously

deployed nowadays. The performance results in Section 5.4 show that the

classloader-based implementation has low run-time overhead.

5.1 Background on implementing family inheritance

This section reviews the two implementations presented in previous work [56,

58]. The first compiler appears in [56], and translates Jx to Java. This section

presents the extended version that translates the original J& language (without

family sharing) to Java, the same as the second compiler [58]. The two compil-

187

ers share parsing and type-checking code. They only differ in their translation

strategies, especially for implicit classes.

The first translation is static, generating code for all the J& classes, either ex-

plicit or implicit. For each J& class, the compiler collects all the fields, finds the

target for dispatching each method, and includes all the information in the tar-

get Java code. The run-time performance is acceptable, but an excessive amount

of code is produced for software with many implicit classes, making the com-

piler slow and unscalable. Although the static translation is not scalable, it does

not duplicate code; each method implementation in the source code is type-

checked only once and translated into one copy of target code.

The second translation generates no code for implicit classes; the runtime

system uses data structures like hashtables to store object fields and to record

how methods should be dispatched. Finding the right target to dispatch a

method takes some time at run time, and more importantly, method calls and

field accesses involve extra operations like hashtable lookups that are expen-

sive. Thus the run-time overhead of this dynamic strategy is very high. The

main advantage is that the translation is scalable, generating code that is pro-

portional to the size of the source code, and the compiler handles large software

systems more gracefully, especially when there are a lot of implicit classes.

5.1.1 Static translation

The compiler of the original J& language (without sharing) is a 27-kLOC (lines

of code, excluding blank lines, comments, and automatically generated parser

code) extension of the Polyglot base compiler. As most of the code for dispatch-

188

instance
interface

class
interface

instance
class

class
class

getClass

newThis

Figure 5.1: Static class translation

ing methods, accessing fields, and checking type information at run time is gen-

erated statically, the runtime support is minimal, and has only 250 LOC.

Translating classes. As shown in Figure 5.1, each J& class is represented by

four classes: an instance class, an instance interface, a class class, and a class inter-

face. The instance interface is traditionally called the method interface, because it

contains the translated signatures of all the instance methods and field getters

and setters. The class interface is also called the static interface, which contains

code for run-time type inspection, as well as the translated signatures for static

methods.

All these classes and interfaces are generated for every J& class, including

implicit classes. This makes the translation purely static, and not scalable.

References to a J& class or interface T are translated to references to T ’s in-

stance interface. Inheritance between instance interfaces captures multiple in-

heritance relationships between their J& classes. Dependent types, prefix types,

and static virtual types are translated to the instance interface of their most pre-

cise statically known non-dependent supertype.

At run time, an object of the J& class T is represented as a single object of

the instance class, which implements the instance interface. The instance class

189

contains all the instance fields and their accessors. The instance class contains

no real implementation for any method, which is in the class class.

Each J& class T has a singleton class class object at run time. The instance

class contains a reference to its class class singleton, and a getClass method

for getting the singleton. Static methods of T are translated to instance methods

of the class class. Instance methods of T are first converted to static methods

by adding an additional self parameter that contains the receiver object, and

then handled just as static methods. The class class also provides functions for

accessing run-time type information for implementing instanceof and casts,

for constructing instances of the class, for computing prefixes, and for accessing

virtual types.

The class class of T implements the class interfaces of all the supertypes of T .

It contains signatures for all static methods, and also a factory method, named

newThis, for each constructor.

Methhod dispatching. In the J& language, as in Java, instance methods are

dispatched on the receiver object. Since every class, including implicit ones,

is translated statically, the compiler can find the right target to dispatch each

method call at compile time.

For an instance method m of a J& class T , a static version m static is gen-

erated in the class class of T . If T contains a declaration for m, the method

m static would contain the translated method body, and if T just inherits m

without overriding it, m static will be just a one-line method to dispatch the

call to the class class that contains the last overriding implementation of m. The

instance class of T also contains a one-line method for each instance method of

190

T , which simply calls the static version in the class class of T .

Static methods become instance methods of class classes in the target code.

Therefore, we only need to find the class class singleton object corresponding to

the receiver type of the static method call. However, the receiver type might be

dependent, e.g., T[this.class].C.m(), in which case the runtime system

would first get the class class singleton of the instance class object stored in

self, then compute the prefix type, get the nested class class C, and finally call

the translated static method m.

Translating packages. To support package inheritance and composition, the

representation of a J& package includes a package interface and a package class,

analogous to the class interface and the class class. Packages have no instance

classes or instance interfaces.

Java compatibility. To leverage existing software and libraries, J& classes can

inherit from Java classes. The compiler ensures that every J& class has exactly

one most specific Java superclass, and an overriding class in a derived family

never changes the most specific Java superclass. Therefore, incompatible Java

classes are never intersected.

The static translation is currently unable to correctly handle super construc-

tor calls to non-default Java constructors. A correct implementation is included

in the classloader-based translation in Section 5.2.

191

5.1.2 Dynamic representation with data structures

The compiler is a 7-kLOC extension of the one that implements static transla-

tion. The runtime system is now responsible for computing and maintaining

information like the target for every method dispatch, and therefore becomes

larger: it has 1300 LOC.

The basic scheme of class and package translation is the same as the static

translation in Section 5.1.1. There are also instance interfaces, instance classes,

class interfaces, and class classes for J& classes, and package interfaces and

package classes for J& packages. These classes and interfaces also contain simi-

lar things as described in Section 5.1.1. However, none of these classes are gener-

ated for implicit or intersection classes and packages. Each explicit J& class also

has a subobject class in the target code, for storing instance fields, and instance

classes no longer contain fields. An instance of an explicit class is represented

as an object of its own instance class, and an implicit or intersection class is rep-

resented as the instance class of one of its explicit superclasses. Statically, every

J& object is referenced through a special interface JetInstance, implemented

by every instance class. The dynamic implementation also provides the same

level of Java compatibility as the static translation.

Subobject classes and field accesses. An instance class of a J& class T in this

translation no longer contains any instance fields; it becomes a container of sub-

objects, each for an explicit superclass of T , including T itself if it is explicit. The

subobject class of a superclass T ′ contains all instance fields declared in T ′; it

does not contain fields inherited into T ′. The instance class maintains a map

from each explicit superclass of T to the subobject for that superclass. The static

192

view method in the subobject class implements the map lookup function for

that particular subobject.

To get or set a field of an object, the view method is used to lookup the

subobject for the superclass that declares the field. The field can then be ac-

cessed directly from the subobject. There are no field accessors in the gener-

ated code. For example, a field access x.f in J& source code is translated to

C$ext.view(x).f, where C$ext is the subobject class of C that declares the

field f.

Class classes and method dispatch. A class class declaration is created for

each explicit J& class. For an implicit class T , the class class is the runtime sys-

tem class JetClass; the instance of JetClass contains a reference to the class

class object of each immediate superclass of T . The class class provides similar

functionality to that described in Section 5.1.1.

All methods, including static methods, are translated to instance methods

of the class class. Each method has a single-method interface nested in the in-

stance interface of the J& class that first introduces the method. The class class

implements the corresponding single-method interfaces for all methods that it

declares or overrides. The class class of the J& class that introduces a method

m also contains a method named m$disp, responsible for method dispatching.

The receiver and method arguments as well as a class class are passed into the

dispatch method. The class class argument is used to implement nonvirtual

super calls; for virtual calls, null is passed in and the receiver’s class class is

used.

Single-method interfaces allow us to generate code only for those methods

193

that appear in the source code of the corresponding J& class. Therefore, implicit

classes do not need to be translated.

Each virtual method call is translated into a call to the dispatch method,

which does a lookup to find the class class of the most specific implementation.

The class class object is cast to the appropriate instance interface and then the

method implementation is invoked.

Allocation. A factory method in the class class is generated for each construc-

tor in the source class. The factory method for a J& class T first creates an in-

stance of the appropriate instance class, and then initializes the subobject map

for T ’s explicit superclasses, including T itself. Because constructors in J& can

be inherited and overridden, constructors are dispatched similarly to methods.

Initialization code in constructors and initializers are factored out into ini-

tialization methods in the class class and are invoked by the factory method. A

super constructor call is translated into a call to the appropriate initialization

method of the superclass’ class class.

Run-time type checking. When J& compiler does not generate code for im-

plicit J& classes, the generated code cannot mention instance classes or class

classes of implicit classes either, in order to be legitimate Java code. However,

the J& source code may use implicit classes just as their explicit counterparts,

e.g., in casts and instanceof expressions. The run-time type checking code

needs to be translated in an indirect way.

Although there are various kinds of run-time type checking expressions, and

one can check against not only fully-qualified types, but also prefix types, the

194

very basic operation underlying any run-time type checking is to check whether

P1 ≤ P2, where both P1 and P2 are fully-qualified classes. The algorithm for

isSubclass(P1, P2) is:

1. If P1 = P2, return true;

2. If P2 is a declared superclass of P1, return true;

3. If P1 = P′1.C and P2 = P′2.C, then return isSubclass(P′1, P
′
2);

4. For each declared superclass P of P1, if isSubclass(P, P2), return true;

5. Otherwise, return false.

Optimizations. The implementation described above has several perfor-

mance issues:

• A method dispatch involves a hashtable lookup to find the most specific

superclass of the receiver class that contains an implementation. This is

much slower than a normal method call in Java.

• A field access needs to lookup the subobject that contains the field. Again,

the hashtable lookup is much slower than a normal field access in Java.

• Every single J& object is represented by multiple objects at run time: an

instance class object and several subobjects. This slows down allocation

and garbage collection.

The implementation caches the result for each hashtable lookup, and there-

fore the overhead of hashtable lookup is avoided for a repeated method call or

195

field access. However, in a multi-threading setting, the caching code may re-

quire proper locking or thread-local data structures in order to be safe, which

might offset the performance benefit of caching.

To reduce the overhead of allocation and garbage collection, one simple opti-

mization is to not create subobjects for J& classes that do not introduce instance

fields. The instance class of explicit J& class T may also inline the subobjects.

These optimizations are not going to be implemented, because the classloader-

based translation is already available, solving most of these performance prob-

lems.

5.2 Classloader-based implementation of family inheritance

The classloader-based translation for nested inheritance and nested intersection

consists of a 4400-LOC compiler, as an extension of compiler described in Sec-

tion 5.1.2, and a 3400-LOC run-time system, most of which is a custom class-

loader, implemented using the ASM bytecode manipulation framework [9].

The key idea of the classloader-based translation is to cache the result of

the run-time search for the target class of a method dispatch or a field access

in bytecode synthesized by the classloader, rather than in hashtables as in Sec-

tion 5.1.2. Therefore, there is no complicated data structure to maintain, and no

costly hashtable lookup at run time.

196

Andrew Myers

Andrew Myers

instance
interface

class
interface

instance
class

class
class

getClass

constructor
interface

constructor
class

getCtorCls

ctor_disp

Java
constructor
interface

Figure 5.2: Updated class representation

5.2.1 Compiler translation

Translating classes. The compiler translation is scalable, that is, no target code

is generated for implicit classes, as in Section 5.1.2. However, for each explicit

J& class, the generated code is more similar to the static translation described in

Section 5.1.1, without any single-method interface or any complicated run-time

data structure management code. Thus the classloader-based implementation

is not only scalable, but also generates smaller code than both implementations

in Section 5.1.

Each explicit J& class is represented by the several classes, shown in Fig-

ure 5.2. The scheme is similar to that in Figure 5.1, with three additional

classes—a Java constructor interface, a constructor interface, and a constructor

class—for handling super constructor calls to Java constructors and the refined

semantics of J& constructors.

Not every explicit class has a Java constructor interface; only those that di-

rectly inherit Java superclasses do.

Allocation. For a J& class T , the Java constructor interface contains translated

signatures for all the constructors of the most specific Java superclass of T . The

197

Andrew Myers

Andrew Myers
Andrew Myers - Jan 5, 2010 9:44 PM
scalable; that is,

class JavaClass {
JavaClass(int i) {...}

}

class JetClass extends JavaClass {
JetClass(int i) {

super(i); // A super constructor call.
}

}

Figure 5.3: An example with a Java constructor

instance class is a direct subclass of the most specific Java superclass—not a sub-

class of the instance class of any J& superclass of T—and therefore may call a

Java super constructor during construction. The right Java super constructor

call must be invoked at run time in order to correctly initialize those fields in-

herited from Java superclasses. For each constructor in the most specific Java

superclass of T , the instance class has a constructor that issues the correspond-

ing super constructor call, and the class class, which implements the Java con-

structor interface, has an instance creation method that calls that constructor in

the instance class.

This kind of translation is necessary because when a J& object is to be cre-

ated, we may only have a class class singleton, without knowing statically what

exactly the J& class is—the type in the new expression may be dependent.

For example, Figure 5.3 shows the source code of a Java class JavaClass,

and its J& subclass JetClass. The Java class has a non-default construc-

tor that takes an integer parameter. The constructor of the J& class invokes

that super constructor of the Java class. Figure 5.4 illustrates the translated

code of JetClass that is related to object allocation: the Java constructor in-

terface JetClass jctor, the class class JetClass class, and the instance

198

Andrew Myers

interface JetClass_jctor {
JetInstance newInstance(int i);

}
class JetClass_class implements JetClass_jtor, ... {

JetInstance newInstance(int i) {
return new JetClass_inst(int i);

}
}
class JetClass_inst extends JavaClass implements JetInstance, ... {

JetClass_inst(int i) {
super(i);

}
}

Figure 5.4: Illustration of translation of code in Figure 5.3. Name mangling not
shown for clarity.

class JetClass inst. JetInstance is an interface that is part of the run-

time system, and it is implemented by every instance class. As in the dyn-

maic translation in Section 5.1.2, every J& object is statically referenced through

JetInstance.

In the latest implementation of the J& language, constructors may only be

inherited and overridden by classes that are further bound in a derived family.

Thus constructors are inherited and dispatched in a way different from normal

methods, so additional constructor interfaces and constructor classes are gener-

ated to contain the translated signatures and code of the J& constructors.

Method dispatching. For each method declaration in a J& class T , which has

to be explicit, a corresponding instance method is generated in the class class of

T , with the translated method body. The class interface also contains the signa-

ture for the translated method. For every subclass T ′ of T , its class class would

implement a dispatch method of the same signature, which calls the correct im-

plementation from one of the superclasses of T ′. If T ′ is explicit, the dispatch

199

Andrew Myers
Andrew Myers - Jan 5, 2010 9:46 PM
what has to be explicit? ambiguous.

method is generated by the compiler; if T ′ is implicit, the dispatch method will

be generated by the classloader. The compiler also makes use of inheritance

between class classes to reduce the number of generated dispatch methods.

When a method m is invoked, the class class of the receiver might be an im-

plicit class, but the generated code can only mention explicit classes. Therefore,

the receiver class class needs to be cast to the class interface corresponding to the

J& class T that first introduces the exact form of the invoked method m, that is,

m in T must have the same signature, including the return type and exceptions,

as the statically known invoked method.

5.2.2 Classloader-based run-time system

The J& run-time system primarily consists of three parts: superclasses and super

interfaces of the classes and interfaces generated by the compiler, a classloader

JetClassLoader, and several utility classes.

Base classes and interfaces. As shown in Figure 5.2, a J& class is trans-

lated to three classes: a class class, an instance class, and a constructor

class. JetClassInfo is the common superclass of all the class classes, and

JetCtorClass is the common superclass of all the constructor classes. The

run-time system does not have a common superclass for instance classes, but

only a common super interface JetInstance, because instance classes may in-

herit from their Java superclasses. There is also a superclass JetPackageInfo

for all the package classes.

The superclasses implement several functionalities that are common to all

200

J& classes, e.g., run-time type inspection (casts and instanceof), evaluation

of prefix types, and computation of fully qualified names for various kinds of

classes as in Figure 5.2.

Classloader. The basic functionality that a classloader needs to implement is

the loadClass method, which takes a fully qualified class name, and returns a

java.lang.Class object that represents the class. The classloader also main-

tains a HashMap to store classes that have been loaded or synthesized, so that it

does not generate one class twice. For a class name not already in the HashMap,

JetClassLoader first checks whether it is a system class, or a class that be-

longs to the J& run-time system, and if so, it delegates to the system classloader

to load the class. Then it checks whether the class can be found from the disk,

i.e., whether it is generated from an explicit J& class, and load it if that is the

case. If neither of the above two cases holds, it is probably an implicit J& class,

and the classloader will try to synthesize it. There are various kinds of classes

that the classloader synthesizes, and the most important and complicated ones

and instance classes and class classes.

• Synthesis of instance classes.

The synthesized instance class is similar to that described in Section 5.1.1:

it collects field declarations from all the superclasses, and includes acces-

sors for them. When the instance class of an implicit J& class T is synthe-

sized, the classloader JetClassLoader iterates through instance classes

of all the explicit superclasses of T , finds each field declaration that has not

been collected, and generates the declaration, together with the accessor

methods. Iteration of superclasses requires the class class, and therefore

201

Andrew Myers
Andrew Myers - Jan 5, 2010 9:47 PM
does not parse

synthesis of an instance class always first triggers the synthesis of the cor-

responding class class.

• Synthesis of class classes.

One of the most difficult parts to deal with in the synthesis of implicit

classes is circular dependencies. As mentioned above, the synthesis of

the instance class depends on that of the class class. On the other hand,

the code of the class class mentions the instance class as well, e.g., in the

newInstance method (Figure 5.4). To avoid circular dependencies, the

J& classloader synthesizes the class class of an implict class T in two steps:

first, it generates a class class for T that is basically a placeholder only

containing information for iteration of the superclasses of T , which meets

the requirements of synthesizing the instance class; second, the static ini-

tializer of the placeholder class class calls back the classloader to finish

the rest of the synthesis (newInstance methods, dispatch methods, etc.),

and to replace the class class singleton object for T with the updated one.

5.2.3 Load-time optimizations

Not only can the classloader synthesize implicit classes, but it can also rewrite

explicit classes when they are loaded. The classloader-based implementation

enables several load-time optimizations:

• Dependent types in J& cannot be completely evaluated at compile time.

However, most of the dependent types in a typical J& program are de-

pendent on this.class, and therefore may be pre-computed when each

class class object is loaded and initialized. This kind of per-class dependent

202

Andrew Myers

Andrew Myers

Andrew Myers
Andrew Myers - Jan 5, 2010 9:48 PM
The classloader can not only synthesize...

type pre-computing is important for the performance of J& programs with a

lot of dependent types.

• When the J& source code mentions an implicit non-dependent class, the

compiler generates a special form of ldc (load constant) instruction,

which is rewritten by the classloader to a direct reference of some appro-

priate generated class of that implicit J& class.

• Each class class of T is rewritten to implement the static interface of ev-

ery superclass of T , either explicit or implicit. Therefore, the complicated

isSubclass algorithm in Section 5.1.2 is reduced to just an instanceof

operation in the loaded bytecode. Therefore run-time type checking in the

classloader-based implementation has almost no overhead compared to

Java.

• The compiler generates hints that make the classloader insert the dup in-

struction, when a method call has two consecutive parameters that are the

same. This is often the case in translated method calls, where the dup

instruction is very efficient and convenient.

• Certain interface casts on method receivers can be removed in the byte-

code but not in the Java source code. The classloader removes these casts

to make the loaded program run faster.

5.2.4 Java compatiblity

The classloader-based J& implementation is backward compatible with Java. It

also supports several features that were not present in previous implementa-

tions:

203

Andrew Myers

Andrew Myers
Andrew Myers - Jan 5, 2010 9:48 PM
precomputation

• With Java constructor interfaces (Figure 5.2), J& classes may inherit any

Java class, and invoke non-default super constructors correctly.

• Non-static inner classes are supported. They can also be inherited and

overridden just as static nested classes.

On the other hand, inheritance of a Java family is not supported yet. The

proposed more efficient implementation (Section 5.5) will support that. Inte-

gration with Java generics seems to be straightforward, but has not been done

yet.

5.3 Implementing sharing

We have implemented prototype compilers for heterogeneous and homoge-

neous sharing, as Polyglot extensions based on the classloader-based implemen-

tation, presented in Section 5.2. The heterogeneous sharing implementation has

a 5400-LOC compiler and a 4200-LOC run-time system, and the homogeneous

sharing implementation has a 3900-LOC compiler and a 4400-LOC run-time sys-

tem.

The core idea of sharing is that one object may be an instance of several

shared classes, and every reference to the object could have a different view,

which is one of the shared classes. Therefore, both implementations have simi-

lar translation and run-time support for views and view changes.

Heterogeneous sharing requires masked types and sharing constraints for

type safety, and therefore has a more complicated type system. Homogeneous

204

Andrew Myers

Andrew Myers

Andrew Myers
Andrew Myers - Jan 5, 2010 9:49 PM
would

sharing has a much simpler type system, but the run-time system needs to sup-

port shadow classes.

5.3.1 Translating classes

Classes are still translated basically in the same way as described in Section 5.2

and shown in Figure 5.2. For each explicit J& class, the compiler generates an

instance class, a class class, and a constructor class, together with several inter-

faces. For each implicit J& class, the classloader will synthesize those classes at

load time.

The main difference for sharing is that all the shared classes have the same

set of object instances. Therefore, the classloader maintains a representative in-

stance class for each set of shared classes. At run time, objects of all these shared

classes are created as instances of the representative instance class. When a new

shared class that contains more object fields is loaded, the classloader updates

the representative instance class to include the new fields. All the existing ob-

jects of the old representative instance class will be lazily converted to the most

up-to-date representative instance class. The conversion works because objects

of instance classes are referenced indirectly, as described in Section 5.3.2.

5.3.2 Supporting views and view changes

Reference objects. The sharing implementation adds a level to indirection to

enable different references to the same object to have different views. Each ob-

ject is referenced indirectly through a reference object, containing two fields: one

205

Andrew Myers

Andrew Myers

Andrew Myers
Andrew Myers - Jan 5, 2010 9:50 PM
With sharing, ...

Andrew Myers
Andrew Myers - Jan 5, 2010 9:50 PM
synthesizes

points to the instance class object; and the other points to a class class object,

which is the view associated with the reference. Reference objects are imple-

mented with the JetRefObject class in the run-time system.

The behavior of the object is determined by the view. Method calls are dis-

patched on the views, and run-time type checking is also based on the views.

A view change operation (view T)e is translated to generating a new reference

object with the same instance class object, and a view compatible with T . The

implementation memoizes the result to the most recent view change operation

on any reference object, to avoid repeatedly generating the same reference ob-

ject.

An object might obtain a new view implicitly. Moving an object from one

family to another would implicitly move all the other objects that are transi-

tively reachable through shared fields (unmasked fields in heterogeneous shar-

ing, or all the fields in homogeneous sharing). Implicit view changes are carried

out lazily, only at the time when objects are accessed through fields.

Colocation of instances and views. A separate reference object adds some

overhead for accessing members of an object, and slows down object cre-

ation, because there are two objects to create for each new expression, in-

stead of just one. The compiler optimizes the case by making the instance

class inherit JetRefObject when there is no Java superclass other than

java.lang.Object. With the colocation, the instance object becomes its own

reference object, and there is no need to create a separate object at instantiation.

206

Andrew Myers

Andrew Myers
Andrew Myers - Jan 5, 2010 9:51 PM
this

Optimization of field accesses. As described in Section 3.1.3 and Section 4.2.2,

field accesses in both heterogeneous sharing and homogeneous sharing may

trigger implicit view changes. However, not every field has to have a view

change, and some of them may be accessed directly without breaking type-

safety.

There are a couple of cases where a field access does not need an implicit

view change:

• The field is not declared with a dependent type. Then the type of the field

does not depend on the view of the container object, and therefore implicit

view changes are not necessary.

• The field is used at a place where the exact view is not important. For

example, in an expression x.f.g, the field access x.f may not need an

implicit view change, as long as the second field g is declared in a class that

does not have a shared superclass. Another example is when an explicit

view change is applied to a field access.

5.3.3 Implementing heterogeneous class sharing

Type checking. Because of masks, the J&s language has a flow-sensitive type

system. Every method is checked in two phases. The first phae is flow-

insensitive, ignoring masks, and generates typing information necessary for

building the control-flow graph. The second phase is essentially an intraproce-

dural data-flow analysis, which computes a type binding, possibly with masks,

for each local variable (including this) at every program point.

207

View changes in heterogeneous sharing need to be type-checked in scopes

of corresponding sharing constraints. When a method is inherited into a new

family, the compiler checks whether each of its declared sharing constraints still

holds, by enumerating all the subclasses of the two types mentioned in each

constaint. If any of the constraints is no longer valid, the method needs to be

overridden.

Duplicate fields. In heterogeneous sharing, shared classes do not necessar-

ily share all their fields. As described in Section 3.2, new fields introduced

in derived shared classes and fields with unshared types are not shared, and

are masked in the sharing relationships. An unshared field may have multiple

copies in the object, each for a shared view. The compiler generates information

on masked fields in the target code, and the run-time system includes all the

copies of an unshared field in the representative instance class.

When an unshared field is accessed, the view of the receiver object decides

which copy of the field is actually used. Therefore, field accessors are imple-

mented in class classes, rather than instance classes. To avoid implementing

another set of field accessors in instance classes, the classloader linearizes the in-

stance classes of all the classes in each set of shared classes: each instance class,

upon loading, is rewritten by the classloader to inherit the most recent repre-

sentative instance class in the set of shared classes that are already loaded, and

becomes the new representative instance class. Therefore, a field accessor in the

class class of J&s class T can access the field in the representative instance class

by first casting it to the instance class of T , and then directly access the field.

The linearization works because each class may declare at most one shared base

class, and therefore it is impossible to join two nontrivial sets of shared classes

208

at run time.

Although linearization helps improve the performance of field accesses in

the J&s implementation, there is still some overhead. Homogeneous sharing

does not have the problem.

5.3.4 Implementing homogeneous family sharing

Type checking. Type checking of homogeneous sharing is similar to that in

the original J& compiler, without the complication of flow-sensitivity or enu-

meration of subclasses as in the case of heterogeneous sharing.

The type system needs to prove sharing relationships between types, in

order to type-check view change operations. It collects sharing relationships

from sharing declarations, recursively establishes sharing relationships to all

the known nested classes and packages, and takes the reflexive, symmetric, and

transitive closure to form the sharing relation. The relation is then used to type-

check view changes. Type checking is modular and sound, and also conserva-

tive, because a true sharing relationship might not be recognized by the type

system if it requires knowing the declarations in some derived familiy that has

not been checked yet. In that case, the programmer must break a complex view

change operation into multiple view changes that take smaller stpes. This ar-

guably has some documentation value.

Shadow classes. Translation in the compiler of the J& language with homoge-

neous sharing is still scalable, in the sense that the amount of code generated by

the compiler is proportional to the size of the source code. Therefore, no Java

209

target code is produced for shadow classes. Instead, this is done lazily at run

time.

When a nested class is loaded at run time, the classloader in the run-time

system checks whether it is an originating class. If so, code for a shadow class

is synthesized in each base family that is shared with the originating family.

The implementation does not copy shadow-method code into shadow classes,

but only generates one-line dispatch methods that call corresponding shadow

methods declared in the originating class.

Recall from Section 4.2.3 that shadow classes are named specially in the

source code, with the name of the originating class embedded in the syntax.

For each explicit occurrence of a shadow class, the compiler generates code that

calls the run-time system to load the originating class, triggering run-time syn-

thesis of the shadow class. This is necessary, because the shadow class is de-

clared by a derived family, which might not have been loaded when the base

family mentions the shadow class.

Field accesses. As described in Section 5.3.3, an unshared field in heteroge-

neous sharing has multiple copies, each for a view of the containing object, and

field accesses depend on views.

With homogeneous sharing, every field is shared, and there is only one copy

to access regardless of the view. Therefore, field accessors can be implemented

in instance classes where corresponding fields are stored. This makes field ac-

cesses faster in homogeneous sharing.

210

cast view
change

virtual
call

static
call

field
read

field
write

allo-
cation

J&s 2.81 17.6 10.3 1.09 5.92 5.31 26.1
J& 3.12 18.3 9.26 1.09 3.13 2.97 26.3

Table 5.1: Microbenchmarks: average time per operation, in ns.

5.4 Results

This section shows some performance results for the classloader-based imple-

mentations of heterogeneous class sharing and homogeneous family sharing.

5.4.1 Microbenchmarks for sharing

We first compare the performance of the current J& implementation against J&s,

using some microbenchmarks to measure individual object operations. Every

microbenchmark runs one operation 108 times in a loop. Table 5.1 shows the

results. The testing hardware is a Thinkpad X200 with Intel L9400 CPU and 2GB

memory, and the software environment consists of Windows Vista, Cygwin, and

JVM 1.6.0 13.

The results confirm that object operations in the implementations of J&s and

J& have similar performance, but field accesses with homogeneous sharing are

almost twice as fast as J&s field accesses. With homogeneous sharing, field ac-

cesses are no longer view-dependent, and therefore accessor methods can be

implemented in the same class where fields are located.

The current implementations of both J&s and J& still introduce noticeable

performance overhead compared to Java, because of more complex subtyping

relationships, indirections through reference objects, and the translation of field

211

bh bisort em3d health mst perimeter power treeadd tsp voronoi

Java 1.74 0.53 0.17 0.41 0.88 0.22 1.00 0.14 0.12 0.31
J& [58] 13.91 1.77 0.48 8.45 4.43 2.82 2.43 2.20 0.37 7.19
J& with 2.02 0.71 0.22 0.71 1.06 0.39 1.14 0.21 0.16 0.59
classloader
J&s 2.61 0.88 0.23 1.61 1.54 0.47 1.27 0.45 0.17 0.83
J& (JHS) 2.42 0.80 0.23 1.54 1.51 0.44 1.16 0.44 0.16 0.69

Table 5.2: Results for the jolden benchmarks. Average time over ten runs, in
seconds.

accesses into accessor method calls. The overhead for larger programs is less

than these microbenchmarks might suggest, because object operations account

for only part of the execution time. In prior work [65], we present ideas for

performance improvements, which should apply to the J& implementation as

well.

5.4.2 Jolden benchmarks

We tested the J&s and the J& implementations with the jolden benchmarks [?] to

study the performance overhead for code that does not use the new extensibil-

ity features of class sharing. All ten benchmarks, with few changes, are tested

with five language implementations: Java, J& as described in [58], J& without

sharing as described in Section 5.2, J&s with heterogeneous sharing, and the

new version of J& with homogeneous family sharing. Table 5.2 compares the

results. The testing hardware is a Lenovo Thinkpad T60 with Intel T2600 CPU

and 2GB memory, and the software environment consists of Microsoft Windows

XP, Cygwin, and JVM 1.6.0 07.

Table 5.2 shows that the use of a custom classloader greatly improves the

performance, comparing the two implementations of J& (without class shar-

212

ing). Unsurprisingly, nested inheritance/intersection and class sharing do in-

troduce overhead. With the custom classloader, the performance overhead of

supporting family inheritance is 42% compared to the highly optimized Java

HotSpot VM. The J&s times show a 37% slowdown versus the classloader-based

J& (without sharing) implementation, and 94% versus Java. On the other hand,

homogeneous sharing has a better performance compared to J&s: the two over-

head numbers drop to 28% and 82%. This is consistent with the microbench-

marking results shown in Section 5.4.1.

The overhead seems reasonable, especially considering that the current im-

plementation works as a source-to-source translation to Java, precluding many

optimizations and implementation techniques. We expect that a more sophisti-

cated implementation could remove much of the overhead.

Running programs in J&s or J& have the latent capability to be extended in

many ways, so it is not surprising that there is some performance cost. But it

seems software designers are often willing to pay a cost for extensibility, because

they often add indirections and use design patterns that promote extensibility

but have run-time overhead. We believe that J&s and J& remove the need for

many such explicit extensibility hooks, while making code simpler. For systems

where extensibility is more important than high performance [79], the existing

implementation may already be fast enough.

5.4.3 Tree traversal

The jolden benchmarks do not use the new features provided by J&s. To study

the performance of view changes, especially on large data structures, we wrote

213

Tree height 16 18 20
Tree creation 0.110 0.287 1.295
Traversal before view changes 0.008 0.027 0.105
View changes 0.125 0.367 1.303
Traversal after view changes 0.006 0.025 0.099
Explicit translation 0.145 0.622 1.669

Table 5.3: Comparing view changes with explicit translation. Average time over
ten runs, in seconds.

a small benchmark in which two families share classes that implement binary

trees. A complete binary tree of a given height is first created in the base family,

and an explicit view change is applied to the root of the tree. A depth-first

traversal is carried out to trigger all the lazy implicit view changes. The testing

environment is the same as in Section 5.4.2.

Table 5.3 summarizes the results. In-place adaptation, even with a traversal

that triggers all the implicit view changes, is faster than an explicit translation

that creates new objects in the derived family, and the running time is also close

to that of the initial creation of the tree. The fourth row shows that once the

implicit view changes are complete and the new reference objects have been

memoized, traversals execute as fast as a traversal before the view changes. This

benchmark does a complete traversal. Since view changes are lazily triggered,

the relative performance of adaptation would look even better if not all nodes

needed to be visited after adaptation.

5.5 More efficient implementation

As described in this chapter, the performance of the J& language has improved

significantly with various compile-time and run-time techniques, especially

214

the custom classloader. However, Section 5.4 shows that there is still a non-

negligible at best performance overhead compared to Java. Moreover, the per-

formance cost is paid upfront, even for programs that do not use the advanced

extensibility features provided by the J& language.

It is hard to implement efficiently, partly because the J& language is very

expressive: one class may have multiple explicit superclasses, every namespace

in a nesting hierarchy may define a family that can be inherited and further

bound, and any class may be shared. In a lot of cases, the expressive power

makes it impossible to direclty map constructs or operations of the J& language

to their counterparts in Java, which is the key to achieve good performance.

A possible strategy is to restrict the expressiveness for better performance.

We could have a “light” version of the J& language, with the following changes

in the semantics:

• No explicit multiple inheritance between classes. This corresponds better

to the Java semantics, and helps make field accesses and object construc-

tions more efficient. Of course, implicit inheritance from classes declared

in the base family and multiple inheritance between packages, which are

stateless, are still supported.

• Families are only defined by packages, not classes. This should not have

too much practical impact, as package inheritance is expected to be the

common use of family inheritance [56], which is also confirmed by our

experience with the J& language.

• Packages are exact by default. Therefore, a class, written in its normal way,

is not a subtype of the corresponding class in the base package. This fits

the Java semantics better. Additional syntax would be needed to indicate

215

that a package is not exact in a typename, which may then refer to objects

from derived families.

• Prefix types are desugared on the package-class boundary in a typename.

A J&-light type p.A is equivalent to p[this.class]!.A in the original

J& language.

With these changes, the default case in the J&-light language coincides with

Java. In fact, one can easily reinterpret existing Java code as J&-light code, solv-

ing a long-standing problem of inheriting from a Java “family”.

The implementation is still going to be based on classloader. When a fam-

ily nested in package p1 is inherited by a derived package p2, the classloader

will synthesize all the classes in p2 by copying code from p1, while basically

rewriting each occurrence of p1 to p2. Therefore, at least for the default case,

the J&-light language would have almost no performance overhead.

216

CHAPTER 6

CONCLUSIONS

The goal of this work is to help people build more reliable and extensible soft-

ware with a language-based approach. Building good software systems has al-

ways been a hard problem, especially when the systems are large and complex.

The complexity of a large software system mostly comes from that it consists of

many related components that are interacting in non-trivial ways, and therefore

an effective language mechanism needs to be able to handle relations between

components.

Masked types provide a strong safety guarantee for object initialization:

uninitialized fields are never read, and therefore eliminate a significant source

for reliability problems of software systems. Masked types are expressive

enough to support many useful initialization idioms that work with interact-

ing classes and objects, either through inheritance or mutual references. Meth-

ods and constructors explicitly express their initialization contracts through ef-

fects, which enable modular type checking even with inheritance. Conditional

masks track dependencies between initialization states of mutually referencing

objects, and support safe construction of cyclic data structures. These features

make masked types applicable to large software with complicated inter-class

relationships. Moreover, masked types has a low annotation burden because of

its effective default annotations, and little requirement on reasoning about alias-

ing, making it even more suitable for realistic software systems, as confirmed by

our experiences with the J\mask language.

Class sharing is the first language mechanism that combines the advantages

of both family inheritance and adaptation, addressing the two important limita-

217

tions of normal inheritance for supporting code reuse in large software systems.

With class sharing, a family of interacting classes may be inherited together,

preserving the relationships, with some of the classes selectively being shared

between the base and the derived families. Class sharing supports new capa-

bilities such as family adaptation, dynamic object evolution, and in-place trans-

lation. These capabilities are supported by a variety of mechanisms: dynamic

views typed with dependent types statically track the families of values; shar-

ing constraints support modular type checking of view changes; masked types

ensure shared and unshared classes can be mixed safely. The resulting language

is proved sound, and the expressiveness is demonstrated with realistic software

examples.

Family sharing develops from class sharing, aiming to solve a major pain

point of class sharing, that is, the code complexity and annotation burden intro-

duced by language mechanisms designed for type safety. Family sharing gen-

eralizes class sharing to operate at the level of families, in a way similar to how

nested inheritance generalizes ordinary class inheritance. New mechanisms like

shadow classes enable a derived family to safely and homogeneously share with

a base family, while still extending the base family with new classes. Shadow

classes also make families open, and provide new kinds of extensibility. Family

sharing avoids complicated language mechanisms like masked types and shar-

ing constraints, which are needed by class sharing. Therefore code written with

family sharing may be simpler, easier to reason about, and more accessible to

programmers, while still providing the expressive power required for extending

and reusing components in large-scale software systems.

218

A language design is never complete without a real working implementa-

tion. The dissertation presents how to implement family inheritance and the

two sharing mechanisms in an efficient and scalable way. The implementation

is based on the Polyglot compiler framework, with Java as its target language.

The run-time system includes a custom classloader, which synthesizes implicit

classes on-demand at load time, therefore making the size of the target code

proportional to that of the source code, without incurring a large performance

overhead at run time. Sharing is implemented through one level of indirection.

This dissertation presents design and implementation of language-based

mechanisms that would make large-scale software systems more reliable and

extensible, while preserving type safety and practicality. I expect programming

languages to evolve continuously to better help programmers build safer, more

scalable, more extensible, and possibly larger software systems.

219

BIBLIOGRAPHY

[1] Ivica Aracic, Vaidas Gasiunas, Mira Mezini, and Klaus Ostermann. An
overview of CaesarJ. In Awais Rashid and Mehmet Aksit, editors, Lecture
Notes in Computer Science: Transactions on Aspect-Oriented Software Develop-
ment I, pages 135–173. Springer-Verlag, 2006.

[2] Miles Barr and Susan Eisenbach. Safe upgrading without restarting. In
Proceedings of 19th International Conference on Software Maintenance (ICSM),
pages 129–137, 2003.

[3] Alexandre Bergel, Stéphane Ducasse, and Oscar Nierstrasz. Classbox/J:
Controlling the scope of change in Java. In Proc. 20th ACM Conference
on Object-Oriented Programming Systems, Languages and Applications (OOP-
SLA), pages 177–189, San Diego, CA, USA, October 2005.

[4] Kevin Bierhoff and Jonathan Aldrich. Modular typestate checking of
aliased objects. In Proc. 22nd ACM Conference on Object-Oriented Program-
ming Systems, Languages and Applications (OOPSLA), pages 301–320, Octo-
ber 2007.

[5] Gilad Bracha and William Cook. Mixin-based inheritance. In Norman
Meyrowitz, editor, Proc. 5th ACM Conference on Object-Oriented Program-
ming Systems, Languages and Applications (OOPSLA), pages 303–311, Ot-
tawa, Canada, 1990. ACM Press.

[6] Frederick P. Brooks. The Mythical Man-Month: Essays on Software Engineer-
ing. Addison-Wesley, 1978.

[7] Kim B. Bruce. Safe static type checking with systems of mutually recursive
classes and inheritance. Technical report, Pomona College, 1997. http:
//www.cs.pomona.edu/˜kim/ftp/RecJava.ps.gz.

[8] Kim B. Bruce, Martin Odersky, and Philip Wadler. A statically safe alterna-
tive to virtual types. In European Conference on Object-Oriented Programming
(ECOOP), number 1445 in Lecture Notes in Computer Science, pages 523–
549. Springer-Verlag, July 1998.

[9] Eric Bruneton, Romain Lenglet, and Thierry Coupaye. ASM: A code ma-
nipulation tool to implement adaptable systems, 2002. http://asm.
objectweb.org/current/asm-eng.pdf.

220

[10] Patrice Chalin and Perry James. Non-null references by default in Java:
Alleviating the nullity annotation burden. In Proceedings of the 21st European
Conference on Object-Oriented Programming, 2007.

[11] Sigmund Cherem and Radu Rugina. Maintaining doubly-linked list invari-
ants in shape analysis with local reasoning. In Verification, Model Checking,
and Abstract Interpretation, 8th International Conference (VMCAI 2007), Nice,
France, January 2007.

[12] Dave Clarke, Sophia Drossopoulou, James Noble, and Tobias Wrigstad.
Tribe: A simple virtual class calculus. In AOSD ’07: Proceedings of the 6th
International Conference on Aspect-Oriented Software Development, pages 121–
134, 2007.

[13] Curtis Clifton, Gary T. Leavens, Craig Chambers, and Todd Millstein. Mul-
tiJava: Modular open classes and symmetric multiple dispatch for Java.
In Proc. 15th ACM Conference on Object-Oriented Programming Systems, Lan-
guages and Applications (OOPSLA), pages 130–145, 2000.

[14] Adriana B. Compagnoni and Benjamin C. Pierce. Higher order intersection
types and multiple inheritance. Mathematical Structures in Computer Science,
6(5):469–501, 1996.

[15] Bruno C. d. S. Oliveira. Modular visitor components: A practical solution
to the expression families problem. In Proc. 23nd European Conference on
Object-Oriented Programming (ECOOP), July 2009.

[16] Ferruccio Damiani, Sophia Drossopoulou, and Paola Giannini. Refined
effects for unanticipated object re-classification: FickleIII. In ICTCS, pages
97–110, 2003.

[17] Robert DeLine and Manuel Fähndrich. Enforcing high-level protocols in
low-level software. In Proc. SIGPLAN 2001 Conference on Programming Lan-
guage Design and Implementation, pages 59–69, June 2001.

[18] Robert DeLine and Manuel Fähndrich. Typestates for objects. In
Proceedings of 18th European Conference on Object-Oriented Programming
(ECOOP’04), 2004.

[19] Dominic Duggan. Type-based hot swapping of running modules. Acta Inf.,
41(4):181–220, 2005.

221

[20] Torbjörn Ekman and Görel Hedin. Pluggable checking and inferencing of
non-null types for java. Journal of Object Technology, 6(9):455–475, October
2007.

[21] Erik Ernst. gbeta—a Language with Virtual Attributes, Block Structure, and
Propagating, Dynamic Inheritance. PhD thesis, Department of Computer Sci-
ence, University of Aarhus, rhus, Denmark, 1999.

[22] Erik Ernst. Family polymorphism. In Proc. 15th European Conference on
Object-Oriented Programming (ECOOP), LNCS 2072, pages 303–326, 2001.

[23] Erik Ernst. Higher-order hierarchies. In Proc. 17th European Confer-
ence on Object-Oriented Programming (ECOOP), volume 2743 of Lecture
Notes in Computer Science, pages 303–329, Heidelberg, Germany, July 2003.
Springer-Verlag.

[24] Erik Ernst, Klaus Ostermann, and William R. Cook. A virtual class calculus.
In Proc. 33rd ACM Symp. on Principles of Programming Languages (POPL),
pages 270–282, Charleston, South Carolina, January 2006.

[25] Manuel Fähndrich and K. Rustan M. Leino. Declaring and checking non-
null types in an object-oriented language. In Proc. 2003 ACM Conference
on Object-Oriented Programming Systems, Languages, and Applications (OOS-
PLA), pages 302–312, October 2003.

[26] Manuel Fähndrich and K. Rustan M. Leino. Heap monotonic typestate. In
Proceedings of the first International Workshop on Alias Confinement and Own-
ership (IWACO), July 2003.

[27] Manuel Fähndrich and Songtao Xia. Establishing object invariants with de-
layed types. In Proc. 22nd ACM Conference on Object-Oriented Programming
Systems, Languages and Applications (OOPSLA), October 2007.

[28] Stephen Fink, Eran Yahav, Nurit Dor, G. Ramalingam, and Emmanuel
Geay. Effective typestate verification in the presence of aliasing. In IS-
STA ’06: Proceedings of the 2006 international symposium on Software testing
and analysis, pages 133–144, 2006.

[29] Kathleen Fischer and John Reppy. The design of a class mechanism for
Moby. In Proc. SIGPLAN 1999 Conference on Programming Language Design
and Implementation, pages 37–49, 1999.

222

[30] Erich Gamma, Richard Helm, Ralph Johnson, and John Vlissides. Design
Patterns: Elements of Reusable Object-Oriented Software. Addison Wesley,
Reading, MA, 1994.

[31] James Gosling, Bill Joy, Guy Steele, and Gilad Bracha. The Java Language
Specification. Addison Wesley, 3rd edition, 2005. ISBN 0321246780.

[32] Stephan Herrmann. Object teams: Improving modularity for crosscutting
collaborations. In Proc. Net Object Days, 2002.

[33] David Hovemeyer and William Pugh. Finding bugs is easy. In OOPSLA ’04:
Companion to the 19th annual ACM SIGPLAN conference on Object-oriented
programming systems, languages, and applications, pages 132–136, 2004.

[34] David Hovemeyer, Jaime Spacco, and William Pugh. Evaluating and tun-
ing a static analysis to find null pointer bugs. In PASTE ’05: Proceedings of
the 6th ACM SIGPLAN-SIGSOFT workshop on Program analysis for software
tools and engineering, pages 13–19, 2005.

[35] Atsushi Igarashi and Benjamin Pierce. Foundations for virtual types.
In Proc. Thirteenth European Conference on Object-Oriented Programming
(ECOOP’99), number 1628 in Lecture Notes in Computer Science, pages
161–185. Springer-Verlag, June 1999.

[36] Atsushi Igarashi, Benjamin Pierce, and Philip Wadler. Featherweight Java:
A minimal core calculus for Java and GJ. ACM Transactions on Programming
Languages and Systems, 23(3):396–450, 2001.

[37] Atsushi Igarashi and Benjamin C. Pierce. On inner classes. In Informal
Proceedings of the Seventh International Workshop on Foundations of Object-
Oriented Languages (FOOL 7), Boston, MA, January 2000.

[38] Atsushi Igarashi and Mirko Viroli. Variant path types for scalable exten-
sibility. In Proc. 22nd ACM Conference on Object-Oriented Programming Sys-
tems, Languages and Applications (OOPSLA), pages 113–132, New York, NY,
USA, 2007. ACM.

[39] ECMA International. Eiffel analysis, design and programming language.
ECMA Standard 367, June 2005.

[40] Haskell 98: A non-strict, purely functional language, February 1999. Avail-
able at http://www.haskell.org/onlinereport/.

223

[41] Anita K. Jones and Barbara Liskov. A language extension for expressing
constraints on data access. Comm. of the ACM, 21(5):358–367, May 1978.

[42] JSR 308: Annotations on Java Types. Available at
http://groups.csail.mit.edu/pag/jsr308/.

[43] John Lamping. Typing the specialization interface. In Proc. 8th ACM Con-
ference on Object-Oriented Programming Systems, Languages and Applications
(OOPSLA), pages 201–214, October 1993.

[44] K. Rustan M. Leino. Data groups: specifying the modification of extended
state. In Proc. 13th ACM Conference on Object-Oriented Programming Systems,
Languages and Applications (OOPSLA), pages 144–153, 1998.

[45] B. Liskov et al. CLU reference manual. In Goos and Hartmanis, editors,
Lecture Notes in Computer Science, volume 114. Springer-Verlag, Berlin, 1981.

[46] B. Liskov and J. Guttag. Data abstraction. In Abstraction and Specification in
Program Development, chapter 4, pages 56–98. MIT Press and McGraw Hill,
1986.

[47] Barbara Liskov, Dorothy Curtis, Mark Day, Sanjay Ghemawat, Robert
Gruber, Paul Johnson, and Andrew C. Myers. Theta Reference Man-
ual. Programming Methodology Group Memo 88, MIT Laboratory
for Computer Science, Cambridge, MA, February 1994. Available at
http://www.pmg.lcs.mit.edu/papers/thetaref/.

[48] J. M. Lucassen and D. K. Gifford. Polymorphic effect systems. In Proc. 15th
ACM Symp. on Principles of Programming Languages (POPL), pages 47–57,
1988.

[49] David MacQueen. Modules for Standard ML. In Proc. 1984 ACM Sympo-
sium on Lisp and Functional Programming, pages 198–204, August 1984.

[50] O. Lehrmann Madsen, B. Møller-Pedersen, and K. Nygaard. Object Ori-
ented Programming in the BETA Programming Language. Addison-Wesley,
June 1993.

[51] Ole Lehrmann Madsen and Birger Møller-Pedersen. Virtual classes: A
powerful mechanism for object-oriented programming. In Proc. 4th ACM
Conference on Object-Oriented Programming Systems, Languages and Applica-
tions (OOPSLA), pages 397–406, October 1989.

224

[52] M. Mezini and K. Ostermann. Conquering aspects with Caesar. In Proc. 2nd
International Conference on Aspect-Oriented Software Development (AOSD),
pages 90–100, Boston, Massachusetts, March 2003.

[53] Mira Mezini, Linda Seiter, and Karl Lieberherr. Component integration
with pluggable composite adapters. Software Architectures and Component
Technology, 2000.

[54] Robin Milner, Mads Tofte, and Robert Harper. The Definition of Standard
ML. MIT Press, Cambridge, MA, 1990.

[55] Greg Morrisett, David Walker, Karl Crary, and Neal Glew. From System F
to typed assembly language. ACM Transactions on Programming Languages
and Systems, 21(3):528–569, May 1999.

[56] Nathaniel Nystrom, Stephen Chong, and Andrew C. Myers. Scalable ex-
tensibility via nested inheritance. In Proc. 19th ACM Conference on Object-
Oriented Programming Systems, Languages and Applications (OOPSLA), pages
99–115, October 2004.

[57] Nathaniel Nystrom, Michael R. Clarkson, and Andrew C. Myers. Poly-
glot: An extensible compiler framework for Java. In Proc. 12th International
Compiler Construction Conference (CC’03), pages 138–152, April 2003. LNCS
2622.

[58] Nathaniel Nystrom, Xin Qi, and Andrew C. Myers. J&: Nested intersection
for scalable software composition. In Proc. 21st ACM Conference on Object-
Oriented Programming Systems, Languages and Applications (OOPSLA), pages
21–36, October 2006.

[59] Nathaniel Nystrom, Xin Qi, and Andrew C. Myers. Nested intersection for
scalable software composition. Technical report, Computer Science Dept.,
Cornell University, September 2006. http://www.cs.cornell.edu/
nystrom/papers/jet-tr.pdf.

[60] Martin Odersky, Philippe Altherr, Vincent Cremet, Burak Emir, Sebas-
tian Maneth, Stéphane Micheloud, Nikolay Mihaylov, Michel Schinz, Erik
Stenman, and Matthias Zenger. An overview of the Scala program-
ming language, June 2004. http://scala.epfl.ch/docu/files/
ScalaOverview.pdf.

[61] Martin Odersky and Matthias Zenger. Scalable component abstractions.

225

In Proc. 20th ACM Conference on Object-Oriented Programming Systems, Lan-
guages and Applications (OOPSLA), pages 41–57, October 2005.

[62] Klaus Ostermann. Dynamically composable collaborations with delega-
tion layers. In Proc. 16th European Conference on Object-Oriented Program-
ming (ECOOP), volume 2374 of Lecture Notes in Computer Science, pages 89–
110, Málaga, Spain, 2002. Springer-Verlag.

[63] Xin Qi and Andrew C. Myers. Homogeneous family sharing. July 2009. In
submission.

[64] Xin Qi and Andrew C. Myers. Masked types for sound object initialization.
In Proc. 36th ACM Symp. on Principles of Programming Languages (POPL),
pages 53–65, January 2009.

[65] Xin Qi and Andrew C. Myers. Sharing classes between families. In Proc.
SIGPLAN 2009 Conference on Programming Language Design and Implementa-
tion, pages 281–292, 2009.

[66] Venugopalan Ramasubramanian, Ryan Peterson, and Emin Gün Sirer.
Corona: A high performance publish-subscribe system for the World Wide
Web. In Proceedings of Networked System Design and Implementation (NSDI),
May 2006.

[67] Venugopalan Ramasubramanian and Emin Gün Sirer. Beehive: O(1)
lookup performance for power-law query distributions in peer-to-peer
overlays. In USENIX Symposium on Networked Systems Design and Imple-
mentation (NSDI), March 2004.

[68] John C. Reynolds. Design of the programming language Forsythe. Techni-
cal Report CMU-CS-96-146, Carnegie Mellon University, June 1996.

[69] Joel Richardson, Peter Schwarz, and Luis-Felipe Cabrera. CACL: Efficient
fine-grained protection for objects. In Proc. 1992 ACM Conference on Object-
Oriented Programming Systems, Languages, and Applications, pages 154–165,
Vancouver, BC, Canada, October 1992.

[70] Antony Rowstron and Peter Druschel. Pastry: Scalable, distributed object
location and routing for large-scale peer-to-peer systems. In IFIP/ACM In-
ternational Conference on Distributed Systems Platforms (Middleware), pages
329–350, November 2001.

226

[71] Yannis Smaragdakis and Don Batory. Mixin layers: An object-oriented im-
plementation technique for refinements and collaboration-based designs.
ACM Transactions on Software Engineering and Methodology, 11(2):215–255,
April 2002.

[72] Charles Smith and Sophia Drossopoulou. Chai: Traits for Java-like lan-
guages. In Proceedings of 19th European Conference on Object-Oriented Pro-
gramming (ECOOP’05), pages 453–478, 2005.

[73] Amie L. Souter and Lori L. Pollock. The construction of contextual def-
use associations for object-oriented systems. IEEE Trans. Softw. Eng.,
29(11):1005–1018, 2003.

[74] Amie L. Souter, Lori L. Pollock, and Dixie Hisley. Inter-class def-use anal-
ysis with partial class representations. In PASTE ’99: Proceedings of the 1999
ACM SIGPLAN-SIGSOFT workshop on Program analysis for software tools and
engineering, pages 47–56, 1999.

[75] Gareth Stoyle, Michael Hicks, Gavin Bierman, Peter Sewell, and Iulian
Neamtiu. Mutatis mutandis: safe and predictable dynamic software up-
dating. In Proc. 32nd ACM Symp. on Principles of Programming Languages
(POPL), pages 183–194, 2005.

[76] Robert E. Strom and Shaula Yemini. Typestate: A programming language
concept for enhancing software reliability. IEEE Transactions on Software
Engineering (TSE), 12(1):157–171, January 1986.

[77] Bjarne Stroustrup. The C++ Programming Language. Addison-Wesley, 1987.

[78] Sun Microsystems. Java Language Specification, version 1.0 beta edi-
tion, October 1995. Available at ftp://ftp.javasoft.com/docs/
javaspec.ps.zip.

[79] Tim Sweeney. The next mainstream programming language: a game devel-
oper’s perspective. In Proc. 33rd ACM Symp. on Principles of Programming
Languages (POPL), page 269, January 2006.

[80] Don Syme. Initializing mutually referential abstract objects: The value re-
cursion challenge. Electronic Notes in Theoretical Computer Science, 148(2):3–
25, 2006.

[81] Kresten Krab Thorup. Genericity in Java with virtual types. In Proc. Euro-

227

pean Conference on Object-Oriented Programming (ECOOP), number 1241 in
Lecture Notes in Computer Science, pages 444–471. Springer-Verlag, 1997.

[82] Mads Torgersen. Virtual types are statically safe. In 5th Workshop on Foun-
dations of Object-Oriented Languages (FOOL), January 1998.

[83] Philip Wadler. Views: A way for pattern matching to cohabit with data
abstraction. In Proc. 14th ACM Symp. on Principles of Programming Languages
(POPL), pages 307–312, January 1987.

[84] Philip Wadler et al. The expression problem, December 1998. Discussion
on Java-Genericity mailing list.

[85] Alessandro Warth, Milan Stanojević, and Todd Millstein. Statically scoped
object adaptation with expanders. In Proc. 21st ACM Conference on Object-
Oriented Programming Systems, Languages and Applications (OOPSLA), Port-
land, OR, October 2006.

[86] Reinhard Wilhelm, Shmuel Sagiv, and Thomas W. Reps. Shape analysis. In
Proc. 9th International Compiler Construction Conference (CC’00), pages 1–17,
2000.

[87] Andrew K. Wright and Matthias Felleisen. A syntactic approach to type
soundness. Information and Computation, 115(1):38–94, 1994.

228

