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Abstract
We evaluate the efficiency and cost of different place-
ment strategies for a distributed cache implemented on
the clients of an online social network or web service.
In our system model, the service maintains a directory
for content that tracks the location of objects. The ser-
vice informs requesting clients of these locations and the
clients will cache, serve, and push content according to
directives provided by the service. We show that we can
improve the individual cache hit ratio by leveraging re-
lationships between clients (e.g., social links). The net-
work load imposed on clients is practical.

1 Introduction
Today’s web services, including social networks, photo-
sharing web-sites, and video on demand systems, provide
vast amounts of content. As the web service becomes
more popular, the cost of content distribution increases
and the service has to rely either upon content delivery
networks (CDNs) or build its own delivery system. This
is costly to deploy and manage, and previous work [16, 6]
has focused on clients helping with content distribution
by acting as caches and serving content to each other in
a peer-to-peer (P2P) fashion. This can alleviate load on
the service as well as protect it from flash crowds [12].
At the same time, cooperative caching can improve net-
work resource utilization by distributing bandwidth us-
age to many client-to-client connections. Recent systems
[7, 16] have shown that such approaches are feasible,
effective, and in Maygh’s [16] case, they can be non-
intrusively deployed in web browsers using technologies
like RTMFP and WebRTC.

This work considers a system model similar to that of
Maygh. Clients issue requests for content and cache it for
future use or for serving it to other clients. The service
keeps track of the content and its locations, and replies
to requests by providing either the content or a location

where it can be found. Caches at clients have a limited
capacity.

In such a cooperative setting, strategically placing
cached content can substantially affect performance and
overhead [10]. In order not to overload clients with
download requests from other clients, popular objects
need to be cached widely, but if too many copies are
made the capacity of the cooperative cache is needlessly
wasted. The caching system should adapt to the dynamic
behavior of clients and changes in content popularity.

In this paper, we investigate how cache placement af-
fects hit ratio and the load perceived by the service and
the clients. We propose a novel cache placement strategy
that leverages relationships between clients. We compare
this algorithm to three other placement strategies. The
evaluation is performed using simulations on syntheti-
cally generated workloads that match certain character-
istics of Online Social Networks (OSNs) [3, 11]. Results
of this evaluation suggest that, by employing knowledge
of relationships between clients (such as the social graph
in the case of an OSN), we can improve local cache hit
ratios with minor toll on the hit ratio of the collective
cache. The overhead on clients is non-negligeable but
still moderate.

2 Related Work
Cooperative caching has been studied extensively in the
setting of web caching [15, 14]. Example systems in-
clude Shark [2] and Backslash [12] that build cooperative
P2P caches on proxy servers. These systems do not have
capacity restrictions on client caches.

Squirrel [6], another P2P web caching mechanism that
uses a DHT for achieving scalability, self-organization,
and churn tolerance, is intended for geographically col-
located clients (e.g., at the same company). This can be
limiting for certain web services such as OSNs.

In [9], several placement algorithms for CDNs are pro-
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posed and evaluated. These schemes use workload infor-
mation such as client latency and request rates. How-
ever, none of them employ social information to improve
placement decisions. Closest to our proposed placement
approach is S-Clone [13], which collocates replicas of
data of neighboring clients w.r.t. the social graph of
an OSN. Different from our work, data is replicated on
servers and not on clients. Their approach does not take
workload information into account.

3 System Model
3.1 The Service, Objects, and Clients
The service is responsible for two main functions: serv-
ing objects to clients and issuing caching directives that
specify which clients should cache these objects. In our
model, objects are immutable and each object has an
owner, which is one of the clients. Objects are identified
by keys. The service keeps track of which clients are cur-
rently online. The service uses a key-value store to main-
tain for each object its immutable content, the owner, and
which clients have recently cached the object.

The service maintains a client relationship graph that
models interest similarity between clients regarding con-
tent. Each node in this graph corresponds to a client and
each edge between nodes indicates that the correspond-
ing clients have similar interests. In our workload model,
we select the client that issues a request for an object
with a probability NAP (Neighborhood Access Probabil-
ity) from the object’s owner or the owner’s neighbors.
Otherwise, we select a client uniformly at random from
all clients.

When the service responds to a request from a client,
it includes a caching directive. A directive denotes the
set of clients at which the content should be cached. If
empty, the receiving client does not need to cache or push
the requested content. Otherwise, the client caches the
content (if the client is in the list) and pushes the con-
tent to the other clients in the list, if any. Provided suf-
ficient capacity, the receivers of pushed content cache it.
A client that caches an object informs the service so the
service can update the object’s metadata.

3.2 Client-side Caches
Clients maintain a cache for their own use or to serve
other clients. We suppose clients are non-malicious
and follow the caching protocols described in this pa-
per. Addressing threats related to data corruption can be
achieved by caching data along with signed digests; deal-
ing with other threats is the subject of future work.

The cache has a limited capacity. A client decides
which objects to evict when its cache is full. Such evic-
tion policies can be Least Recently Used (LRU), Least
Frequently Used (LFU), or any other (e.g., ARC [8]).

When a client wants to access an object, it first checks
its own cache. If absent from its cache, it sends a request
to the service. The service responds with either the ob-
ject’s content or with a list of locations of other clients
that have recently cached the object. In the second case,
the client contacts these locations (one by one) to fetch
the content. Clients receiving a “side-load” request check
their caches and respond either with the object’s content
or with an error. If a client does not provide the object
within a reasonable time, then the requesting client in-
forms the service and tries another location, if available.
If no client could be contacted, the object is requested
directly from the service. Upon receiving the object, the
client executes the caching directive.

4 Cache Placement Strategies
In this section, we present four cache placement algo-
rithms. The first three are intended for baseline compar-
isons; the last one leverages social connections in order
to improve individual hit ratios.

The objective of the minimalistic scheme is to mini-
mize load on the server. To do so, it keeps at most one
copy of an object in the collective client caches. The
scheme works as follows: When a request for an ob-
ject is issued, the service checks whether the object was
recently cached by another client. If not, then the ser-
vice provides the object itself and issues a directive to
the client to cache it. Once the client receives the data,
it caches the object using the LRU replacement policy.
Otherwise, the service provides the requesting client with
a list containing the client that has recently cached the
object and provides an empty directive (i.e., the client
should not cache it).

The opportunistic scheme is the scheme CDNs usually
implement. When the service receives a request for a
particular key, it checks to see if any clients have recently
cached the object. If so, it sends this list to the client. If
not, the service responds with the object itself. In both
cases the service sends a directive containing only the
address of the requesting client. Thus, once the client
receives the object, it caches the object and uses the LRU
eviction policy, if necessary.

In the popularity-based algorithm, the service esti-
mates the popularity of objects according to access rate
and fills client caches with the objects of highest popu-
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larity. Otherwise, the algorithm is much the same as the
opportunistic one. The service adds the current global ac-
cess rate (number of accesses per second) to the response
to the client. If the client needs to evict an object from
its cache, it uses the LFU policy by relying on the access
rates provided by the service.

The proactive algorithm leverages the client relation-
ship graph by proactively pushing content to the request-
ing client and its neighbors. The algorithm works as fol-
lows: when the service receives a request it responds with
either the object or a list of locations, as previously. The
directive, however, consists of the requesting client, the
owner of the object (Nicolas: Why would we push the
object to its creator?), and neighbors of the owner, ex-
cluding the clients that appear off-line or have recently
cached the object already.

5 Workload
In this section, we describe how we generate the synthetic
workloads we use in our simulations. Our target is to ap-
proximate workloads typically found in online social net-
works and services where clients interact by sharing con-
tent with each other. In typical services such as Facebook
the corpus of objects continually grows. We have also
seen that the popularity of objects is not fixed—objects
tend to become less popular over time.

In our simulation, the corpus is a list of keys, ordered
by popularity, initially consisting of a single key. The
popularity distribution is a Zipfian distribution with skew
parameter α . New objects are added to the corpus with
a rate that is approximately 1/30th of the aggregate client
request rate. We obtained this ratio from [3]. Each object
is assigned a random owner from the set of clients. When
a new object is added, we select an existing object from
the corpus according to the Zipfian distribution and insert
the new object before the selected one.

When a client makes a request, we also rely on the
Zipfian distribution to select the requested key. We call
this model the shifting popularity model (SP) since the
popularity of keys in the corpus decreases as new keys
are inserted into it. We have found that this model closely
corresponds to measurements at Facebook [5].

Each time a key and an object are inserted to the cor-
pus, the key and object sizes are chosen according to the
models provided in [3] for Facebook’s key-value store.
The inter-arrival request rate also follows the model pre-
sented in [3] and varies between a few milliseconds to
tens of milliseconds.

Another aspect of our workload is the client relation-

ship graph that dictates the access patterns of clients.
Since our workloads are parameterized by the number
of clients, we employ a model for social networks that
enables us to generate synthetic social graphs of various
sizes. These graphs have similar properties such as node
degree distribution and clustering coefficient (see [11]
for more properties) to those found in real social net-
works. There are various models for social graphs and
we chose the modified nearest neighbor graph model de-
scribed in [11] that, according to the authors’ analysis,
better approximates real social networks w.r.t. the previ-
ous properties. To derive the parameters of the previous
model, we generated graphs of sizes equal to those of
real world graphs found in [1] for various value assign-
ments of the parameters. We then compared the gener-
ated graphs with the respective real world graphs w.r.t.
their node degree distribution and clustering coefficient.

For each synthetic workload, we generated a client re-
lationship graph G and fixed NAP (Section 3.1) to 0.8.
This value comes from [4] and is consistent with client
behavior observed in social networks such as Orkut,
LinkedIn and others based on click-stream data. The
graph G, along with the skew parameter α are given as
input to the request generation procedure described in Al-
gorithm 1.

Algorithm 1 Request generation algorithm
1: procedure GENERATE REQUEST(α , G)
2: select a key k according to the SP model with parameter α .
3: if p≤ NAP for p ∈ [0,1] chosen uniformly at random then
4: select the client v issuing the request uniformly at random
5: from the object’s owner and its neighbors.
6: else
7: select client v uniformly at random from all clients.
8: end if
9: return (v,k)

10: end procedure

6 Experiments
In this section, we compare the cache placement strate-
gies described in Section 4. We assess key cache perfor-
mance metrics through simulation on synthetically gen-
erated workloads as described in Section 5.

6.1 Setup

Three parameters describe the configuration of our ex-
periments: the number of clients that issue requests to the
service, the cache capacity per client measured in bytes,
and the skew parameter of the Zipf distribution that deter-
mines the popularity distribution of objects. In each run
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of the simulation, clients have the same capacity.
We run our simulations for varying configurations. In

all configurations, the cache capacity per client is 100KB
and the skew parameter is 1.1. We tried higher cache
capacities and skews, but the trends are the same for each.
In order to avoid the bias resulting from a cold cache and
the initially small corpus, we begin each run with a 3
minute warm up phase. We then collect measurements
for another 3 minutes. For each client c, we monitor the
following:

• hc, the number of requests it serves from its own
cache (local hits),
• sc, the number of requests which are served by an-

other client (side-loads),
• mc, the number of requests which are served by the

service (client cache misses),
• bc, the average bandwidth (over the length of the ex-

periment) spent serving and pushing content to other
clients.

Three metrics are presented in the evaluation:

• The average local cache hit ratio: ∑c
hc

hc+sc+mc
/n

• The collective (global) hit ratio of the client caches:
∑c hc+sc

∑c hc+sc+mc

• The average bandwidth spent per client for serving
and pushing content: ∑c bc/n

where n is the number of clients. In our measurements,
the opportunistic and popularity-based algorithms per-
form similarly, and the graphs often overlap. For clarity
we have left out the error bars—they become negligible
when the number of clients is large.

6.2 Local hit ratio
In Figure 1a we show how the average local hit ratio
varies with an increasing number of clients. We see
that as the number of clients increases, the local hit ra-
tio increases as well for all but the minimalistic algo-
rithm. This is a consequence of the workload model that
we used, which is based on the findings in [4]: popular
objects are likely to be requested by the same neighbor-
hood of clients, and as the number of clients increases the
neighborhoods get larger, which drives up the average lo-
cal hit ratio. This is not so for the minimalistic algorithm
as it maintains only a single copy of each object in the
collective cache. The proactive algorithm benefits most
from an increased number of clients since it proactively
creates copies of the accessed objects on clients that are
more likely to access them. Results not shown here indi-
cate that as the capacity per client increases the benefits

are even larger. The proactive algorithm remains the best
one.

6.3 Global hit ratio
The global hit ratio is the hit ratio of the collective cache,
and ultimately determines the load on the service. Fig-
ure 1b shows the global hit ratio as the number of clients
increases. More clients means a larger collective cache
and thus a higher global hit ratio. The hit ratio does not
hit 100% because there is a steady stream of new objects
that are being introduced.

The minimalistic algorithm exploits the collective ca-
pacity of the caches best. The other algorithms create
multiple copies for popular objects and thus evict more
objects than the minimalistic algorithm. (Although not
considered in these experiments, churn would negatively
affect the minimalistic algorithm more than the others as
only one copy of an object is maintained.)

The opportunistic and popularity-based algorithms do
worse but appear to catch up with an increasing number
of clients. As the number of clients grows, so does the
number of neighborhoods and the neighborhoods’ aver-
age size. Due to our workload model, it becomes increas-
ingly likely that an object is cached in the neighborhood
of its owner. As a result, opportunistic and popularity-
based algorithms catch up with the minimalistic one.

The proactive algorithm performs worst: it suffers
from a higher eviction rate caused by pushing. However,
it also benefits from more and larger neighborhoods as
the number of clients grows.

6.4 Client bandwidth
In Figure 1c we see the average outgoing bandwidth per
client as a function of the number of clients, normalized
for the opportunistic algorithm. The opportunistic algo-
rithm used the least outgoing bandwidth. In the minimal-
istic algorithm the clients do much side-loading because
of two reasons. First the number of cached objects is
higher than for the other algorithms, resulting in a larger
opportunity for side-loading. Second, there is at most
one cached copy of each object, and thus most requests
require a side-load.

At the other extreme is the proactive algorithm, which
pushes a lot of objects proactively, something the other
algorithms do not do at all. From our experiments we
conclude that proactive pushing (in the currently naive
implementation of the proactive algorithm) is more ex-
pensive than opportunistic side-loading. However, be-
cause the local hit ratio improves with the number of
clients, and the eviction rate decreases due to the higher
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(b) Global hit ratio
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(c) Local outgoing bandwidth

Figure 1: Local hit ratio per client (1a), global hit ratio of the collective cache (1b) and normalized bandwidth per
client (1c) for skew parameter 1.1 and a capacity of 100KB per client for a varying number of clients.

global hit ratio, the overhead of pushing drops.
While expensive compared to the opportunistic algo-

rithm, in absolute terms the overhead is reasonable. For
10,000 clients the average bandwidth for the proactive
scheme is about 9.3 KB/s. The overhead for the op-
portunistic and popularity-based schemes is ∼ 800 B/s,
while ∼ 1.6 KB/s for the minimalistic scheme.

7 Conclusions
In this work, we investigate the effects of cache place-
ment on the performance and cost of a collective cache
built on the clients of an OSN. We propose a caching
scheme that employs relationship information between
clients. Simulations of our scheme using synthetically
generated workloads suggest that client relationship in-
formation improves the client’s perceived hit ratio at a
reasonable overhead.

The proactive scheme that we present in this paper
presents promising results. There are several open ques-
tions that remain to be answered however. We need to
assess the efficiency of this approach in the presence of
client churn, its impact on latency, and the additional
computational and memory costs required to maintain
the caching metadata. In particular, we are interested in
knowing whether social proximity is detrimental to la-
tency when compared to schemes that rely on geographic
locality. We also wish to determine whether we can de-
sign a hybrid strategy that combines the good features of
the proactive and popularity schemes. In particular, is
it possible to reduce the communication overhead of the
proactive scheme without negatively impacting the local
hit ratio?
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