ACM/IEEE ANCS, Oct 29, 2012

On the Feasibility of Completely Wireless Datacenters

Ji-Yong Shin Cornell University

In collaboration with

Emin Gün Sirer (Cornell), Hakim Weatherspoon (Cornell) and Darko Kirovski (MSR)

Cornell University Department of Computer Science

Conventional Datacenter

Conventional Datacenter

Cornell University Department of Computer Science

Going Completely Wireless

- Opportunities
 - Low maintenance : no wires
 - Low power: no large switches
 - Low cost: all of the above

- Fault tolerant: multiple network paths
- High performance: multiple network paths

Which wireless technology?

60GHz Wireless Technology

- Short range
 - Attenuated by oxygen molecules
- Directional
 - Narrow beam

- High bandwidth
 - Several to over 10Gbps
- License free
 - Has been available for many years

Why now?

- CMOS Integration
 - Size < dime
 - Manufacturing cost < \$1

60 GHz Antenna Model

reception zone

- One directional
 - Signal angle between
 25° and 45°
 - Maximum range < 10 m
 - No beam steering

- Bandwidth < 15Gbps
 - TDMA (TDD)
 - FDMA (FDD)

Model of the

main beam

Model of the
Power at 0.1 – 0.3W

Designing Wireless Datacenters

- Challenges
 - How should transceivers and racks be oriented?
 - How should the network be architected?
 - Interference of densely populated transceivers?

Completely Wireless Datacenters

- Motivation
- Cayley Wireless Datacenters
 - Transceiver placement and topology
 - Server and rack designs
 - Network architecture
 - MAC protocols and routing
- Evaluation
 - Physical Validation: Interference measurements
 - Performance and power
- Future
- Conclusion

Cornell University Department of Computer Science

Cayley Network Architecture: Topology

Masked Node Problem and MAC

- Most nodes are hidden terminals to others
 - Multiple (>5) directional antennae
 - => Masked node problem
 - Collisions can occur
- Dual busy tone multiple access [Hass'02]
 - Out of band tone to preserve channels
 - Use of FDD/TDD channels as the tone

Cayley Network Architecture: Routing

- Geographical Routing
- Inter rack
 - Diagonal XYZ routing

- Turn within rack
 - Shortest path turning

- Within dst rack to dst server
 - Up down to dst story
 - Shortest path to dst serve

Completely Wireless Datacenters

- Motivation
- Cayley Wireless Datacenters
 - Transceiver placement and topology
 - Server and rack designs
 - Network architecture
 - MAC protocols and routing
- Evaluation
 - Physical validation: Interference measurements
 - Performance and power
- Future
- Conclusion

Hardware Setup for Physical Validation

- Use of a conservative platform
- Real-size datacenter floor plan setup
- Validation of all possible interferences

Intra-rack communications

Inter-rack communications

Physical Validation: Interference Evaluation (Signal angle $\theta = 15^{\circ}$)

Intra-Rack Space (Tx on server 0)

Physical Validation: Interference Evaluation

Edge of signal:

Evaluation

- Performance: How well does a Cayley datacenter perform and scale?
 - Bandwidth and latency
- Failure tolerance: How well can a Cayley datacenter handle failures?

- Server, story, and rack failure

 Power: How much power does a Cayley datacenter consume compared to wired datacenters

Evaluation Setup

- Simulate 10K server datacenter
 - Packet level: routing, MAC protocol, switching delay, bandwidth
- Conventional datacenter (CDC) (1,5,1) – 3 Layers of oversubscribed switches (ToR, AS, CS) • (1, 5, 1), (1, 7, 1) and (2, 5, 1) Core • Latency: 3-6us switching delay 2 • Bandwidth: 1Gbps server FAT-tree: Equivalent to CDC (1,1,1) Aggregate Cayley wireless datacenter 10 10Gbps bandwidth **Top of Rack** – 1 Transceiver covers 7 to 8 others 10 Signal spreading angle of 25° Low latency Y-switch (<< 1us)

Evaluation Setup

Uniform random

Src and dst randomly selected in entire datacenter

- MapReduce
 - Src sends msg to servers in same row of rack
 - Receiver sends msg to servers in same column of rack
 - Receivers send msg to servers inside same pod with 50% probability

Bandwidth

• Burst of 500 x 1KB packets per server sent

Maximum Aggregate Bandwidth Normalized to Fat-tree

Uniform RandMapReduceHops: CDC < 6, Cayley > 11Hops: CDC < 6, Cayley > 8Cayley datacenters have the most bandwidth

Uniform random benchmark

MapReduce benchmark

Cayley datacenters typically performs the best

Fault Tolerance

Cayley datacenters are extremely fault tolerant

Power Consumption to Connect 10K Servers

• Conventional datacenter (CDC) *

Switch Type	Typical Power
Top of rack switch (ToR)	176W
Aggregation switch (AS)	350W
Core switch (CS)	611W

- Depending on the oversubscription rate 58KW to 72KW
- Cayley datacenter
 - Transceivers consume < 0.3W
 - Maximum power consumption: 6KW

• Less than 1/10 of CDC power consumption

Discussion and Future Work

- Only scratched the surface
 - How far can wireless datacenters go with no wires?
- Need larger experiment/testbed
 - Interference and performance of densely connected datacenter?
- Scaling to large datacenters (>100K servers)?
- Scaling to higher bandwidth (> 10Gbps)?

Conclusion

- Completely wireless datacenters can be feasible
- Cayley wireless datacenters exhibit
 - Low maintenance
 - High performance
 - Fault tolerant
 - Low power
 - Low cost

References

- S. Pinel, P. Sen, S. Sarkar, B. Perumana, D. Dawn, D. Yeh, F. Barale, M. Leung, E. Juntunen, P. Vadivelu, K. Chuang, P. Melet, G. Iyer, and J. Laskar. 60GHz single-chip CMOS digital radios and phased array solutions for gaming and connectivity. IEEE Journal on Selected Areas in Communications, 27(8), 2009.
- Z.J. Hass and J. Deng. Dual busy tone multiple access (DBTMA)-a multiple access control scheme for ad hoc networks. IEEE Transactions on Communications, 50(6), 2002.
- PEPPM. Cisco Current Price List. http://www.peppm.org/Products/cisco/price.pdf, 2012.

