
Asymmetric Minwise Hashing for Indexing Binary Inner
Products and Set Containment

Anshumali Shrivastava
Department of Computer Science
Computer and Information Science

Cornell University
Ithaca, NY 14853, USA

anshu@cs.cornell.edu

Ping Li
Department of Statistics and Biostatistics

Department of Computer Science
Rutgers University

Piscataway, NJ 08854, USA
pingli@stat.rutgers.edu

ABSTRACT

Minwise hashing (Minhash) is a widely popular indexing scheme

in practice. Minhash is designed for estimating set resemblance and

is known to be suboptimal in many applications where the desired

measure is set overlap (i.e., inner product between binary vectors)

or set containment. Minhash has inherent bias towards smaller sets,

which adversely affects its performance in applications where such

a penalization is not desirable. In this paper, we propose asym-

metric minwise hashing (MH-ALSH), to provide a solution to this

well-known problem. The new scheme utilizes asymmetric trans-

formations to cancel the bias of traditional minhash towards smaller

sets, making the final “collision probability” monotonic in the in-

ner product. Our theoretical comparisons show that, for the task of

retrieving with binary inner products, asymmetric minhash is prov-

ably better than traditional minhash and other recently proposed

hashing algorithms for general inner products. Thus, we obtain

an algorithmic improvement over existing approaches in the liter-

ature. Experimental evaluations on four publicly available high-

dimensional datasets validate our claims. The proposed scheme

outperforms, often significantly, other hashing algorithms on the

task of near neighbor retrieval with set containment. Our proposal

is simple and easy to implement in practice.

1. INTRODUCTION
Record matching (or linkage), data cleansing and plagiarism de-

tection are among the most frequent operations in many large-scale

data processing systems over the web. Minwise hashing (or min-

hash) [6, 7, 27] is a popular technique deployed by big data in-

dustries for these tasks. Minhash was originally developed for

economically estimating the resemblance similarity between sets

(which can be equivalently viewed as binary vectors). Later, be-

cause of its locality sensitive property [22], minhash became a widely

used hash function for creating hash buckets leading to efficient al-

gorithms for numerous applications including spam detection [6],

collaborative filtering [4], news personalization [15], compressing

social networks [13], graph sampling [14], record linkage [25], du-

plicate detection [21], all pair similarity [5], etc.

Copyright is held by the International World Wide Web Conference Com-
mittee (IW3C2). IW3C2 reserves the right to provide a hyperlink to the
author’s site if the Material is used in electronic media.
WWW 2015, May 18–22, 2015, Florence, Italy.
ACM 978-1-4503-3469-3/15/05.
http://dx.doi.org/10.1145/2736277.2741285 .

1.1 Sparse Binary Data, Set Resemblance, and
Set Containment

Binary representations for web data are common, owing to the

wide adoption of the “bag of words (n-gram)” representations for

documents and images. It is often the case that a significant num-

ber of words (or combinations of words) occur rarely in a document

and most of the higher-order n-grams in the document occur only

once. Thus in practice, often only the presence or absence informa-

tion suffices [9, 20, 24]. Leading search firms routinely use sparse

binary representations in their large data systems, e.g., [8].

The underlying similarity measure of interest with minhash is

the resemblance (also known as the Jaccard similarity). The re-

semblance similarity between two sets x, y ⊆ Ω = {1, 2, ..., D}
is

R =
|x ∩ y|
|x ∪ y| =

a

fx + fy − a
, (1)

where fx = |x|, fy = |y|, a = |x ∩ y|.
Sets can be equivalently viewed as binary vectors with each compo-

nent indicating the presence or absence of an attribute. The cardi-

nality (e.g., fx, fy) is the number of nonzeros in the binary vector.

While the resemblance similarity is convenient and useful in nu-

merous applications, there are also many scenarios where the re-

semblance is not the desired similarity measure [1, 11]. For in-

stance, consider text descriptions of two restaurants:

1. “Five Guys Burgers and Fries Downtown Brooklyn New York"

2. “Five Kitchen Berkley"

Shingle (n-gram) based representations for strings are common in

practice. Typical (first-order) shingle based representations of these

names will be (i) {five, guys, burgers, and, fries, downtown, brook-

lyn, new, york } and (ii) {five, kitchen, berkley}. Now suppose

the query is “Five Guys" which in shingle representation is {Five,

Guys}. Suppose we hope to match and search the records, for this

query “Five Guys", based on resemblance. Observe that the resem-

blance between query and record (i) is 2
9

= 0.22, while that with

record (ii) is 1
4

= 0.25. Thus, simply based on resemblance, record

(ii) is a better match for query “Five Guys" than record (i), which

however should not be correct in this content.

Clearly the issue here is that resemblance penalizes the sizes

of the sets involved. Shorter sets are unnecessarily favored over

longer ones, which hurts the performance in (e.g.,) record match-

ing [1]. There are other scenarios where such penalization is unde-

sirable. For instance, in plagiarism detection, it is typically immate-

rial whether the text is plagiarized from a long or a short document.

To counter the often unnecessary penalization of the sizes of the

sets with resemblance, a modified measure, the set containment (or

Jaccard containment) was adopted [6, 1, 11]. Containment of set x
and y with respect to x is defined as

JC =
|x ∩ y|
|x| =

a

fx
. (2)

In the above example with query “Five Guys”, the set containment

with respect to query for record (i) will be 2
2

= 1 and with re-

spect to record (ii) it will be 1
2

, leading to the desired ordering. It

should be noted that for any fixed query x, the ordering under set

containment with respect to the query, is the same as the ordering

with respect to the intersection a (or binary inner product). Thus,

near neighbor search problem with respect to JC is equivalent to

the near neighbor search problem with respect to a.

1.2 Maximum Inner Product Search (MIPS)
& Maximum Containment Search (MCS)

Formally, we state our problem of interest. We are given a col-

lection C containing n sets (or binary vectors) over universe Ω with

|Ω| = D (or binary vectors in {0, 1}D). Given a query q ⊂ Ω, we

are interested in the problem of finding x ∈ C such that

x = argmax
x∈C

|x ∩ q| = argmax
x∈C

qTx; (3)

where | | is the cardinality of the set. This is the so-called maximum

inner product search (MIPS) problem.

For binary data, the MIPS problem is equivalent to searching

with set containment with respect to the query, because the cardi-

nality of the query does not affect the ordering and hence

x = argmax
x∈C

|x ∩ q| = argmax
x∈C

|x ∩ q|
|q| ; (4)

which we also refer to as the maximum containment search (MCS)

problem.

1.3 Shortcomings of Inverted Index Based Ap-
proaches for MIPS (and MCS)

Owing to its practical significance, there have been many ex-

isting heuristics for solving the MIPS (or MCS) problem [31, 34,

12]. A notable recent work among them made use of the inverted

index based approach [1]. Inverted indexes might be suitable for

problems when the sizes of documents are small and each record

only contains few words. This situation, however, is not always ob-

served in practice. The documents over the web are large with huge

vocabulary. Moreover, the vocabulary blows up very quickly once

we start using higher-order shingles. In addition, there is an in-

creasing interest in enriching the text with extra synonyms to make

the search more effective and robust to semantic meanings [1], at

the cost of a significant increase of the sizes of the documents. Fur-

thermore, if the query contains many words then the inverted index

is not very useful. To mitigate this issue several additional heuris-

tics were proposed, for instance, the heuristic based on minimal

infrequent sets [1]. Computing minimal infrequent sets is similar

to the set cover problem which is hard in general and thus [1] re-

sorted to greedy heuristics. The number of minimal infrequent sets

could be huge in general and so these heuristics can be very costly.

Also, such heuristics require the knowledge of the entire dataset

before hand which is usually not practical in a dynamic environ-

ment like the web. In addition, inverted index based approaches

do not have theoretical guarantees on the query time and their per-

formance is very much dataset dependent. Not surprisingly, it was

shown in [17] that simply using a sign of the projected document

vector representation referred to as TOPSIG, which is also similar

in nature to sign random projections (SRP) [18, 10], outperforms

inverted index based approaches for querying.

1.4 Probabilistic Hashing
Locality Sensitive Hashing (LSH) [22] based randomized tech-

niques are common and successful in industrial practice for effi-

ciently solving NNS (near neighbor search). They are some of

the few known techniques that do not suffer from the curse of di-

mensionality. Hashing based indexing schemes provide provably

sub-linear algorithms for search which is a boon in this era of big

data where even linear search algorithms are impractical due to la-

tency. Furthermore, hashing based indexing schemes are massively

parallelizable, which makes them ideal for modern distributed sys-

tems. The prime focus of this paper will be on efficient hashing

based algorithms for binary inner products.

Despite the interest in set containment and binary inner products,

there were no hashing algorithms for these measures for a long time

and minwise hashing is still a popular heuristic [1]. Recently, it was

shown that general inner products for real vectors can be efficiently

solved by using asymmetric locality sensitive hashing schemes [35,

37]. The asymmetry is necessary for the general inner products and

an impossibility of having a symmetric hash function can be easily

shown using elementary arguments. Thus, binary inner product (or

set intersection) being a special case of general inner products also

admits provable efficient search algorithms with these asymmetric

hash functions which are based on random projections. However,

it is known that random projections are suboptimal for retrieval in

the sparse binary domain [39]. Hence, it is expected that the exist-

ing asymmetric locality sensitive hashing schemes for general inner

products are likely to be suboptimal for retrieving with sparse high

dimensional binary-like datasets, which are common over the web.

1.5 Our Contributions
We investigate hashing based indexing schemes for the problem

of near neighbor search with binary inner products and set con-

tainment. The impossibility of existence of LSH for general inner

products shown in [35] also hold for the binary case.

Recent results on hashing algorithms for maximum inner prod-

uct search [35] have shown the usefulness of asymmetric trans-

formations in constructing provable hash functions for new simi-

larity measures, which were otherwise impossible. Going further

along this line, we provide a novel (and still very simple) asym-

metric transformation for binary data, that corrects minhash and

removes the undesirable bias of minhash towards the sizes of the

sets involved. Such an asymmetric correction eventually leads to a

provable hashing scheme for binary inner products, which we call

asymmetric minwise hashing (MH-ALSH). Our theoretical compar-

isons show that for binary data, which are common over the web,

the new hashing scheme is provably more efficient that the recently

proposed asymmetric hash functions for general inner products [35,

37]. Thus, we obtain a provable algorithmic improvement over the

state-of-the-art hashing technique for binary inner products. The

construction of our asymmetric transformation for minhash could

be of independent interest in itself.

The proposed asymmetric minhash significantly outperforms ex-

isting hashing schemes, in the tasks of ranking and near neighbor

search with set containment as the similarity measure, on four real-

world high-dimensional datasets. Our final proposed algorithm is

simple and only requires minimal modifications of the traditional

minhash and hence it can be easily adopted in practice.

2. BACKGROUND

2.1 c-Approximate Near Neighbor Search and
the Classical LSH

Past attempts of finding efficient algorithms, for exact near neigh-

bor search based on space partitioning, often turned out to be a dis-

appointment with the massive dimensionality of modern datasets [40].

Due to the curse of dimensionality, theoretically it is hopeless to ob-

tain an efficient algorithm for exact near neighbor search. Approx-

imate versions of near neighbor search problem were proposed [22]

to overcome the linear query time bottleneck. One commonly adopted

such formulation is the c-approximate Near Neighbor (c-NN).

DEFINITION 1. (c-Approximate Near Neighbor or c-NN). [22]

Given a set of points in a d-dimensional space R
d, and parameters

S0 > 0, δ > 0, construct a data structure which, given any query

point q, does the following with probability 1− δ: if there exists an

S0-near neighbor of q in P, it reports some cS0-near neighbor.

The usual notion of S0-near neighbor is in terms of distance.

Since we are dealing with similarities, we define S0-near neighbor

of point q as a point p with Sim(q, p) ≥ S0, where Sim is the

similarity function of interest.

The popular technique, with near optimal guarantees for c-NN

in many interesting cases, uses the underlying theory of Locality

Sensitive Hashing (LSH) [22]. LSH relies on a family of functions,

with the property that similar input objects in the domain of these

functions have a higher probability of colliding in the range space

than non-similar ones. More specifically, consider H a family of

hash functions mapping R
D to some set S .

DEFINITION 2. (Locality Sensitive Hashing) A familyH is called

(S0, cS0, p1, p2) sensitive if for any two point x, y ∈ R
D and h

chosen uniformly from H satisfies the following:

• if Sim(x, y) ≥ S0 then PrH(h(x) = h(y)) ≥ p1

• if Sim(x, y) ≤ cS0 then PrH(h(x) = h(y)) ≤ p2

For approximate nearest neighbor search typically, p1 > p2 and

c < 1 is needed. Note, c < 1 as we are defining neighbors in

terms of similarity. To obtain distance analogy we can resort to

D(x, y) = 1− Sim(x, y)

FACT 1. [22] Given a family of (S0, cS0, p1, p2) -sensitive

hash functions, one can construct a data structure for c-NN with

O(nρ log1/p2 n) query time and space O(n1+ρ), ρ = log 1/p1
log 1/p2

< 1

LSH trades off query time with extra preprocessing time and

space that can be accomplished off-line. It requires constructing a

one time data structure which costs O(n1+ρ) space and further any

c-approximate near neighbor queries can be answered inO(nρ log1/p2 n)
time in the worst case.

A particularly interesting sufficient condition for existence of

LSH is the monotonicity of the collision probability in Sim(x, y).
Thus, if a hash function family H satisfies,

Prh∈H(h(x) = h(y)) = g(Sim(x, y)), (5)

where g is a monotonically increasing function, then the conditions

of Definition 2 are automatically satisfied for all c < 1.

The quantity ρ < 1 is a property of the LSH family, and it is

of particular interest because it determines the worst case query

complexity of the c-approximate near neighbor search. It should

be further noted, that the complexity depends on S0 which is the

operating threshold and c, the approximation ratio we are ready to

tolerate. In case when we have two or more LSH families for a

given similarity measure, then the LSH family with smaller value

of ρ, for given S0 and c, is preferred.

2.2 Minwise Hashing (Minhash)
Minwise hashing [6] is the LSH for the resemblance, also known

as the Jaccard similarity, between sets. In this paper, we focus on

binary data vectors which can be equivalent viewed as sets.

Given a set x ∈ Ω = {1, 2, ..., D}, the minwise hashing family

applies a random permutation π : Ω → Ω on x and stores only the

minimum value after the permutation mapping. Formally minwise

hashing (or minhash) is defined as:

hπ(x) = min(π(x)). (6)

Given sets x and y, it can be shown that the probability of colli-

sion is the resemblance R = |x∩y|
|x∪y| :

Prπ(hπ(x) = hπ(y)) =
|x ∩ y|
|x ∪ y| =

a

fx + fy − a
= R. (7)

where fx = |x|, fy = |y|, and a = |x∩y|. It follows from Eq. (7)

that minwise hashing is (S0, cS0, S0, cS0)-sensitive family of hash

function when the similarity function of interest is resemblance.

Even though minhash was really meant for retrieval with resem-

blance similarity, it is nevertheless a popular hashing scheme used

for retrieving set containment or intersection for binary data [1]. In

practice, the ordering of inner product a and the ordering or resem-

blance R can be different because of the variation in the values of

fx and fy , and as argued in Section 1, which may be undesirable

and lead to suboptimal results. We show later that by exploiting

asymmetric transformations we can get away with the undesirable

dependency on the number of nonzeros leading to a better hashing

scheme for indexing set intersection (or binary inner products).

2.3 LSH for L2 Distance (L2LSH)
[16] presented a novel LSH family for all Lp (p ∈ (0, 2]) dis-

tances. In particular, when p = 2, this scheme provides an LSH

family for L2 distance. Formally, given a fixed number r, we

choose a random vector w with each component generated from

i.i.d. normal, i.e., wi ∼ N(0, 1), and a scalar b generated uni-

formly at random from [0, r]. The hash function is defined as:

hL2
w,b(x) =

⌊

wTx+ b

r

⌋

, (8)

where ⌊⌋ is the floor operation. The collision probability under this

scheme can be shown to be

Pr(hL2
w,b(x) = hL2

w,b(y)) = Fr(d), (9)

Fr(d) = 1− 2Φ(−r/d)− 2√
2πr/d

(

1− e−r2/(2d2)
)

(10)

where Φ(x) =
∫ x

−∞
1√
2π

e−
x2

2 dx is the cumulative density func-

tion (cdf) of standard normal distribution and d = ||x − y||2 is

the Euclidean distance between the vectors x and y. This collision

probability F (d) is a monotonically decreasing function of the dis-

tance d and hence hL2
w,b is an LSH for L2 distances. This scheme is

also the part of LSH package [2]. Here r is a parameter.

2.4 LSH for Cosine Similarity (SRP)
Sign Random Projections (SRP) or simhash is another popular

LSH for the cosine similarity measure, which originates from the

concept of Sign Random Projections (SRP) [18, 10]. Given a

vector x, SRP utilizes a random w vector with each component

generated from i.i.d. normal, i.e., wi ∼ N(0, 1), and only stores

the sign of the projection. Formally simhash is given by

hsign(x) = sign(wTx). (11)

It was shown in the seminal work [18] that collision under SRP

satisfies the following equation:

Prw(h
sign(x) = hsign(y)) = 1− θ

π
, (12)

where θ = cos−1
(

xT y
||x||2||y||2

)

. The term xT y
||x||2||y||2 is the popular

cosine similarity. For sets (or equivalently binary vectors), the

cosine similarity reduces to

S =
a

√

fxfy
(13)

The recent work on coding for random projections [28] has shown

the advantage of SRP (and 2-bit random projections) over L2LSH

for both similarity estimation and near neighbor search. Interest-

ingly, another recent work [39] has shown that for binary data (actu-

ally even sparse non-binary data), minhash can significantly outper-

form SRP for near neighbor search even as we evaluate both SRP

and minhash in terms of the cosine similarity (although minhash is

designed for resemblance). This motivates us to design asymmetric

minhash for achieving better performance in retrieving set contain-

ments. But first, we provide an overview of asymmetric LSH for

general inner products (not restricted to binary data).

2.5 Asymmetric LSH (ALSH)
The term “ALSH” stands for asymmetric LSH, as used in a recent

work [35]. Through an elementary argument, [35] showed that it is

not possible to have a Locality Sensitive Hashing (LSH) family for

general unnormalized inner products.

For inner products between vectors x and y, it is possible to have

xT y ≫ xTx. Thus for any hashing scheme h to be a valid LSH,

we must have Pr(h(x) = h(y)) > Pr(h(x) = h(x)) = 1,

which is an impossibility. It turns out that there is a simple fix, if

we allow asymmetry in the hashing scheme. Allowing asymmetry

leads to an extended framework of asymmetric locality sensitive

hashing (ALSH). The idea to is have a different hashing scheme

for assigning buckets to the data point in the collection C, and an

altogether different hashing scheme while querying.

DEFINITION 3. (Asymmetric Locality Sensitive Hashing (ALSH))

A family H, along with the two vector functions Q : RD 7→ R
D′

(Query Transformation) and P : R
D 7→ R

D′

(Preprocessing

Transformation), is called (S0, cS0, p1, p2)-sensitive if for a given

c-NN instance with query q, and the hash function h chosen uni-

formly from H satisfies the following:

• if Sim(q, x) ≥ S0 then PrH(h(Q(q))) = h(P (x))) ≥ p1

• if Sim(q, x) ≤ cS0 then PrH(h(Q(q)) = h(P (x))) ≤ p2

Here x is any point in the collection C. Asymmetric LSH borrows

all theoretical guarantees of the LSH.

FACT 2. Given a family of hash function H and the associ-

ated query and preprocessing transformations Q and P respec-

tively, which is (S0, cS0, p1, p2) -sensitive, one can construct a

data structure for c-NN with O(nρ log n) query time and space

O(n1+ρ), where ρ = log p1
log p2

.

[35] showed that using asymmetric transformations, the problem

of maximum inner product search (MIPS) can be reduced to the

problem of approximate near neighbor search in L2. The algorithm

first starts by scaling all x ∈ C by a constant large enough, such that

||x||2 ≤ U < 1. The proposed ALSH family (L2-ALSH) is the

LSH family for L2 distance with the Preprocessing transformation

P : R
D 7→ R

D+m and the Query transformation Q : R
D 7→

R
D+2m defined as follows:

PL2(x) = [x; ||x||22;; ||x||2
m

2 ; 1/2; ...; 1/2] (14)

QL2(x) = [x; 1/2; ...; 1/2; ||x||22;; ||x||2
m

2], (15)

where [;] is the concatenation. PL2(x) appends m scalers of the

form ||x||2i2 followed by m “1/2s" at the end of the vector x, while

QL2(x) first appends m “1/2s” to the end of the vector x and then

m scalers of the form ||x||2i2 . It was shown that this leads to prov-

ably efficient algorithm for MIPS.

FACT 3. [35] For the problem of c-approximate MIPS in a

bounded space, one can construct a data structure having

O(nρ∗L2−ALSH log n) query time and space O(n1+ρ∗L2−ALSH), where

ρ∗L2−ALSH < 1 is the solution to constrained optimization (16).

ρ∗L2−ALSH (16)

= min
U<1,m∈N,r

logFr

(

√

m/2− 2S0

(

U2

V 2

)

+ 2U2m+1
)

logFr

(

√

m/2− 2cS0

(

U2

V 2

)

)

s.t.
U (2m+1−2)V 2

S0
< 1− c,

Here the guarantees depends on the maximum norm of the space

V = maxx∈C ||x||2.

Quickly after, it was realized that a very similar idea can convert

the MIPS problem in the problem of maximum cosine similarity

search which can be efficiently solve by SRP leading to a new and

better ALSH for MIPS Sign-ALSH [37] which works as follows:

The algorithm again first starts by scaling all x ∈ C by a constant

large enough, such that ||x||2 ≤ U < 1. The proposed ALSH

family (Sign-ALSH) is the SRP family for cosine similarity with

the Preprocessing transformation P sign : RD 7→ R
D+m and the

Query transformation Qsign : RD 7→ R
D+2m defined as follows:

P sign(x) = [x; 1/2− ||x||22; ...; 1/2 − ||x||2
m

2 ; 0; ...; 0] (17)

Qsign(x) = [x; 0; ...; 0; 1/2− ||x||22; ...; 1/2 − ||x||2
m

2], (18)

where [;] is the concatenation. P sign(x) appends m scalers of the

form 1/2 − ||x||2i2 followed by m “0s" at the end of the vector x,

while Qsign(x) appends m “0” followed by m scalers of the form

1/2−||x||2i2 to the end of the vector x. It was shown that this leads

to provably efficient algorithm for MIPS.

As demonstrated by the recent work [28] on coding for random

projections, there is a significant advantage of SRP over L2LSH

for near neighbor search. Thus, it is not surprising that Sign-ALSH

outperforms L2-ALSH for the MIPS problem. Similar to L2LSH,

the runtime guarantees for Sign-ALSH can be shown as:

FACT 4. For the problem of c-approximate MIPS, one can con-

struct a data structure having O(nρ∗Sign−ALSH log n) query time

and space O(n1+ρ∗Sign−ALSH), where ρ∗Sign−ALSH < 1 is the

solution to constraint optimization problem

ρ∗Sign−ALSH = min
U,m,

log

(

1− 1
π
cos−1

(

S0×
(

U2

V 2

)

m
4

+U2m+1

))

log

(

1− 1
π
cos−1

(

min{ cS0U2

V 2 , z∗}
))

(19)

z∗ =

[

(m−m2m−1) +
√

(m−m2m−1)2 +m2(2m − 1)

4(2m − 1)

]2−m

There is a similar asymmetric transformation [3, 32] which fol-

lowed by sign random projection leads to another ALSH having

very similar performance to Sign-ALSH. The ρ values, which were

also very similar to the ρSign−ALSH can be shown as

ρSign =

log

(

1− 1
π
cos−1

(

S0

V 2

))

log

(

1− 1
π
cos−1

(

cS0

V 2

)) (20)

Both L2-ALSH and Sign-ALSH work for any general inner prod-

ucts over R
D. For sparse and high-dimensional binary dataset

which are common over the web, it is known that minhash is typi-

cally the preferred choice of hashing over random projection based

hash functions [39]. We show later that the ALSH derived from

minhash, which we call asymmetric minwise hashing (MH-ALSH),

is more suitable for indexing set intersection for sparse binary vec-

tors than the existing ALSHs for general inner products.

3. SAMPLING BASED ALSH FOR INDEX-

ING BINARY INNER PRODUCTS
In [35], it was shown that there cannot exist any LSH for general

unnormalized inner product. Using a slightly different argument it

can be shown that even for binary data we cannot have any LSH

scheme. Note, for binary inner product xT y ≤ xTx and therefore

we cannot use exactly the same argument as before. But we can

have x,y and z such that xT y ≫ zT z. Now, Pr(h(x) = h(y)) >
Pr(h(z) = h(z)) = 1 is again impossible. However, with asym-

metry it is not difficult to construct a provable hashing scheme for

binary inner product.

The construction is based on sampling. Simply sampling a ran-

dom component leads to the popular LSH for hamming distance [33].

The ordering of inner product is different from that of hamming dis-

tance. The hamming distance between x and query q is given by

fx + fq − 2a, while we want the collision probability to be mono-

tonic in the inner product a. fx makes it non-monotonic in a. Note

that fq has no effect on ordering of x ∈ C because it is constant

for every query. To construct an LSH monotonic in binary inner

product, we need an extra trick.

Given a binary data vector x, we sample a random co-ordinate

(or attribute). If the value of this co-ordinate is 1 (in other words if

this attribute is present in the set), our hash value is a fixed number

0. If this randomly sampled co-ordinate has value 0 (or the attribute

is absent) then ensure that the hash value of the query never matches

the hash value of the data. Formally,

HS(f(x)) =

0 if xi = 1, i drawn uniformly

1 if f = Q (for query)

2 if f = P (while preprocessing)

(21)

Note the asymmetry, i.e., the hash functions are different for query

and the dataset. We can also write it down more formally using

P (.) and Q(.) but we avoid it for the sake of simplicity.

THEOREM 1. Given two binary vectors x and y, we have

Pr(HS(P (x)) = HS(Q(y))) =
a

D
(22)

PROOF. The probability that both HS(P (x)) and HS(Q(y))
have value 0 is a

D
. They cannot be equal otherwise

COROLLARY 1. HS is (S0, cS0,
S0

D
, cS0

D
)-sensitive ALSH for

binary inner product with ρHS =
log

(

S0
D

)

log
(

cS0
D

) < 1

3.1 Shortcomings
The above ALSH for binary inner product is likely to be very in-

efficient for sparse and high dimensional datasets. For those datasets,

typically the value of D is very high and the sparsity ensures that

a is very small. For modern web datasets, we can have D running

into billions (or 264) while the sparsity is only in few hundreds

or perhaps thousands [8]. Therefore, we have a
D

≃ 0 which es-

sentially boils down to ρHS ≃ 1. In other words, the hashing

scheme becomes worthless in sparse high dimensional domain. On

the other hand, if we observe the collision probability of minhash

Eq.(7), the denominator is fx+fy−a, which is usually of the order

of a and much less than the dimensionality for sparse datasets.

Another way of realizing the problem with the above ALSH is to

note that it is informative only if a randomly sampled co-ordinate

has value equal to 1. For very sparse dataset with a ≪ D, sampling

a non zero coordinate has probability a
D

≃ 0. Thus, almost all of

the hashes will be fixed numbers which are not informative.

3.2 Why Is Minhash Reasonable?
In this section, we argue why retrieving inner product based on

plain minhash is a reasonable thing to do. Later, we will show a

provable way to improve it using asymmetric transformations.

The number of nonzeros in the query, i.e., |q| = fq does not

change the identity of argmax in Eq.(4). Let us assume that we

have data of bounded sparsity and define constant M as

M = max
x∈C

|x| (23)

where M is the maximum number of nonzeros (or maximum cardi-

nality of sets) seen in the database. For sparse data seen in practice

M is likely to be small compared to D. Outliers, if any, can be

handled separately. By observing that a ≤ fx ≤ M , we also have

a

fq +M − a
≤ a

fx + fq − a
= R ≤ a

fq
(24)

Thus, given the bounded sparsity, if we assume that the number of

nonzeros in the query is given, then we can show that minhash is

an LSH for inner products a because the collision probability can

be upper and lower bounded by purely functions of a,M and fq.

THEOREM 2. Given bounded sparsity and query q with |q| =
fq , minhash is a (S0, cS0,

S0

fq+M−S0
, cS0

fq
) sensitive for inner prod-

ucts a with ρqmin =
log

S0
fq+M−S0

log
cS0
fq

This explains why minhash might be a reasonable hashing approach

for retrieving inner products or set intersection.

Here, if we remove the assumption that |q| = fq then in the worst

case R ≤ a
fq

≤ 1 and we get log 1 in the denominator. Note that

the above is the worst case analysis and the assumption |q| = fq
is needed to obtain any meaningful ρ with minhash. We show the

power of ALSH in the next section, by providing a better hashing

scheme and we do not even need the assumption of fixing |q| = fq .

4. ASYMMETRIC MINWISE HASHING
In this section, we provide a very simple asymmetric fix to min-

hash, named asymmetric minwise hashing (MH-ALSH), which makes

the overall collision probability monotonic in the original inner

product a. For sparse binary data, which is common in practice, we

later show that the proposed hashing scheme is superior (both the-

oretically as well as empirically) compared to the existing ALSH

schemes for inner product [35].

4.1 The New ALSH for Binary Data
We define the new preprocessing and query transformations P ′ :

[0, 1]D → [0, 1]D+M and Q′ : [0, 1]D → [0, 1]D+M as:

P ′(x) = [x; 1; 1; 1; ...; 1; 0; 0; ...; 0] (25)

Q′(x) = [x; 0; 0; 0; ...; 0], (26)

For P ′(x) we append M − fx 1s and rest fx zeros, while in Q′(x)
we simply append M zeros.

At this point we can already see the power of asymmetric trans-

formations. The original inner product between P ′(x) and Q′(x)
is unchanged and its value is a = xT y. Given the query q, the new

resemblance R′ between P ′(x) and Q′(q) is

R′ =
|P ′(x) ∩Q′(q)|
|P ′(x) ∪Q′(q)| =

a

M + fq − a
. (27)

If we define our new similarity as Sim(x, y) = a
M+fq−a

, then the

near neighbors in this new similarity are the same as near neigh-

bors with respect to either set intersection a or set containment a
fq

.

Thus, we can instead compute near neighbors in a
M+fq−a

which is

also the resemblance between P ′(x) and Q′(q). We can therefore

use minhash on P ′(x) and Q′(q).
Observe that now we have M+fq−a in the denominator, where

M is the maximum nonzeros seen in the dataset (the cardinality of

largest set), which for very sparse data is likely to be much smaller

than D. Thus, asymmetric minhash is a better scheme than HS

with collision probability a
D

for very sparse datasets where we usu-

ally have M ≪ D.

From theoretical perspective, to obtain an upper bound on the

query and space complexity of c-approximate near neighbor with

binary inner products, we want the collision probability to be in-

dependent of the quantity fq . This is not difficult to achieve. The

asymmetric transformation used to get rid of fx in the denominator

can be reapplied to get rid of fq .

Formally, we can define P ′′ : [0, 1]D → [0, 1]D+2M and Q′′ :
[0, 1]D → [0, 1]D+2M as :

P ′′(x) = Q′(P ′(x)); Q′′(x) = P ′(Q′(x)); (28)

where in P ′′(x) we append M − fx 1s and rest M + |fx| zeros,

while in Q′′(x) we append M zeros, then M−fq 1s and rest zeros

Again the inner product a is unaltered, and the new resemblance

then becomes

R′′ =
|P ′′(x) ∩Q′′(q)|
|P ′′(x) ∪Q′′(q)| =

a

2M − a
. (29)

which is independent of fq and is monotonic in a. This allows us to

achieve a formal upper bound on the complexity of c-approximate

maximum inner product search with the new asymmetric minhash.

From the collision probability expression, i.e., Eq. (29), we have

THEOREM 3. Minwise hashing along with Query transforma-

tion Q′′ and Preprocessing transformation P ′′ defined by Equa-

tion 28 is a (S0, cS0,
S0

2M−S0
, cS0

2M−cS0
) sensitive asymmetric hash-

ing family for set intersection.

This leads to an important corollary.

COROLLARY 2. There exists an algorithm for c-approximate

set intersection, with bounded sparsity M , that requires space

O(n1+ρMH−ALSH) and query time O(nρMH−ALSH log n), where

ρMH−ALSH =
log S0

2M−S0

log cS0

2M−cS0

< 1 (30)

Given query q and any point x ∈ C, the collision probability

under traditional minhash is R = a
fx+fq−a

. This penalizes sets

with high fx, which in many scenarios is not desirable. To balance

this negative effect, asymmetric transformation penalizes sets with

smaller fx. Note, that M − fx ones added in the transformations

P ′(x) gives additional chance in proportion to M−fx for minhash

of P ′(x) not to match with the minhash of Q′(x). This asymmetric

probabilistic correction balances the penalization inherent in min-

hash. This is a simple way of correcting the probability of collision

which could be of independent interest in itself. We will show in

our evaluation section, that despite this simplicity such correction

leads to significant improvement over plain minhash.

4.2 Efficient Sampling
Our transformations P ′′ and Q′′ always create sets with 2M

nonzeros. In case when M is big, hashing might take a lot of time.

We can use (improved) consistent weighted sampling [30, 23] for

efficient generation of hashes. We can instead use transformations

P ′′′ and Q′′′ that makes the data non-binary as follows

P ′′′(x) = [x;M − fx; 0] (31)

Q′′′(x) = [x; 0;M − fx]

It is not difficult to see that the weighted resemblance (or weighted

Jaccard similarity) between P ′′′(x) and Q′′′(q) for given query q
and any x ∈ C is

RW =

∑

i min(P ′′′(x)i, Q
′′′(q)i)

∑

i max(P ′′′(x)i, Q′′′(q)i)
=

a

2M − a
. (32)

Therefore, we can use fast consistent weighted sampling for weighted

resemblance on P ′′′(x) and Q′′′(x) to compute the hash values in

time constant per nonzero weights, rather than maximum sparsity

M . In practice we will need many hashes for which we can utilize

the recent line of work that make minhash and weighted minhash

significantly much faster [29, 36, 38, 19].

5. THEORETICAL COMPARISONS
For solving the MIPS problem in general data types, we already

know two asymmetric hashing schemes, L2-ALSH and Sign-ALSH,

as described in Section 2.5. In this section, we provide theoreti-

cal comparisons of the two existing ALSH methods with the pro-

posed asymmetric minwise hashing (MH-ALSH). As argued, the

LSH scheme described in Section 3 is unlikely to be useful in prac-

tice because of its dependence on D; and hence we can safely ig-

nore it for simplicity of the discussion.

Before we formally compare various asymmetric LSH schemes

for maximum inner product search, we argue why asymmetric min-

hash should be advantageous over traditional minhash for retrieving

inner products. Let q be the binary query vector, and fq denotes the

number of nonzeros in the query. The ρMH−ALSH for asymmetric

minhash in terms of fq and M is straightforward from the collision

probability Eq.(27):

ρqMH−ALSH =
log S0

fq+M−S0

log cS0

fq+M−cS0

(33)

For minhash, we have from theorem 2 ρqmin =
log

S0
fq+M−S0

log
cS0
fq

.

Since M is the upper bound on the sparsity and cS0 is some value

of inner product, we have M − cS0 ≥ 0. Using this fact, the fol-

lowing theorem immediately follows

THEOREM 4. For any query q, we have ρqMH−ALSH ≤ ρqmin.

This result theoretically explains why asymmetric minhash is better

for retrieval with binary inner products, compared to plain minhash.

For comparing asymmetric minhash with ALSH for general in-

ner products, we compare ρMH−ALSH with the ALSH for in-

ner products based on sign random projections. Note that it was

shown that Sign-ALSH has better theoretical ρ values compared

to L2-ALSH [37]. Therefore, it suffices to show that asymmetric

minhash outperforms sign random projection based ALSH. Both

ρMH−ALSH and ρsign can be rewritten in terms of ratio S0

M
as fol-

lows. Note that for binary data we have M = maxx∈C ||x||2 = V 2

ρMH−ALSH =
log S0/M

2−S0/M

log cS0/M
2−cS0/M

; ρSign =

log

(

1− 1
π
cos−1

(

S0

M

))

log

(

1− 1
π
cos−1

(

cS0

M

))

(34)

Observe that M is also the upper bound on any inner product.

Therefore, we have 0 ≤ S0

M
≤ 1. We plot the values of ρMH−ALSH

and ρsign for S0

M
= {0.1, 0.2, ..., 0.8, 0.9, 0.95} with c. The

comparison is summarized in Figure 1. Note that here we use ρSign

based on the slightly more convenient transformation from [3, 32]

instead of ρSign−ALSH for convenience although the two schemes

perform essentially the same.

Clearly, irrespective of the choice of threshold S0

M
or the approxi-

mation ratio c, asymmetric minhash outperforms sign random pro-

jection based ALSH in terms of the theoretical ρ values. This is

not surprising, because it is known that minhash based methods

are often significantly powerful for binary data compared to SRP

(or simhash) [39]. Therefore ALSH based on minhash outperforms

ALSH based on SRP as shown by our theoretical comparisons. Our

proposal thus leads to an algorithmic improvement over state-of-

the-art hashing techniques for retrieving binary inner products.

6. EVALUATIONS
In this section, we compare the different hashing schemes on the

actual task of retrieving top-ranked elements based on set Jaccard

containment. The experiments are divided into two parts. In the

first part, we show how the ranking based on various hash func-

tions correlate with the ordering of set containment. In the sec-

ond part, we perform the actual LSH based bucketing experiment

for retrieving top-ranked elements and compare the computational

saving obtained by various hashing algorithms.

6.1 Datasets
We used four publicly available high dimensional sparse datasets:

EP2006, MNIST, NEWS20, and NYTIMES. (Note that “EP2006” is

a short name for “E2006LOG1P” from LIBSVM web site.) Except

for MNIST, the other three datasets are binary “BoW" representa-

tion of the corresponding text corpus. MNIST is an image dataset

consisting of 784 pixel image of handwritten digits. Binarized ver-

sions of MNIST are commonly used in literature. The pixel values

in MNIST were binarized to 0 or 1 values. For each of the four

datasets, we generate two partitions. The bigger partition was used

to create hash tables and is referred as the training partition. The

small partition which we call the query partition is used for query-

ing. The statistics of these datasets are summarized in Table 1. The

datasets cover a wide spectrum of sparsity and dimensionality.

Table 1: Datasets

Dataset # Query # Train # Dim nonzeros (mean ± std)

EP2006 2,000 17,395 4,272,227 6072 ± 3208
MNIST 2,000 68,000 784 150 ± 41
NEWS20 2,000 18,000 1,355,191 454 ± 654
NYTIMES 2,000 100,000 102,660 232 ± 114

6.2 Competing Hash Functions
We consider the following hash functions for evaluations:

1. Asymmetric minwise hashing (Proposed): This is our pro-

posal, the asymmetric minhash described in Section 4.1.

2. Traditional minwise hashing (MinHash): This is the usual

minwise hashing, the popular heuristic described in Section 2.2.

This is a symmetric hash function, we use hπ as defined in

Eq.(6) for both query and the training set.

3. L2 based Asymmetric LSH for Inner products (L2-ALSH):

This is the asymmetric LSH of [35] for general inner prod-

ucts based on LSH for L2 distance.

4. SRP based Asymmetric LSH for Inner Products (Sign-

ALSH): This is the asymmetric hash function of [37] for

general inner products based on SRP.

6.3 Ranking Experiment: Hash Quality Eval-
uations

We are interested in knowing, how the orderings under different

competing hash functions correlate with the ordering of the under-

lying similarity measure which in this case is the set containment.

For this task, given a query q vector, we compute the top-100 gold

standard elements from the training set based on the set contain-

ment a
fq

. Note that this is the same as the top-100 elements based

on binary inner products. Give a query q, we compute K different

hash codes of the vector q and all the vectors in the training set. We

then compute the number of times the hash values of a vector x in

the training set matches the hash values of query q defined by

Matchesx =

K
∑

t=1

1(ht(q) = ht(x)), (35)

where 1 is the indicator function. t subscript is used to distin-

guish independent draws of the underlying hash function. Based on

Matchesx we rank all elements in the training set. This procedure

generates a sorted list for every query for every hash function. For

asymmetric hash functions, in computing total collisions, on the

query vector we use the corresponding Q function (query transfor-

mation) followed by underlying hash function, while for elements

in the training set we use the P function (preprocessing transfor-

mation) followed by the corresponding hash function.

We compute the precision and the recall of the top-100 gold stan-

dard elements in the ranked list generated by different hash func-

tions. To compute precision and recall, we start at the top of the

ranked item list and walk down in order, suppose we are at the pth

ranked element, we check if this element belongs to the gold stan-

dard top-100 list. If it is one of the top 100 gold standard elements,

then we increment the count of relevant seen by 1, else we move to

p + 1. By pth step, we have already seen p elements, so the total

00.20.40.60.81

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

c

ρ

Theoretical ρ

0.5

0.95

0.95

0.5

0.9

0.9

ρ
MH−ALSH

ρ
sign

00.20.40.60.81

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

c

ρ 0.4

Theoretical ρ

0.3 0.2 0.1

0.4 0.3
0.2

0.1

ρ
MH−ALSH

ρ
sign

Figure 1: Values of ρMH−ALSH and ρsign (lower is better) with respect to approximation ratio c for different S0

M
. The curves show

that asymmetric minhash (solid curves) is noticeably better than ALSH based on sign random projection (dashed curves) in terms

of their ρ values, irrespective of the choices of S0

M
or c. For clarity, the results are shown in two panels.

elements seen is p. The precision and recall at that point is then

computed as:

Precision =
relevant seen

p
, Recall =

relevant seen

100
(36)

It is important to balance both. Methodology which obtains higher

precision at a given recall is superior. Higher precision indicates

higher ranking of the relevant items. We finally average these val-

ues of precision and recall over all elements in the query set. The

results for K ∈ {32, 64, 128} are summarized in Figure 2.

We can clearly see, that the proposed hashing scheme always

achieves better, often significantly, precision at any given recall

compared to other hash functions. The two ALSH schemes are usu-

ally always better than traditional minwise hashing. This confirms

that fact that ranking based on collisions under minwise hashing

can be different from the rankings under set containment or inner

products. This is expected, because minhash in addition penalizes

the number of nonzeros leading to a ranking very different from the

ranking of inner products. Sign-ALSH usually performs better than

L2-LSH, this is in line with the results obtained in [37].

It should be noted that ranking experiments only validate the

monotonicity of the collision probability. Although, better rank-

ing is certainly a good indicator of good hash function, it does not

always mean that we will achieve faster sub-linear LSH algorithm.

For bucketing the probability sensitivity around a particular thresh-

old is the most important factor, see [33] for more details. What

matters is the gap between the collision probability of good and

the bad points. In the next subsection, we compare these schemes

on the actual task of near neighbor retrieval with set containment.

6.4 LSH Bucketing Experiment: Computational
Savings in Near Neighbor Retrieval

In this section, we evaluate the four hashing schemes on the

standard (K,L)-parameterized bucketing algorithm [2] for sub-

linear time retrieval of near neighbors based on set containment.

In (K,L)-parameterized LSH algorithm, we generate L different

meta-hash functions. Each of these meta-hash functions is formed

by concatenating K different hash values as

Bj(x) = [hj1(x);hj2(x); ...; hjK(x)], (37)

where hij , i ∈ {1, 2, ..., K} and j ∈ {1, 2, ..., L}, are KL differ-

ent independent evaluations of the hash function under considera-

tion. Different competing scheme uses its own underlying random-

ized hash function h.

In general, the (K,L)-parameterized LSH works in two phases:

i) Preprocessing Phase: We construct L hash tables from data

by storing element x, in the training set, at location Bj(P (x))
in the hash-table j. Note that for vanilla minhash which is a

symmetric hashing scheme P (x) = x. For other asymmetric

schemes, we use their corresponding P functions. Preprocess-

ing is a one time operation, once the hash tables are created

they are fixed.

ii) Query Phase: Given a query q, we report the union of all the

points in the buckets Bj(Q(q)) ∀j ∈ {1, 2, ..., L}, where the

union is over L hash tables. Again here Q is the corresponding

Q function of the asymmetric hashing scheme, for minhash

Q(x) = x.

Typically, the performance of a bucketing algorithm is sensitive

to the choice of parameters K and L. Ideally, to find best K and L,

we need to know the operating threshold S0 and the approximation

ratio c in advance. Unfortunately, the data and the queries are very

diverse and therefore for retrieving top-ranked near neighbors there

are no common fixed threshold S0 and approximation ratio c that

work for all the queries.

Our objective is to compare the four hashing schemes and min-

imize the effect of K and L, if any, on the evaluations. This is

achieved by finding best K and L at every recall level. We run the

bucketing experiment for all combinations of K ∈ {1, 2, 3, ...40}
and L ∈ {1, 2, 3, ..., 400} for all the four hash functions indepen-

dently. These choices include the recommended optimal combina-

tions at various thresholds. We then compute, for every K and L,

the mean recall of Top-T pairs and the mean number of points re-

ported, per query, to achieve that recall. The best K and L at every

recall level is chosen independently for different T s. The plot of

the mean fraction of points scanned with respect to the recall of

top-T gold standard near neighbors, where T ∈ {5, 10, 20, 50}, is

summarized in Figure 3.

The performance of a hashing based method varies with the vari-

ations in the similarity levels in the datasets. It can be seen that the

proposed asymmetric minhash always retrieves much less number

of points, and hence requires significantly less computations, com-

pared to other hashing schemes at any recall level on all the four

0 10 20 30 40 50 60 70 80 90 100
0

10

20

30

Recall (%)

P
re

c
is

io
n
 (

%
)

Top 100

32 Hashes

EP2006

MinHash
Proposed
L2−ALSH
Sign−ALSH

0 10 20 30 40 50 60 70 80 90 100
0

10

20

30

40

Recall (%)

P
re

c
is

io
n
 (

%
)

Top 100

64 Hashes

EP2006

MinHash
Proposed
L2−ALSH
Sign−ALSH

0 10 20 30 40 50 60 70 80 90 100
0

20

40

60

Recall (%)

P
re

c
is

io
n
 (

%
)

Top 100

128 Hashes

EP2006

MinHash
Proposed
L2−ALSH
Sign−ALSH

0 10 20 30 40 50 60 70 80 90 100
0

10

20

30

Recall (%)

P
re

c
is

io
n
 (

%
)

Top 100

32 Hashes

MNIST

MinHash
Proposed
L2−ALSH
Sign−ALSH

0 10 20 30 40 50 60 70 80 90 100
0

10

20

30

40

50

Recall (%)

P
re

c
is

io
n
 (

%
)

Top 100

64 Hashes

MNIST MinHash
Proposed
L2−ALSH
Sign−ALSH

0 10 20 30 40 50 60 70 80 90 100
0

20

40

60

80

Recall (%)

P
re

c
is

io
n
 (

%
)

Top 100

128 Hashes

MNIST
MinHash
Proposed
L2−ALSH
Sign−ALSH

0 10 20 30 40 50 60 70 80 90 100
0

5

10

15

20

Recall (%)

P
re

c
is

io
n
 (

%
)

Top 100

32 Hashes

NEWS20
MinHash

Proposed

L2−ALSH

Sign−ALSH

0 10 20 30 40 50 60 70 80 90 100
0

10

20

30

Recall (%)

P
re

c
is

io
n
 (

%
)

Top 100

64 Hashes

NEWS20

MinHash
Proposed
L2−ALSH
Sign−ALSH

0 10 20 30 40 50 60 70 80 90 100
0

10

20

30

40

Recall (%)

P
re

c
is

io
n
 (

%
)

Top 100

128 Hashes

NEWS20

MinHash
Proposed
L2−ALSH
Sign−ALSH

0 10 20 30 40 50 60 70 80 90 100
0

2

4

6

8

10

Recall (%)

P
re

c
is

io
n
 (

%
)

Top 100

32 Hashes

NYTimes
MinHash

Proposed

L2−ALSH

Sign−ALSH

0 10 20 30 40 50 60 70 80 90 100
0

10

20

30

Recall (%)

P
re

c
is

io
n
 (

%
)

Top 100

64 Hashes

NYTimes

MinHash

Proposed

L2−ALSH

Sign−ALSH

0 10 20 30 40 50 60 70 80 90 100
0

10

20

30

40

Recall (%)

P
re

c
is

io
n
 (

%
)

Top 100

128 Hashes

NYTimes
MinHash
Proposed
L2−ALSH
Sign−ALSH

Figure 2: Ranking Experiments. Precision Vs Recall curves for retrieving top-100 items, for different hashing schemes on 4 chosen

datasets. The precision and the recall were computed based on the rankings obtained by different hash functions using 32, 64 and

128 independent hash evaluations. Higher precision at a given recall is better.

datasets. Asymmetric minhash consistently outperforms other hash

functions irrespective of the operating point. The plots clearly es-

tablish the superiority of the proposed scheme for indexing set con-

tainment (or inner products).

L2-ALSH and Sign-ALSH perform better than traditional min-

hash on EP2006 and NEWS20 datasets while they are worse than

plain minhash on NYTIMES and MNIST datasets. If we look at the

statistics of the dataset from Table 1, NYTIMES and MNIST are

precisely the datasets with less variations in the number of nonzeros

and hence minhash performs better. In fact, for MNIST dataset with

very small variations in the number of nonzeros, the performance

of plain minhash is very close to the performance of asymmetric

minhash. This is of course expected because there is negligible ef-

fect of penalization on the ordering. EP2006 and NEWS20 datasets

have huge variations in their number of nonzeros and hence min-

hash performs very poorly on these datasets. What is exciting is

that despite these variations in the nonzeros, asymmetric minhash

always outperforms other ALSH for general inner products.

The difference in the performance of plain minhash and asym-

metric minhash clearly establishes the utility of our proposal which

is simple and does not require any major modification over tra-

ditional minhash implementation. Given the fact that minhash is

widely popular, we hope that our proposal will be adopted.

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

Recall

F
ra

c
ti
o
n
 o

f
L
in

e
a
r

S
c
a
n

Top 5

EP2006

MinHash

Proposed

L2−ALSH

Sign−ALSH

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

Recall

F
ra

c
ti
o
n
 o

f
L
in

e
a
r

S
c
a
n

Top 10

EP2006

MinHash

Proposed

L2−ALSH

Sign−ALSH

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

Recall

F
ra

c
ti
o
n
 o

f
L
in

e
a
r

S
c
a
n

Top 20

EP2006

MinHash

Proposed

L2−ALSH

Sign−ALSH

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

Recall

F
ra

c
ti
o
n
 o

f
L
in

e
a
r

S
c
a
n

Top 50

EP2006

MinHash

Proposed

L2−ALSH

Sign−ALSH

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

Recall

F
ra

c
ti
o
n
 o

f
L
in

e
a
r

S
c
a
n Top 5

MNIST

MinHash

Proposed

L2−ALSH

Sign−ALSH

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

Recall

F
ra

c
ti
o
n
 o

f
L
in

e
a
r

S
c
a
n

Top 10

MNIST

MinHash

Proposed

L2−ALSH

Sign−ALSH

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

Recall

F
ra

c
ti
o
n
 o

f
L
in

e
a
r

S
c
a
n Top 20

MNIST

MinHash

Proposed

L2−ALSH

Sign−ALSH

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

Recall

F
ra

c
ti
o
n
 o

f
L
in

e
a
r

S
c
a
n

Top 50

MNIST

MinHash

Proposed

L2−ALSH

Sign−ALSH

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

Recall

F
ra

c
ti
o
n
 o

f
L
in

e
a
r

S
c
a
n

Top 5

NEWS20

MinHash

Proposed

L2−ALSH

Sign−ALSH

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

Recall

F
ra

c
ti
o
n
 o

f
L
in

e
a
r

S
c
a
n

Top 10

NEWS20

MinHash

Proposed

L2−ALSH

Sign−ALSH

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

Recall

F
ra

c
ti
o
n
 o

f
L
in

e
a
r

S
c
a
n

Top 20

NEWS20

MinHash

Proposed

L2−ALSH

Sign−ALSH

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

Recall

F
ra

c
ti
o
n
 o

f
L
in

e
a
r

S
c
a
n

Top 50

NEWS20

MinHash

Proposed

L2−ALSH

Sign−ALSH

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

Recall

F
ra

c
ti
o
n
 o

f
L
in

e
a
r

S
c
a
n Top 5

NYTimes

MinHash

Proposed

L2−ALSH

Sign−ALSH

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

Recall

F
ra

c
ti
o
n
 o

f
L
in

e
a
r

S
c
a
n

Top 10

NYTimes

MinHash

Proposed

L2−ALSH

Sign−ALSH

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

Recall

F
ra

c
ti
o
n
 o

f
L
in

e
a
r

S
c
a
n Top 20

NYTimes

MinHash

Proposed

L2−ALSH

Sign−ALSH

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

Recall

F
ra

c
ti
o
n
 o

f
L
in

e
a
r

S
c
a
n

Top 50

NYTimes

MinHash

Proposed

L2−ALSH

Sign−ALSH

Figure 3: LSH Bucketing Experiments. Average number of points retrieved per query (lower is better), relative to linear scan,

evaluated by different hashing schemes at different recall levels, for top-5, top-10, top-20, top-50 nearest neighbors based on set

containment (or equivalently inner products), on four datasets. We show that results at the best K and L values chosen at every

recall value, independently for each of the four hashing schemes.

7. CONCLUSION AND FUTURE WORK
Minwise hashing (minhash) is a widely popular indexing scheme

in practice for similarity search. Minhash was originally designed

for estimating set resemblance (i.e., normalized size of set inter-

sections). In many applications the performance of minhash is

severely affected because minhash has a bias towards smaller sets.

In this study, we propose asymmetric corrections (asymmetric min-

wise hashing, or MH-ALSH) to minwise hashing that remove this

often undesirable bias. Our corrections lead to a provably supe-

rior algorithm for retrieving binary inner products in the literature.

Rigorous experimental evaluations on the task of retrieving max-

imum inner products clearly establish that the proposed approach

can be significantly advantageous over the existing state-of-the-art

hashing schemes in practice, when the desired similarity is the in-

ner product (or containment) instead of the resemblance. Our pro-

posed method requires only minimal modification of the original

minwise hashing algorithm and should be straightforward to im-

plement in practice.

Future work: One immediate direction for future work would be

asymmetric consistent weighted sampling for hashing weighted in-

tersection:
∑D

i=1 min{xi, yi}, where x and y are general real-

valued vectors. One proposal of the new asymmetric transforma-

tion is the following:

P (x) = [x;M −
D
∑

i=1

xi; 0], Q(x) = [x; 0;M −
D
∑

i=1

xi],

where M = maxx∈C
∑

i xi. It is not difficult to show that the

weighted Jaccard similarity between P (x) and Q(y) is monotonic

in
∑D

i=1 min{xi, yi} as desired. At this point, we can use existing

methods for consistent weighted sampling [30, 23, 19, 26]. on the

new data after asymmetric transformations

Acknowledgement

The work is partially supported by NSF-DMS-1444124, NSF-III-

1360971, ONR-N00014-13-1-0764, and AFOSR-FA9550-13-1-0137.

8. REFERENCES

[1] P. Agrawal, A. Arasu, and R. Kaushik. On indexing

error-tolerant set containment. In Proceedings of the 2010

ACM SIGMOD International Conference on Management of

data, pages 927–938. ACM, 2010.

[2] A. Andoni and P. Indyk. E2lsh: Exact euclidean locality

sensitive hashing. Technical report, 2004.

[3] Y. Bachrach, Y. Finkelstein, R. Gilad-Bachrach, L. Katzir,

N. Koenigstein, N. Nice, and U. Paquet. Speeding up the

xbox recommender system using a euclidean transformation

for inner-product spaces. In RecSys, 2014.

[4] Y. Bachrach, E. Porat, and J. S. Rosenschein. Sketching

techniques for collaborative filtering. In Proceedings of the

21st International Jont Conference on Artifical Intelligence,

IJCAI’09, 2009.

[5] R. J. Bayardo, Y. Ma, and R. Srikant. Scaling up all pairs

similarity search. In WWW, pages 131–140, 2007.

[6] A. Z. Broder. On the resemblance and containment of

documents. In the Compression and Complexity of

Sequences, pages 21–29, Positano, Italy, 1997.

[7] A. Z. Broder, M. Charikar, A. M. Frieze, and

M. Mitzenmacher. Min-wise independent permutations. In

STOC, pages 327–336, Dallas, TX, 1998.

[8] T. Chandra, E. Ie, K. Goldman, T. L. Llinares, J. McFadden,

F. Pereira, J. Redstone, T. Shaked, and Y. Singer. Sibyl: a

system for large scale machine learning.

[9] O. Chapelle, P. Haffner, and V. N. Vapnik. Support vector

machines for histogram-based image classification. IEEE

Transactions on Neural Networks, 10(5):1055–1064, 1999.

[10] M. S. Charikar. Similarity estimation techniques from

rounding algorithms. In STOC, pages 380–388, Montreal,

Quebec, Canada, 2002.

[11] S. Chaudhuri, V. Ganti, and R. Kaushik. A primitive

operatior for similarity joins in data cleaning. In ICDE, 2006.

[12] S. Chaudhuri, V. Ganti, and D. Xin. Mining document

collections to facilitate accurate approximate entity

matching. Proceedings of the VLDB Endowment,

2(1):395–406, 2009.

[13] F. Chierichetti, R. Kumar, S. Lattanzi, M. Mitzenmacher,

A. Panconesi, and P. Raghavan. On compressing social

networks. In KDD, pages 219–228, Paris, France, 2009.

[14] G. Cormode and S. Muthukrishnan. Space efficient mining

of multigraph streams. In Proceedings of the twenty-fourth

ACM SIGMOD-SIGACT-SIGART symposium on Principles

of database systems, pages 271–282. ACM, 2005.

[15] A. S. Das, M. Datar, A. Garg, and S. Rajaram. Google news

personalization: scalable online collaborative filtering. In

Proceedings of the 16th international conference on World

Wide Web, pages 271–280. ACM, 2007.

[16] M. Datar, N. Immorlica, P. Indyk, and V. S. Mirrokn.

Locality-sensitive hashing scheme based on p-stable

distributions. In SCG, pages 253 – 262, Brooklyn, NY, 2004.

[17] S. Geva and C. M. De Vries. Topsig: Topology preserving

document signatures. In CIKM, pages 333–338, 2011.

[18] M. X. Goemans and D. P. Williamson. Improved

approximation algorithms for maximum cut and satisfiability

problems using semidefinite programming. Journal of ACM,

42(6):1115–1145, 1995.

[19] B. Haeupler, M. Manasse, and K. Talwar. Consistent

weighted sampling made fast, small, and easy. Technical

report, arXiv:1410.4266, 2014.

[20] M. Hein and O. Bousquet. Hilbertian metrics and positive

definite kernels on probability measures. In AISTATS, pages

136–143, Barbados, 2005.

[21] M. R. Henzinger. Finding near-duplicate web pages: a

large-scale evaluation of algorithms. In SIGIR, pages

284–291, 2006.

[22] P. Indyk and R. Motwani. Approximate nearest neighbors:

Towards removing the curse of dimensionality. In STOC,

pages 604–613, Dallas, TX, 1998.

[23] S. Ioffe. Improved consistent sampling, weighted minhash

and L1 sketching. In ICDM, pages 246–255, Sydney, AU,

2010.

[24] Y. Jiang, C. Ngo, and J. Yang. Towards optimal

bag-of-features for object categorization and semantic video

retrieval. In CIVR, pages 494–501, Amsterdam, Netherlands,

2007.

[25] N. Koudas, S. Sarawagi, and D. Srivastava. Record linkage:

similarity measures and algorithms. In Proceedings of the

2006 ACM SIGMOD international conference on

Management of data, pages 802–803. ACM, 2006.

[26] P. Li. Min-max kernels. Technical report, arXiv:1503.0173,

2015.

[27] P. Li and A. C. König. Theory and applications b-bit

minwise hashing. Commun. ACM, 2011.

[28] P. Li, M. Mitzenmacher, and A. Shrivastava. Coding for

random projections and approximate near neighbor search.

Technical report, arXiv:1403.8144, 2014.

[29] P. Li, A. B. Owen, and C.-H. Zhang. One permutation

hashing. In NIPS, Lake Tahoe, NV, 2012.

[30] M. Manasse, F. McSherry, and K. Talwar. Consistent

weighted sampling. Technical Report MSR-TR-2010-73,

Microsoft Research, 2010.

[31] S. Melnik and H. Garcia-Molina. Adaptive algorithms for set

containment joins. ACM Transactions on Database Systems

(TODS), 28(1):56–99, 2003.

[32] B. Neyshabur and N. Srebro. A simpler and better lsh for

maximum inner product search (mips). Technical report,

arXiv:1410.5518, 2014.

[33] A. Rajaraman and J. Ullman. Mining of Massive Datasets.

http://i.stanford.edu/ ullman/mmds.html.

[34] K. Ramasamy, J. F. Naughton, and R. Kaushik. Set

containment joins: The good, the bad and the ugly.

[35] A. Shrivastava and P. Li. Asymmetric LSH (ALSH) for

sublinear time maximum inner product search (mips). In

NIPS, Montreal, CA, 2014.

[36] A. Shrivastava and P. Li. Densifying one permutation

hashing via rotation for fast near neighbor search. In ICML,

Beijing, China, 2014.

[37] A. Shrivastava and P. Li. Improved asymmetric locality

sensitive hashing (ALSH) for maximum inner product search

(MIPS). arXiv:1410.5410 (submitted to AISTATS), 2014.

[38] A. Shrivastava and P. Li. Improved densification of one

permutation hashing. In UAI, Quebec City, CA, 2014.

[39] A. Shrivastava and P. Li. In defense of minhash over

simhash. In AISTATS, 2014.

[40] R. Weber, H.-J. Schek, and S. Blott. A quantitative analysis

and performance study for similarity-search methods in

high-dimensional spaces. In VLDB, pages 194–205, 1998.

